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ABSTRACT Computer-aided diagnosis systems developed by computer vision researchers have helped
doctors to recognize several endoscopic colorectal diseases more rapidly, which allows appropriate treatment
and increases the patient’s survival ratio. Herein, we present a robust architecture for endoscopic image
classification using an efficient dilation in Convolutional Neural Network (CNNs). It has a high receptive
field of view at the deep layers in increasing and decreasing dilation factor to preserve spatial details.
We argue that dimensionality reduction in CNN can cause the loss of spatial information, resulting in miss
of polyps and confusion in similar-looking images. Additionally, we use a regularization technique called
DropBlock to reduce overfitting and deal with noise and artifacts.We compare and evaluate our method using
various metrics: accuracy, recall, precision, and F1-score. Our experiments demonstrate that the proposed
method provides the F1-score of 0.93 for Colorectal dataset and F1-score of 0.88 for KVASIR dataset.
Experiments show higher accuracy of the proposed method over traditional methods when classifying
endoscopic colon diseases.

INDEX TERMS Colorectal image classification, colon disease classification, colon disease classification
with CNN.

I. INTRODUCTION
Colorectal cancer is one of the most common and deadly
cancers worldwide. Colon diseases like adenoma, adenocar-
cinoma, Crohn’s disease, ulcerative colitis, adenocarcinoma,
and adenoma—are considered as significant factors in the
evolution of cancer [1]. According to the American Cancer
Society, nearly 80,000 people died in 2016 because of differ-
ent types of cancers related to the gastrointestinal tract [2].
An accurate diagnosis of each disease is essential for early
detection and effective treatment of colorectal cancer, which
improves the patient’s survival rate. Advances in technol-
ogy make it possible for artificial intelligence (AI)-based
computer vision approaches to assists doctors in colorectal
classification tasks. Over the decades, research on artifi-
cial intelligence in medical imaging has been ongoing and
shows its effectiveness in that particular domain [3], [4].
Other studies included an automatic classification of breast
cancer [5]; skin cancer [6], detection of gastric cancer [7];
hookworms [8], and recognition of brain tumors [9], [10].
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Traditional machine learning focused on handcrafted
feature-based methods, which rely on image color, shape,
and texture information. These methods followed the same
approach which requires a feature extraction process and
the use of several classifiers for the classification process.
However, feature extraction was difficult because of a lack
of illumination, blurring, variations in viewpoint, and even
colon insufflation.

In recent years, inspired by the great success of deep
learning (DL) in computer vision [11]–[13], the interest
of applying deep learning to endoscopic image analysis is
increasing. Despite this, obtaining a large amount of bal-
anced data remains challenging in the medical field. Even
though the transfer learning approach can be applied to
solve the above problem [14]–[16], it still suffers from some
serious issues. One example is the excessive use of down-
sampling approaches in the deep layers of a pre-trained net-
work which may work well for natural image classification
such as ImageNet dataset [17] but not in the medical domain
due to its high intra-class variance and low inter-class vari-
ance in different classes. We argue that the small feature
maps at the deeper layers of the network contain abstract
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information which is not enough to represent endoscopic
features, thus confound in small polyps and similar-looking
images. We think that the bigger size of outputs will represent
the features more explicitly, which would improve the classi-
fication. Another example is the possibility of occurrence of
overfitting when feeding a fewer number of samples to pre-
trained CNNs; it may learn the noise and detail in the data,
which can negatively impact the performance on unseen data.
On the one hand, gaining a high accuracy in similar-looking
classes with the limited dataset is difficult but a key demand.
On the other hand, the utilization of a pre-trained network
without effective use of regularizationmethods are very prone
to overfitting. This greatly limits the use of traditional CNNs
in the medical world. A small marginal classification error
in endoscopic images can lead to a bad experience in the
medical domain. For example, the two diseases Crohn’s and
ulcerative colitis, share similar features that are character-
ized by chronic inflammation of the digestive tract, and a
spurious prediction of such disease is not acceptable at any
cost in clinical settings. It is therefore desired to conceive
more effective endoscopic image classification architectures
that can effectively recover the fine details in the medical
images.

