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ABSTRACT Achieving a reliable classification of motor imagery (MI) tasks is a major challenge in
brain–computer interface (BCI) implementation. The set of relevant and discriminative features plays an
important role in the classification scheme. This paper presents a supervised approach to select discriminative
features for the enhancement of MI classification using multichannel electroencephalography (EEG) signal.
The dimension of multiband feature space is reduced using the feature selection method. Each trial of the
multichannel EEG signal representing MI tasks is decomposed into a finite set of narrowband signals. The
common spatial pattern-based features are extracted from each subband. The features obtained from the
multiple subbands are combined to derive a high-dimensional feature vector. The neighborhood component
analysis-based feature selection method is implemented to select the features that are relevant in performing
an accurate classification. It is a nearest-neighbor-based approach to learn the feature weights with regu-
larization by maximizing the average leave-one-out classification accuracy over the labeled training data.
The selected features are used to train the support vector machine for classification. The features relatively
irrelevant to the classification task are discarded, yielding a reduction of feature dimension. The evaluation of
the proposed method is performed using BCI Competition III dataset 4a and IV dataset 2b. Both are publicly
available datasets and are used as types of benchmark data to evaluate the MI classification algorithm to
implement BCI. The obtained simulation results confirm the superiority of the proposed method compared
to the recently developed algorithms.

INDEX TERMS Brain–computer interface (BCI), electroencephalography (EEG), machine learning, motor
imagery (MI), subband decomposition, supervised feature selection.

I. INTRODUCTION
A Brain–Computer interface (BCI) decodes the movement
imagination, also called the motor imagery (MI) of the brain,
to issue a command without any peripheral nerve or muscle
activity [1]. It has potential applications in neuroscience and
neuro-engineering. MI has been used to encourage neuro-
plasticity in a patient’s brain after a stroke [2]. Thus, recent
applications of BCI with appropriate feedback offer neurore-
habilitation to assist stroke patients in restoring their impaired
motor functions [3], [4]. The usage of prosthetics, robots, and
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other electronic devices used in neurorehabilitation tasks is
fully controlled by motor imagination [1], [5]. The kines-
thetic, auditory, or visual feedback to the subject is used to
stimulate the response of the brain after a stroke. The use of
non-invasive electroencephalography (EEG) is a comfortable
and relatively easy method for BCI implementation. The BCI
user’s brain activity is typically measured using EEG [6].
The EEG-based design of BCI application is an extremely
challenging task [7]. There are two types of MI-based BCI:
asynchronous and synchronous. The subject controls the task
and its timing without any external cues in asynchronous
BCI [8]. It is more appropriate to implement real-time BCI
applications but such BCI system requires processing of the
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brain signals continuously. In synchronous BCI, the cue is
provided for a fixed time duration in which the subject needs
to perform a mental task [9]. In this paper, the experimental
setup is confined to implementing synchronous BCI.

The principal goal of BCI is to recognize the correct inten-
tion of brain activity during MI tasks, leading to a transla-
tion of the intention into an equivalent control command.
To achieve this goal, suitable features are extracted and the
appropriate machine learning scheme is employed to perform
the classification of MI tasks recorded by multichannel EEG.
Thus, discriminative feature extraction from EEG signal is
one of the key stages in designing an MI-based BCI applica-
tion. The common spatial pattern (CSP) is one of the methods
used to extract potential features from multichannel EEG
[10]. It implements optimal spatial filter from the training
samples of recorded EEG signals. CSP derives a weighting
matrix for the electrodes based on their significance in the
classification task. Later, the performance of the MI-based
BCI (MI-BCI) is improved with CSP by accomplishing dif-
ferent physiological events, such as event-related desynchro-
nization and lateralized readiness potential [11]. Instead of
using only spatial pattern, the common patterns of the spa-
tial, time, and frequency domains are jointly considered to
extract the potential features from EEG [12]. The features
of the spatio-temporal discrepancy signal are derived from
the EEG to classify two classes of MI tasks [13]. The deep
learning approach with variational autoencoder is employed
in [14] for EEG classification. The images achieved by
time-frequency representation of EEG signals are used as the
input to the deep neural network. The features obtained by
regularized Riemannian transformation are used to classify
MI tasks with reduced calibration time of EEG [15]. The
narrowband signals containing the significant information
about movement imagination enhances the MI classification
performance. None of the methods [12]–[15] use subband
filtering to extract the signal components representing the MI
tasks.

The performance of MI-BCI significantly depends on
the selection of frequency bands of the EEG signal from
which the features are extracted [7]. The mu and beta
rhythmic components evoked in response to the imagina-
tion of different movement tasks are promising sources
of the features used in MI-BCI [16]. These rhythms are
observed in the area of sensorimotor. The movement imag-
ination of the hand and the foot produces the change in
the mu rhythm at different brain regions [11]. It is also
observed in [17] that the effective fluctuations in brain activ-
ity occur in low-frequency components of EEG. Moreover,
the changes in mu and beta rhythms occur due to the sub-
ject’s voluntary movements. To capture the changes within
the narrow frequency band, CSP is implemented in each
subband of EEG signals for discriminative feature extrac-
tion [18]. The selection of relevant features plays an impor-
tant role in MI classification for BCI implementation. The
feature selection approach is not implemented in previous
studies [11], [16]–[18].

In MI-BCI studies, a number of methods including filter
bank CSP (FBCSP) [19], [20], subband CSP [21], sparse
filter-bank CSP [22], and discriminative filter bank CSP
[23] have been proposed to extract the features from the
narrowband EEG signals for MI classification. The sparse
representation of CSP feature is implemented in [24] for
two classes of MI discrimination. These works promote the
implementation of subband CSP to obtain the discriminative
features, thereby yielding a reliable classification ofMI tasks.
Therefore, the subband approach with CSP method is imple-
mented in this work to extract the effective features from
the narrowband EEG. In addition to the narrowband signals,
the wideband signal can contain some apparent features to
enhance MI classification. Without considering this issue,
the narrowband signals are used for feature extraction in the
subband CSP-based methods.

In the subband-based method, feature extraction is per-
formed in individual subbands and combined to yield the
feature vector. Thus, the derived feature space has a relatively
higher dimension [25]. A number of features included in the
feature vector might not be accurate, which can garble the
machine learning algorithm and lead to the degradation of its
performance [26]. An appropriate subgroup of the obtained
features should be selected to perform a reliable classification
of MI tasks. The others need to be removed to reduce the
degradation of performance and reduce the overfitting and
training time of the machine learning algorithm.

There are two types of feature selection techniques: unsu-
pervised and supervised. Unsupervised algorithm selects rel-
evant features without using the label information of the
dataset available for training [25], whereas the supervised
method requires the proper labels of training data for discrim-
inative feature selection. Usually, it quantifies the distance
between the features and the labelled training set by measur-
ing mutual information, correlation, etc. [26]. The supervised
technique is effective when the label information is available
for training data. The label information is available with the
data used in the experiments of this research and, thus, the
supervised feature selection algorithm is implemented.

In this paper, subband CSP features are used and neigh-
borhood component analysis (NCA)-based [27] supervised
feature selection method is introduced to separate the highly
discriminative features to enhance the performance ofMI task
classification. The multichannel EEG signal is recorded to
represent the mental imagination in terms of MI task. The
multichannel EEG is passed through a subband decompo-
sition scheme to generate a finite set of narrowband sig-
nals. It localizes the signal components that are effective for
MI classification within the subbands. The spatial features
are extracted from each of the subbands by applying CSP.
Then, the features obtained from the individual subbands
are combined to yield a high-dimensional feature vector.
Discriminative feature selection is performed by using NCA.
Thus, the selected feature vector is used for the classification
of MI tasks with the support vector machine (SVM). The
effects of the number of features on classification accuracy
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and the performance of the different classifiers are evaluated.
The results of the experimental evaluation are compared with
those obtained using the recently developed methods.