To address the need for more accurate classification in the
medical domain, we propose a novel method that increases
the receptive field of view in the deep layers using dilated
convolution effectively. The root presumption behind our
architecture is that the model can capture more fine details
with the use of dilation at the last layers and helps in
increasing performance when high-resolution feature maps
are passed to the classification layer. The dilation is added in
increasing and decreasing order to get rid of gridding artifact
problems. We deduce that increasing use of dilation factors
cannot aggregate important spatial features of small polyps
and similar-looking images and therefore is detrimental to
images of such classes. Similarly, benefited from the reg-
ularization method, a DropBlock [18] is added after each
dilated convolution to deals with noise, artifacts and reduce
overfitting. It drops out the adjacent region of a feature map
together which forces the network to look elsewhere to fit
the data and hence, helps in the regularization of a model.
Since the dataset suffers from various artifacts like specular
reflection, artificial devices, motion blur, we think that use of
the DropBlock method can handle such artifacts.

Our paper begins with an introduction and motiva-
tion for the proposed approach. Next, we present related
studies on the endoscopic classification of colorectal dis-
eases (in Section II) with a summary of our contributions.
Section III presents a comprehensive description of our pro-
posed method for the classification of several colorectal
diseases. In Section IV, we show a collection of data and
performance metrics and network training. Section V display
our experimental results and performance analysis of our
proposed system. Section VI interprets and describes the
significance of our findings. Finally, Section VII concludes
the paper with a summary of our contributions.

II. RELATED WORK
In this section, we describe various feature extraction and
classification methods, including handcrafted feature-based
methods and deep learning-based algorithms that have
been proposed to classify endoscopic images of colorectal
diseases.

A. COLONIC POLYPS
Colonic polyps are considered as a major precursor of colon
cancer. In an early study, Häfner et al. [19] introduced texture
analysis methods based on local fractal dimension (LFD)
for the classification of colonic polyps. They proposed
three LDF-based approaches that additionally extracted shape
and gradient information of the image to improve classi-
fication; these methods were tested on different datasets.
Next, a filter bank-based texture analysis method was pro-
posed for the classification of colonic polyps [20]. Dif-
ferent types of polyps were differentiated using the filter
masks of the filter bank. M. Hafner et al. proposed a novel
color texture operator that was based on a noise-robust
local binary pattern variant for an automatic classification
of endoscopic images [21]. They quantified the similarity
of neighboring pixels by constructing a color vector field
from an image and used k-nearest neighbors classifier for
classification. Wimmer et al. [22] tested several wavelet-
based approaches for 11 endoscopic polyp databases, pro-
posed three wavelet-based feature extraction approaches,
and found them acceptable for an automatic classification
of colonic polyps. Tamaki et al. [23] proposed a local
feature-based recognition system: a bag-of-visual words rep-
resentation of local features followed by the support vec-
tor machine (SVM) classifier. In [24], they integrated a
Gabor filter and monogenic local binary pattern to generate
a new feature that represented shape and edge information
at multiresolution while preserving color information. Con-
sequently, linear discriminant analysis was used to reduce
the feature dimensions, and SVM was used as a classifier.
Stehle et al. [25] proposed a classification algorithm for
colonic polyps: they implemented two segmentation algo-
rithms, and the obtained features were used to classify the
polyps.

Recently, CNNs have been used instead of handcrafted fea-
tures for automatic feature extraction and classification [37].
Pogorelov et al. [15] combined deep neural networks, infor-
mation retrieval, and analysis of global and local image
features for multiclass classification, detection, and localiza-
tion of various gastrointestinal diseases. Zhang et al. [16]
proposed a transfer learning approach by using the features
learned from non-medical datasets using deep CNN; subse-
quently, they used low-level features to detect and localize
colorectal polyps. Shin and Balasingham [36] have shown
that CNN outperformed handcrafted feature-based meth-
ods after comparing them on three public polyp databases.
Nadeem et al. [32] integrated texture and deep learning
features for the classification of gastrointestinal diseases.
Urban et al. [33] designed a deep CNN to detect polyps and
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TABLE 1. Comparison and weaknesses of previous approaches.

evaluated the results with an expert colonoscopist. All polyps
identified in the expert review were also detected by their
proposed method.