Regarding the organization of this paper, Section II
describes the datasets used in the experiments, Section III
details the methodology, Section IV illustrates the experi-
mental results and discussion and, finally, Section V presents
the conclusions.

II. DATA DESCRIPTION
Two publicly available BCI competition datasets are used
to evaluate the performance of the proposed method. The
datasets are described below.

A. BCI COMPETITION III DATASET 4a
The data were obtained from five healthy subjects, denoted
as ‘aa’, ‘al’, ‘av’, ‘aw’, and ‘ay’ [11]. The age of each
subject was between 24 to 25 years. Proper instructions were
provided to the subjects, such that the experimental condi-
tions were fulfilled. They sat on a comfortable chair and
avoided eye movement. The visual stimulus was presented
for 3.5 s. During that time duration, each participant was
asked to perform three MI tasks, i.e., right hand, left hand,
and right foot movement. Two MI tasks of the right hand and
foot were taken into consideration for classification. A total
of 280 trials of EEGwith 118 channels were recorded for each
subject while they performed the MI tasks according to the
instruction. In particular, 168, 224, 84, 56, and 28 trials out
of 280 were designed as training data for the subjects ‘aa’,
‘al’, ‘av’, ‘aw’, and ‘ay’, respectively. The other trials were
kept for testing. The training data available with proper labels
for the individual subjects are used in this study to evaluate
the performances. The recorded signals are filtered using a
band-pass filter between 0.05-200 Hz, sampled at 1000 Hz,
and quantized by 16-bit resolution. The EEG signal is down-
sampled at 100 Hz for further processing. The details of the
experimental setup are provided in the study [11]. In this
study, the 2 s length (0.5–2.5 s) EEG trial is extracted to obtain
the meaningful feature that will be used in the classification.
It is considered that the first 0.5 s (0–0.5 s) and the last 0.5 s
(3.5–4.0 s) are the durations for pre- and post-imagination,
respectively.
Channel Selection: A total of 118 EEG channels are used

to record the mentioned dataset, including some irrelevant
signals, because all of the channels are not required to dis-
criminate the two MI tasks. The selection of relevant and
minimum number of channels will be effective in terms of
computational cost. The relevant zone of motor activity is the
motor cortex region, including the primary, supplementary,
and premotor cortex area [28]. The electrodes placed at these
areas should be selected. Several studies are performed to
use a selected number of channels to design the MI-BCI
[29]–[31]. The 18 channels from the area of the sensorimotor
cortex are used in [29], while 30 channels are selected in
[30], [31] to classify two MI tasks. Considering the previous
studies [30], [31], 30 channels in the sensory-motor cortex

FIGURE 1. Thirty electrodes encircled in green are selected out of 118 and
used in this study for experimental evaluation.

area are selected for MI task classification, as indicated in
Fig. 1. Throughout this paper, the multichannel EEG refers
to the signals recorded from the 30 selected electrodes.

B. BCI COMPETITION IV DATASET 2b
The EEG signals were recorded with three channels (C3,
Cz, and C4) sampled at 250 Hz and band-pass filtered in
the frequency range of 0.5–100 Hz. Nine subjects, namely,
B01, B02, . . . , B09 participated in an experiment on MI by
performing two different tasks (left hand and right hand). Five
sessions were recorded for each subject. The first two ses-
sions and the third session were designed for training without
visual feedback and with visual feedback, respectively. The
last sessions (4th and 5th) were recorded for testing. The EEG
data of the three training sessions were used in this study to
evaluate its performance. The 2 s trial length (0.5–2.5 s after
starting the stimuli) is extracted to conduct the experiments.
More details about the BCI Competition IV (2b) dataset could
be found in [32].

III. METHODOLOGY
Amultiband approach for dominant feature selection method
is implemented here to enhance the classification accuracy
of MI tasks for BCI application. A block diagram of the
proposed method is shown in Fig. 2.

Subband CSP features are extracted from the EEG signals.
A selected subset of features is used to classify the motor
imageries with the SVM [33] classifier. Below are the steps
to implement the method:
(i) The multichannel EEG signal is decomposed into sub-

bands
(ii) CSP is used for feature extraction from each subband
(iii) The features obtained from the individual subband are

combined to derive a feature vector
(iv) Discriminative features are selected using neighbor-

hood component analysis based feature selection
(NCFS)
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FIGURE 2. Block diagram of the proposed feature selection-based MI
classification system, where s(1)

i , . . . si (b), . . . si (B) represent the different
subbands.

(v) The SVM classifier is trained with selected features of
the labeled training dataset and classification is per-
formed using the test dataset

(vi) Finally, the command is generated on the basis of MI
classification for BCI implementation

A. SUBBAND DECOMPOSITION
The multichannel raw EEG is often contaminated by electro-
physiological noise. Sometimes, such noise power is stronger
than that of the EEG signal. Moreover, some narrowband
components of EEG signal have a stronger response to the
specific MI task. Therefore, the proper selection of subbands
would intuitively provide amore accurate classification ofMI
tasks than using the full bandwidth of the EEG. Related stud-
ies claim that most of the brain activities related to MI tasks
exist within the frequency band of 7–30 Hz [34]. Based on
the experiments, four subbands are used within the frequency
range of 8–35 Hz in this study. The subband decomposition is
accomplished by applying Butterworth zero-phase band pass
filter. The full band (8–35 Hz), mu band (8–13 Hz), low beta
(13–22 Hz), and high beta with low gamma (22–35 Hz) are
used here as the usable narrowband signals. The CSP-based
features are extracted from each subband and combined to
construct a feature vector with high dimensionality.

B. FEATURE EXTRACTION
The extraction of potential features is one of the most crucial
stages in the field of BCI. Recent studies have generally
investigated how tomodify existingmethods or develop novel
techniques for feature extraction because of the features’
direct influence on the performance of the BCI system [1],
[6]. One of the most successful and well-known methods in

BCI application to extract features from multichannel EEG
is CSP [15], [16]. It decomposes a multichannel EEG into
a number of additive components. Basically, it is a linear
transformation to project a high-dimensional EEG signal into
a low-dimensional spatial subspace with a projection matrix.
Any row of the projectionmatrix consists of theweights of the
EEG channels. Such transformation maximizes the variance
of two-class signal matrices. It performs the simultaneous
diagonalization of the covariance matrices derived from both
of the classes [35]. The spatial filter is designed such that
the variance of filtered data from one class is maximized
while that of the other class is minimized. The resultant
features minimize the intra-class variance while maximizing
the inter-class variance. It increases the separation between
the two classes in terms of variance [34]. Such attribute of
CSP makes it an effective spatial filter to classify MI tasks
using multichannel EEG classification. The first CSP-based
spatial filter was implemented in [36] to effectively classify
movement-related EEG for BCI implementation.

Let Ei,1 and Ei,2 ∈ <K×L denote the EEG training trials
selected from the two different classes with dimensionsK×L,
where K represents the number of channels and L is the
number of discrete samples. CSP method derives the features
based on the simultaneous diagonalization of the covariance
matrices of both classes. It finds a spatial filter w∈ <K

to transform the EEG data with a projection matrix, such
that the ratio of variance between the two classes becomes
maximized [35].

w = argmax
w

wT31w
wT32w

s.t. ‖w‖2 = 1 (1)

where 3c =
∑Yc

i=1 E1,cE
T
i,c/Yc and Yc is the number of trials

belonging to class c (c = 1, 2). The optimal solution of
Eq. (1) can be obtained by solving a generalized eigenvalue
problem.