Wimmer et al. [31] applied three pre-trained CNN archi-
tectures to endoscopic image databases, and SVM was sub-
sequently used to classify colonic polyps and celiac disease.
They concatenated and combined the features from several
layers and experimented with classification. Their approach
outperformed other CNN-based approaches.

B. CROHN’s DISEASE AND ULCERATIVE COLITIS
Mahapatra et al. [38] proposed a supervised learning
approach for automatic identification and localization of the
regions affected by Crohn’s disease in abdominal magnetic
resonance volumes. They used intensity statistics, texture
anisotropy, and shape asymmetry of the 3D regions as fea-
tures to distinguish between normal and affected regions.
In [26], D. Mahapatra et al. performed similar tasks with
the use of low-level features such as intensity and texture.
Wei et al. [27] used a visual codebook to accurately detect
colitis on contrast-enhanced computed tomography scans.
Ahmed et al. [28] defined a neuro-fuzzy-based approach that
combined a backpropagation neural network-fuzzy classifier
with a neuro-fuzzy model to diagnose Crohn’s disease. They
used factor analysis as a dimensionality reduction technique
and performed experiments on different levels of the fuzzy
partition.

Mossotto et al. [29] proposed three unsupervised ML
models that used endoscopic data only, histological data
only, and combined endoscopic/histological data, achieving
an accuracy of 71, 76.9, and 82.7 percent, respectively.
Han et al. [39] developed a novel pathway-based approach
that used genes to calculate individualized pathway scores
for the classification of ulcerative colitis and Crohn’s disease.

Pogorelov et al. [40] presented a dataset named ‘‘KVASIR,’’
where different diseases were classified using global features,
deep CNNs, and deep transfer learning. Alammari et al. [30]
proposed an approach that used endoscopic domain knowl-
edge and a deep CNN to classify the severity of ulcer-
ative colitis. Stidham et al. [34] found that the accuracy
of a deep CNN was comparable to experienced human
reviewers for the classification of endoscopic severity of
ulcerative colitis. Ozawa et al. [35] showed the robustness
of a GoogLeNet CNN architecture based on a computer-
aided diagnosis (CAD) system for identifying endoscopic
inflammation severity in ulcerative colitis. Maeda et al. [41]
developed a CAD system for predicting persistent histologic
inflammation associated with ulcerative colitis.

C. LIMITATIONS OF RELATED WORK
Table 1 summarizes the problems in existing classification
approaches. Previous methods have at least one of the fol-
lowing weaknesses:
• Dependence on a fixed set of handcrafted features
which requires a deep knowledge about the image
characteristics [19], [21]–[27]. They relies on texture
analysis where a limited set of local descriptors com-
puted from an image is fed into a classifiers like
SVM,Random Forests etc. Despite a good level of accu-
racy in someworks, these techniques have limitations on
generalization and transfer capabilities in inter-dataset
variability.

• Experimented on less number of classes [16], [33], [36].
The work on [34] were tested on less diverse dataset.

• Reliance on endoscopic and histological data which lim-
its the practical utility of these algorithms [29], [41]
since histological data might not be available in all
scenarios.
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FIGURE 1. Overview of original ResNet50 architecture [42]. At stage 1, the feature map size is downsampled by a convolutional layer with strides = 2,
which is followed by Batch normalization and Relu layer. Within each stage, the number of filters used by the layers is the same. Each stage has
convolutional(Conv) block and Identity(Id) block. The identity block contains three sets of a convolutional layer, and the Convolutional block has one
extra layer to match the input and output dimension.

• Incognizant about the features the network learned dur-
ing the training process [15], [30], [31], [33]–[36], [40].

Contrary to previous works, our approach does not rely on
handcrafted features and histological data but uses a deep
learning-based neural network using efficient dilation with
an effective regularization method approach for endoscopic
image classification. Further, The use of a diverse and large
number of classes and images on the proposed method makes
the model more reliable. In this paper, we present the follow-
ing major contributions:

1) We increase the receptive field of view in the deep
layers of the network with the efficient use of dilated
convolution to preserve the spatial information. We uti-
lize the dilation factor in increasing and decreasing
order to aggregate the spatial details of tiny features like
polyps.