A matrix w = [w1,w2, . . . ,w2M ] ∈ <K×2M including
the spatial filters is formed by the eigenvectors correspond-
ing to the M largest and smallest eigenvalues. For a given
EEG sample E , the feature vector is constructed as x =
[x1, x2, . . . , x2M ] with entries [35]

xm = log
(
var(wTmE)

)
, m = 1, 2, . . . , 2M (2)

where var(.) represents the variance. Log transformation is
done in order to normalize the elements of xm. A selected
number of features are extracted from each subband using
CSP. All the features obtained from the subbands are com-
bined (simple concatenation) to generate the feature vector
for the respective trial.

C. FEATURE SELECTION
Not all of the features in a high-dimensional feature vector
are effective for classification. In fact, some features often
degrade the performance of the machine learning algorithm.
The aim of feature extraction is to provide appropriate dis-
criminative information to enhance the object classification
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performance. Hence, in machine learning approach, feature
selection is an important part for choosing the best set of
features from all that are available. Another objective of
feature selection method is to suppress the irrelevant features
with minimization of information loss.

The discriminative features are selected in this study from
the raw features space using NCA [27]. It is a supervised
learning method for classifying multivariate data into distinct
classes according to a given distance metric over the data
[37]. It is non-parametric, that is, it does not require any
parameter or assumption about the statistical distribution of
the samples. It ranks the features with regularization to learn
the feature weights for minimization of an objective function
that measures the average leave-one-out (LOO) classification
loss on the labeled training data.

The set of training samples is defined as S =
{(x1, y1), . . . (xn, yn), . . . (xN , yN )}, where xn is the
d-dimensional feature vector, yn ∈ {1, 2, . . .C} represents
its corresponding class label, C is the number of classes,
and N is the number of training samples. The goal of the
feature selection algorithm is to find a weighting vector w
that leads itself to select features by optimizing the nearest
neighbor classification. In terms of the weighting vector w,
the weighted distance between the two samples xi and xj is
defined by:

dw(xi, xj) =
d∑
l=0

w2
l |xil − xjl | (3)

where wl is a weight associated with the lth feature. The
LOO technique is considered to maximize the classification
accuracy on training set S. The probability distribution is an
effective assumption to select any reference point from S for
classification. Here, the probability of xi selecting xj as a
reference point is given by:

pij =


τ (dw(xi, xj))∑
k 6=i τ (dw(xi, xk ))

; i 6= j

0; i = j
(4)

where τ (z) = e(−z/α) is a kernel function and its width α is
an input parameter. It influences the probability of each point
being selected as the reference point. There are two limiting
cases (α →0 and α → +∞) of α. If α →0, the term (-z/α)
becomes undefined and unable to select reference points in a
probabilistic way. The nearest neighbor of query point can be
selected as the reference to resolve this exceptional case. For
α → +∞, pij →1/Nc (except for i = j, Nc is the number of
candidate points) and all the candidate points have the same
chance to be selected as reference points apart from the query
point. Then, the probability for correct classification of the
query point xi is given by:

pi =
∑

j
yijpij (5)

with yij = 1 only for yi = yj, and 0 other-
wise. Therefore, the objective function can be defined

as [37]:

ϕ(w) = ζ (w)− η
∑d

l=1
w2
l (6)

where ζ (w) =
∑
i

∑
j
yijpij is the approximate LOO classifi-

cation accuracy. If α→0, ζ (w) becomes a true classification
accuracy. In order to perform feature selection and manage
overfitting, a regularized parameter η (>0) is introduced. The
value of η can be tuned by cross-validation. Being differen-
tiable, the derivative of ϕ(w) can be computed as:

∂ϕ(w)
∂wl

=

∑
i

∑
j
yij[ 1α pij(

∑
k 6=i pik |xil − xkl |

−|xil − xjl |
)
wl]− 2ηwl

=
2
α

∑
i (pi

∑
k 6=i pik |xil − xkl |

−

∑
j
yijpij|xil − xjl |)wl − 2ηwl

= 2[ 1
α

∑
i (pi

∑
j 6=i pij|xil − xjl |

−

∑
j
yijpij|xil − xjl |

)
− η]wl (7)

The above-mentioned derivative leads to the corresponding
gradient-based update equation. Thus, the obtained weight
vector is used to select the features. Each feature is ranked
using its corresponding weight and the desired number of
top-ranked features are selected to be used in the classifi-
cation. The steps for the NCFS method are illustrated in
Algorithm 1 [37].