2) We further validate the use of a regularization tech-
nique called DropBlock to avoid overfitting and han-
dles noises and several artifacts like specular reflection,
artificial devices, motion blur.

3) Finally, we evaluate our proposed deep neural network
on our colorectal dataset that includes five classes,
and we additionally evaluate it on another endoscopic
KVASIR dataset [40]. We show that our approach is
promising for endoscopic image classification.

III. METHODOLOGY
Our CNN model for selecting the features from endoscopic
images is based on the transfer learning approach: rather

FIGURE 2. Residual learning: a building block [42].

than training a new CNN architecture, we reuse a pre-trained
network. It is widely known that the features extracted from
the activation of a CNN trained in a fully supervised manner
for a large-scale object recognition task can be repurposed for
a novel generic task. Moreover, our training set contains only
a few hundreds of images which is insufficient for state-of-
the-art CNN architectures that require millions of parameters
to train. Tajbakhsh et al. [14] demonstrated that the use of a
pre-trained CNN with adequate fine-tuning outperformed or,
in the worst case, performed similarly as a CNN trained from
scratch. Therefore, we employed the last layer fine-tuning
on endoscopic data set and initialized the ImageNet pre-
trained weights for each model, and the last fully connected
layer is updated continuously. We use the ResNet50 archi-
tecture as a baseline model. From extensive experiments,
we found that ResNet50 achieved better performance than
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FIGURE 3. A proposed architecture. Layers at stage 4 and stage 5 are dilated, and two non-residual blocks are added to the end. Striding in the first block
of stage 4 and stage 5 is removed, and remaining blocks are dilated, explained in section IV. Every convolutional layer is followed by the DropBlock
regularization method at these stages.

FIGURE 4. A detailed structure of the proposed method and the baseline model (ResNet50).

other existing CNN architectures [12], [43]–[46] in colorectal
dataset.

Fig. 2 shows a basic residual network block with the inclu-
sion of the identity connection. The residual block will learn
the following function.

H (x) = F(x)+ x, (1)

where, F(x) is represented by the stacked non-linear layers
and x is an identity function. The ResNet50 architecture
consists of five stages of blocks where small chunks of net-
works connected through skip or shortcut connections to form
an extensive network. Two main types of blocks are used,
depending mainly on whether the input/output dimensions
are the same or different. When the input activation has the
same size as the output activation, it is formulated as:

y = F(x,Wi)+ x, (2)

where, x and y indicates the input and output vectors of the
layers considered. The function F(x,Wi) + x represents the
residual mapping to be learned. Fig. 1 shows an example of
an identity block, where the upper path is the shortcut path
and the lower path is the main path. Similarly, when the input

and output dimensions do not match, we add a convolutional
layer to the shortcut path by using the following formula

y = F(x,Wi)+Wsx (3)

Usually, each identity block contains three sets of con-
volutional layers followed by batch normalization and the
ReLU activation function. Similarly, the convolutional block
includes the same number of layers with one extra convolu-
tional layer added.

From our assumption, We need to keep the network from
down-sampling approach and preserve complex spatial infor-
mation to the last layers.We achieve this by providing dilation
and removing down-sampling. We adopt a network architec-
ture [47] which was designed for ImageNet Classification
and make several modifications to fit the network for our
purposes.

A. APPROACH
In this section, we describe how our proposed model learns
and represents the endoscopic features of colon diseases
effectively. For this, we use dilated convolutions with dif-
ferent atrous rate at the end of the layers. The proposed
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architecture consists of five groups of layers with convolution
and identity blocks described in Section III. LetGi be a group
of layers, where i = 1, . . . ..5.We denote the jth layer in group
i asGij. Let f

i
j represent the filter associated with layerG

i
j. The

output of Gij in the original model is

(Gij ∗ f
i
j )(p) =

∑
a+b=p

Gij(a)f
i
j (b). (4)

We use dilated convolutions in the final two groups of con-
volutional layers. For Stage 4, we replace the convolution
operators by dilated convolutions with an atrous rate of 2 for
all layers of the block.

(G4
j ∗ 2f

4
j )(p) =

∑
a+2b=p

G4
j (a)f

4
j (b) (5)

for all j > 0. In the first layer of the block in Stage 5, which
is G5

1, we perform the same transformation.

(G5
j ∗ 2f

5
j )(p) =

∑
a+2b=p

G5
j (a)f

5
j (b) (6)

By analogy, we use a dilated factor of 4 in the remaining
blocks of G5

j :

(G5
j ∗ 4f

5
j )(p) =

∑
a+4b=p

G5
j (a)f

5
j (b) (7)

for all 1 < j < 4. Similarly, for a dilation factor of 2 in the
fourth block of stage 5 layer,

(G5
j ∗ 2f

5
j )(p) =

∑
a+2b=p

G5
j (a)f

5
j (b) (8)

for 3 < j < 5. Then, a non-residual block having normal
convolution is added at the end which is followed by the
global average pooling layer (as in the original architecture),
which decreases the output feature maps to a vector, and 1×1
convolution maps this vector to a vector that contains the
prediction scores for all classes. The overall proposed and
modified architecture is illustrated in Fig. 3 and pseudocode
is shown in Algorithm 1.

The layer-wise details of the architecture are explained
in Fig. 4, which exhibits information about each layer of
both original and proposed architecture in sequential order.
Our proposed model consists of fifty-seven layers: fifty-six
convolutional layers followed by batch normalization that
normalizes the feature map and an activation function called
the rectified linear unit (ReLU). Because only the convolu-
tions in the later layers of the networks are dilated, the shape
and structure of earlier layers are the same. For both models,
the first convolutional layer generates a feature map of size
112 × 112×64 after applying 64 different filters of size
7×7×3 over the input image of size 224×224. Then, a max-
pooling layer is used, which processes the input feature map
by applying a filter of size 3×3 pixels to generate the feature
map of 56×56×64. For the original model, downsampling is
accomplished by the first 1×1 convolution layer with a stride
of 2 in the layers of Stage 3, Stage 4, and Stage 5. However,

in our proposed model, we set stride to 1 and replace the
3×3 convolution with 3×3 dilated convolution after Stage 3.
we gradually increase and decrease the dilation rate in the
convolutional layers of Stage 4 and Stage 5 and remove the
residual connection at the final two layers. Then, the optimal
feature vector of size 1× 1×2048 is generated after applying
the global average pooling layer.

Algorithm 1 Overall Proposed Method
1: Initialize the ResNet50 Networks
2: ResNet←load()
3: features,labels = get_batch(dataset)
4: model←create_model()
5: if mode == training then
6: fitted-model←model.fit(features,labels)
7: for e = 1 : epochs do
8: for i = 1: Gi do F Gi is different stages of layers.
9: if Gij == G

4
j then F G

i
j is j

th layer in group i
10: Execute equation number (5),
11: Add DropBlock
12: end if
13: if Gij == G

5
j then

14: Execute equation number (6,7,8),
15: Add DropBlock
16: end if
17: end for
18: end for
19: model←fitted-model()
20: end if

Algorithm 2 DropBlock Regularization Method
1: Input:output activations of a layer (A), block_size,γ
2: Sample mask matrix M randomly, where Mi,j ∼

Bernoulli(γ );
3: For each zero positionMi,j, expand a spatial square mask

with the center being M : Mi,j, the width, height being
block_size and set all the values of M in the square to be
zero.

4: Apply the mask: A = A * M
5: Normalize the features:A= A *count(M)/count_ones(M)

The two non-residual blocks with decreasing dilation are
added in the proposed method to overcome the problem of
gridding artifacts. Gridding artifacts occur when a feature
map has a higher-frequency content than the dilated convo-
lution sampling rate. By doing this, the model does not allow
propagation of gridding artifacts from the earlier layers. The
converted network will generate the output of 28 × 28 after
G5 layers, which helps global average pooling layers to take
more values. It helps the classifier to recognize the features
that cover a tiny part in the given image.