Algorithm 1 NCA-Based Feature Selection (NCFS)
1: NCFS (S, γ , α, η, δ)
S: training set, γ : initial step length, α: kernel width
η: regularization parameter, ε: small positive constant

2: Initialization: w(0)
= (1, 1, . . . , 1), ε(0) = −∞, t = 0

3: Repeat
4: for i = 1 to N // Execute only step 5
5: Compute pij and pi with w(t) using Eq. (4) and (5)
6: for l = 1 to d // Execute only step 7

7:
1l = 2[ 1

α

∑
i (pi

∑
j 6=i pij|xil − xjl |

−
∑

j yijpij|xil − xjl |)− η]w
(t)
l

8: t = t+1
9: w(t)

= w(t−1)
+ γ1

10: ε(t) = ϕ(w(t−1))
11: if ε(t) > ε(t−1) then

γ = 1.01γ
else

γ = 0.4γ
12: Until |ε(t) - ε(t−1)| < δ

13: w = w(t)

14: Return w

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The well-known publicly available datasets BCI
Competition III (4a) and IV (2b) are used to conduct the
experiments to evaluate the performance of the proposed
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FIGURE 3. Four different subbands (8–35 Hz, 8–13 Hz, 13–22 Hz, and
22–35 Hz) obtained from channel C4 of subject ‘aa’ selected from the BCI
Competition III dataset 4a.

method. Each trial of the datasets is decomposed into four
subband signals and CSP-based features are extracted from
each subband. The features of all subbands are combined to
derive a high-dimensional feature vector. The NCFS-based
supervised method is used to select the discriminative fea-
tures. Thus, the obtained features are used for training SVM
with linear kernel, followed by the evaluation of the classifi-
cation performance with test data. For each subject, each trial
of 2 s duration is extracted from the EEG data. The details of
the data extraction method are described in Section II.

The fullband (8–35 Hz) and the three other subbands of
channel C4 for subject ‘aa’ selected from dataset BCI Com-
petition III (4a) are shown in Fig. 3. The CSP is applied
on each frequency band to extract the spatial features. Four
pairs of spatial filters resulting in eight features are selected
from each subband. The CSP features obtained from each
of the four bands are combined to comprise 32 (= 4× 8)
dimensional feature vectors for each trial. Then, NCFS-based
supervised feature selection algorithm is applied on the high-
dimensional feature space. It uses the label information of
training data and assigns a weight for each feature. The
features are ranked based on the weights determined by
NCFS method. A number of high-rank features are selected
according to the obtained ranking. The UDFS, which is an
unsupervised approach, is introduced in a previous work
[35]. The class labels are available in the dataset BCI
Competition III (4a). Thus, the supervised method for feature
selection fits this experimental setup well. The values of the
parameters used in the NCFS algorithm are set as: γ = 2,
α = 1, η = 1/N, δ = 1.0e-06. The SVM is trained using the
obtained feature of reduced dimension. The features of the
same indices (as defined in the training set) are selected from
the test dataset to evaluate the MI classification performance
of the proposed method.

FIGURE 4. Performance (classification accuracy) comparison of the
proposed method (NCFS) and the other two methods for individual
subjects and their arithmetic mean using BCI Competition III dataset 4a.

The classification accuracy of each subject is measured
by implementing the k-fold (here k = 5) cross-validation
approach. For an individual subject, the dataset is divided
randomly into k equal groups. The (k-1) groups are assigned
for training and one is designated for testing. The process is
repeated k times. The classification accuracy is obtained by
averaging the results of the k repetitions. The performance of
the classification is evaluated by Acc = 100×(TC /TN ), where
TN and TC are the numbers of trials in the test dataset and the
number of trials correctly recognized out of TN , respectively.