Moreover, adding more non-residual blocks at the end
layer increases the network size, which can cause overfit-
ting or get stuck in poor local minima. Our limited dataset
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TABLE 2. Details of colorectal dataset.

might not be helpful in this case. Also, the presence of high
background noises and artifacts in the endoscopic images
is one of the challenges encountered during classification.
To overcome this problem, we utilize the effective use of
DropBlock [18] method, which is beneficial to regularize
convolutional networks. It drops an adjacent region of a
feature map together, unlike Dropout [48], which drops out
features randomly. We applied DropBlock in all blocks of
stage 4 and 5 after each convolutional layers. The pseudocode
is explained in algorithm 2. It has two main parameters which
are block_size u and γ . The block_size u is the length of
contiguous region to be dropped, while γ controls how many
units to drop. We use the fixed size of u of 7*7 after the
convolutional layer. Similarly, we compute γ by following
formula:

γ =
(1− keep_prob)(v2)
u2(v− u+ 1)2

, (9)

where keep_prob is the probability of keeping an every acti-
vation unit in dropout. We sample the initial binary mask
with the Bernoulli distribution with a mean of 1−keep_prob.
v is the size of a feature map, and (v − u + 1)2 indi-
cates the size of the valid seed region. In our experiments,
we use keep_prob = 0.9 in all layers and compute the value
of γ .

IV. EXPERIMENTAL PROTOCOL
A. DATA COLLECTION
1) COLORECTAL DATA
The dataset was provided by Gill Hospital, South Korea, and
it contains five classes of 3,515 endoscopic colorectal dis-
ease images: 634 with adenocarcinoma, 775 with adenoma,
563 with Crohn’s disease, 773 with ulcerative colitis, and
770 normal images. The original image sizes range from
400×400 to 2000×2000 pixels. Therefore, the images are
resized according to the requirements of the CNNs architec-
ture. The image data is normalized with the default properties
required for each architecture. We perform data augmenta-
tion to increase the number of images before training the
networks due to the small amount of available data. Orig-
inally, the class is imbalanced, and augmentation is done
in such a way that the minority class is augmented more
to make a balanced dataset. This is a standard solution to
reduce overfitting during the training. Several augmentation
techniques such as flipping, scaling, rotating, zooming, con-
trast normalizing, and shearing was used. Each image was
first rotated at a different angle, and each rotated image was

flipped each time (horizontally and vertically) and zoomed.
Before augmentation, we split the total dataset and separated
80 images for validation and testing purposes, and the remain-
ing images belonged to training. The details of a colorectal
dataset are presented in Table 2.

2) KVASIR DATASET
KVASIR Dataset includes 4000 endoscopic gastrointestinal
diseases and comprises eight different classes, each con-
taining 500 images. The dataset consists of several sets of
images in each category, including anatomical landmarks
(such as Z-line, pylorus, or cecum) and pathological find-
ings (such as esophagitis, polyps, or ulcerative colitis). Some
sets are related to the removal of lesions, including dyed
and lifted polyps and dyed resection margins. Images with
different resolutions from 720 × 576 to 1920 × 1072 pix-
els are included in the dataset. Pogorelov et al. [40] per-
formed a baseline evaluation of these datasets with three
different approaches: classification using global features,
deep convolutional neural networks, and deep transfer learn-
ing. We split the dataset into a 50:50 ratio to make a
fair comparison with the original paper. We will compare
the results of our proposed method with these existing
approaches.

B. PERFORMANCE METRICS
We use performance evaluation metrics such as accuracy
(ACC), recall, precision, and F1-score to evaluate classifiers,
computed as follows:

ACC =
(PT + NT )

(PT + NT + PF + NF )
, (10)

recall =
PT

PT+NF
, (11)

precision =
NT

NT+PF
, (12)

F1− score = 2 ∗
recall ∗ precision
recall + precision

, (13)

where ACC and F1 are accuracy and F1-score, respectively;
PT andNT are the number of true positives and true negatives,
respectively; PF and NF are the number of false positives
and false negatives, respectively. Specifically, ACC is the
proportion of correctly classified samples. Precision is the
proportion of true negatives that are correctly classified.
A recall is the proportion of true positives that are correctly
classified. The F1-score is the harmonic average of precision
and recall.
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TABLE 3. F-score (F1), precision, recall for the evaluated different CNNs
architecture on the colorectal dataset.

C. NETWORK TRAINING
The implementation is based on Keras, and the backend is
TensorFlow.The training set is used to train the model and
learn the parameters. The validation set is used to optimize the
model and test it during the training: to automatically adjust
the learning rate and decide whether to stop early according
to the test performance of a given training step. The test set is
used to evaluate the recognition and generalization ability of
the proposed model.

We initialize the pre-trained weights of ResNet50 and use
stochastic gradient descent with a batch size of 16. The
learning rate starts from 0.001 and is divided by 10 when the
patience level exceeds 8.We use aweight decay of 0.0001 and
a momentum of 0.9 without an accelerated gradient.

V. EXPERIMENTAL RESULTS AND EVALUATION
A. PERFORMANCE EVALUATION OF COLORECTAL
DATASET
In this section, we will compare the performance of the
proposed method with the existing related methods which
were used in endoscopic image classification. Due to limited
works on colorectal diseases using deep learning, we compare
the proposed work with the methods used for other similar
tasks.

TABLE 4. F-score(F1), precision, recall for the evaluated different existing
approaches on colorectal dataset.

TABLE 5. Accuracy (Acc), f-score (F1), recall, precision for the kvasir
dataset.

Table 3 presents the result when different fine-tuned CNNs
were trained on the colorectal dataset for classification. The
experiments are performed with the same parameters and
the same number of augmented and validation sets. All the
architectures achieved similar results, but the best results are
obtained by ResNet50. From Table 4, we can observe the
performance of each method evaluated by the F1-score.

Our model significantly outperforms the existing meth-
ods by a vast margin achieving 0.93 F1-score. The
Zhang et al. [16] achieves good accuracy in normal class
which shows its discriminative capability between normal
and disease class but failed to achieve a similar result on
similar-looking disease classes. Shin and Balansingham [36]
with three layers achieves 0.836 F1-score indicating that it
is not deep enough to learn the complex patterns of the
images resulting in poor performance. Meanwhile, Stid-
ham et al. [34] with 159 layers achieves 0.89 F1-score that
shows its powerful discriminative capability but achieves
similar result with the other existing CNNs method.

B. PERFORMANCE EVALUATION OF KVASIR DATASET
The results obtained are presented in Table 5 with the metrics
like precision, recall, F1, Accuracymeasures estimated from
the TP, FP, and TN and FN cases. We compare our proposed

99234 VOLUME 8, 2020



S. Poudel et al.: Colorectal Disease Classification Using Efficiently Scaled Dilation in CNN

TABLE 6. Ablation studies for the dilated rate at stage 4 and stage 5. We evaluated the proposed method on the given values.

FIGURE 5. Comparison of CAMs generated from the proposed and the baseline ResNet50 method. The proposed method highlighted the specific
regions which were misclassified by the baseline model.

method with the baseline performance model stated in the
research. Their baseline model includes: classification using
global features (GF), deep learning convolutional neural net-
works (CNN), and transfer learning in deep learning (TFL).
It can be noticed that the proposed methodology achieved
95.7 % accuracy on these datasets with F-score value of 0.88,
which is slightly better than the 2 Layer CNN and 3% better
than the Inception model using TFL.

C. ABLATION STUDY
We investigate the effectiveness of our contributions by com-
paring our full model with the baselines based on the same
experimental setting. For each ablation experiment, we omit
different dilation rates at the convolutional layers of stage 4
and 5 block. The results obtained are displayed in Table 6.
We report the F1, Precision, and Recall score for each exper-
imented values.

From the results reported in Table 6. we can draw the
following conclusions: 1). Simply adding dilated convolu-
tion at the end layers does not improve the classification
performance; instead, it will only worsen the performance.
Similarly, the addition of a convolutional block with the
dilation rate of 2 at stage 4 does not make any changes.

Further, the F1-score drops from 0.91 to 0.89 and 0.90 when
significant changes were made in the dilation rate (4th and
6th row) at stage 4 and stage 5, showing that the network
suffers from the gridding artifact problem. 2). The F1-score
of the network at the complementary branch (5th and 7th
row) is higher than the corresponding network in the 4th and
6th row, demonstrating the effectiveness of using DropBlock
as a regularization method. 3). The network with increasing
and decreasing dilation rates at the end layers improve the
F1-score of the baseline network by 0.91 to 0.92. Further,
utilizing of DropBlock regularization method enhances the
network performance by 0.92 to 0.93. It shows that our
approach has a better discriminative capability of identifying
a small polyp and recognizing similar-looking images.

VI. DISCUSSION
Table 4 shows that our proposed novel deep model has
achieved the best classification performance on the provided
dataset. This study’s results showed that removing downsam-
pling and preserving features at the last blocks of the CNN
increases performance with a 92.8% recall rate and a 93.2%
precision rate.
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FIGURE 6. Class activation mapping (CAM): (a) original image (b) original ResNet50 model, (c) Dilated ResNet50 trained without
DropBlock, (d) Dilated ResNet50 trained with DropBlock (Proposed Method). A proposed method tends to focus on the affected
part only and less sensitive to noise, unlike (c).

The result fromTable 3 indicated that the applying of trans-
fer learning on medical datasets is not always beneficial in
the medical domain. As it uses a progressive down-sampling
approach in the CNN, it is not helpful for those datasets with
high interclass similarity and intraclass variation.

Fig. 5 demonstrates the type of endoscopic images of dif-
ferent classes where the best-performing model ResNet50 is
failed. It is observable that when the size of the polyps is very
small in the endoscopic colon images, the network could not
classify it because of the downsampling approach used in the
existing CNNs. Fig. 5a shows that adenoma is misclassified
as normal because of loss of spatial information due to the
continuous reduction in resolution of images, which repre-
sents the tiny feature maps of size 7 × 7 in the end. Simi-
larly, as the learned features are more class-specific at deep
layers, the common occurrence of similar features of images
between different classes might make the classification pro-
cess more difficult. For example, some adenoma’s which are
a polyp tends to progress towards adenocarcinoma, and they
might share a similar shape with continuous inflammation.
Fig. 5b shows that the model confuses adenocarcinoma with
polyps. In the last two sets of images in Fig. 5, the model
detects only some patterns of each class, and the network
uses such features during the classification process. But our
method preserves information until to end layers. It confirms
that deep models with effective use of dilated convolutional
layers at the end have an advantage in classifying the endo-
scopic images, over the fine-tuning of a state-of-the-art CNN
architecture and several other methodologies.

One benefit of the proposed method is to tackle with the
noises and artifacts present in the image. Fig. 6 shows the sig-
nificance of using the DropBlock regularization method with
the dilated convolution. The probability score is increased
from 56% to 88%, indicating that the proposed method
focuses and covers more specific and essential regions and
is less sensitive towards noise and artifacts.

Our method showed a powerful ability to extract useful
features from the endoscopic images. We observed the fea-
tures learned by the CNNs at the last layers using the class
activation map approach [49] when the images are hard to
distinguish, the other methods produced a large fluctuation
in accuracy rates. With the proposed method, it achieved
better results for similarly looking images. Additionally,

Table 5 shows that the proposed method achieved a high
F1-score of 0.88 with 92% recall rates in the KVASIR dataset,
which indicates the high capacity of recognizing disease
class. Our proposed convolutional neural network is more
accurate and stable than other popular traditional and deep
models for endoscopic image classification.

VII. CONCLUSION
In this paper, we investigated the use of deep learning for
colorectal endoscopic image classification. We showed that
the features represented by the layers before the global aver-
age pooling are insufficient because of the use of exces-
sive downsampling, which causes loss of spatial information.
We applied an efficient technique to preserve the spatial infor-
mation at the end of layers: specifically, using dilated convo-
lutional layers in increasing and decreasing order. Besides,
further use of the DropBlock regularization method at the
deeper stages attained specific regions with less sensitiv-
ity towards noise and artifacts. We observed an improve-
ment in classification, which proved that the proposed model
captured more detailed and tiny differences between similar-
looking images. Finally, with extensive experiments and com-
parisons on the KVASIR dataset, we demonstrated that our
proposed deep convolutional neural network has a superior
performance in endoscopic image classification. In our future
work, we will further employ our novel neural network
architecture to handle other endoscopic image classification
problems. We also plan to extend our innovative approach
by using earlier feature layers and deep features with dilated
convolution to tackle image classification problems in other
domains.
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