Different experiments are conducted with BCI Competi-
tion III dataset 4a to illustrate the effectiveness of the pro-
posed feature selection approach. The performances in terms
of classification accuracy of MI-BCI using simple CSP-SVM
(without feature selection), UDFS-based [35] feature selec-
tion, and the proposedNCFS-based feature selectionmethods
for the five subjects are presented in Fig. 4. The CSP-SVM
method is implemented with a full feature space. None of
the features are discarded from the feature vector. The per-
formance of CSP-SVM is always lower than that of the other
two methods. It is observed that the dominant feature selec-
tion approach improves performance, whereas NCFS exhibits
superior performance for all the subjects as well as on average
across the subjects. The average MI classification accuracy
of NCFS is 2.33% and 7.38% higher than that of UDFS and
CSP-SVM, respectively. Using cross-validation procedure,
individual repetition may produce a slightly different result.
The average accuracy across all of the repetitions is taken as
the final result for every subject.

After measuring the performance in terms of classification
accuracy, the statistical test Friedman’s one-way analysis
of variance (ANOVA) is performed to study the signifi-
cance level. Friedman’s ANOVA is a non-parametric test
[38] performed to detect the differences in the methods,
including the proposed NCFS. Considering the result of
Friedman’s ANOVA, the methods have a significant main
effect on accuracy (p < 0.006). To test the statistical sig-
nificance of the methods, the Tukey–Kramer-based post-
hoc test is performed [1]. From the results of the post-hoc
test, the NCFS-based method achieves a more significant
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FIGURE 5. Significance of feature selection with BCI Competition III
dataset 4a. Top panel: features of two classes before selection; middle
panel: 15 top-ranked weighted features obtained by UDFS; bottom panel:
15 top-ranked weighted features obtained by NCFS.

improvement of classification accuracy for MI-BCI over
all subjects compared with the other methods (NCFS vs.
CSP-SVM: p < 0.002; NCFS vs. UDFS: p < 0.03).
An important reason for the performance improvement of

the proposed method is the effective selection of features
dominating in the correct classification. The two classes’ raw
features and the selected features using UDFS and NCFS of
the same trial are shown in Fig. 5. The raw features include
all of the 32 features, whereas the top-ranked 15 features are
presented to illustrate the effectiveness of feature selection.
It is observed that the top-ranked features are more separable
from one class to another and, thus, are more discriminative
than the raw features. The features selected using NCFS have
higher disjointedness between the classes than that of UDFS
(as observed in Fig. 5).

The number of features selected for the MI classification
is one of the vital factors that affect accuracy. The perfor-
mances of the individual subjects as a function of the number
of selected features using NCFS are illustrated in Fig. 6.
In addition, the mean values across the subjects are presented
together. The accuracies are varied over the dimension of
selected features and the maximum accuracies of individual
subjects are achieved with different numbers of selected fea-
tures. The number of features corresponding to the maximum
average accuracies across the subjects is taken as the fea-
ture dimension to conduct the rest of the experiments. The
comparison of average accuracy between the UDFS [35] and
the proposed NCFS as a function of the number of selected
features is shown in Fig. 7. It is observed that the maximum
classification accuracies of UDFS and NCFS are achieved by
using 8 and 10 selected features, respectively. The average
accuracy of the NCFS-based method is higher than that of
UDFS method for the low-dimensional features space.

The MI classification accuracies of the proposed feature
selection with different classifiers, namely, SVM [33], linear

FIGURE 6. Classification performance of individual subjects (‘aa’, ‘al’, ‘av’,
‘aw’, ‘ay’) and their average as a function of the number of selected
features (using NCFS).

TABLE 1. Comparison of different classifiers for UDFS and proposed
NCFS methods.

discriminant analysis (LDA) [39], and k-nearest neighbor
(KNN) [40], are studied. The results for the BCI Competition
III dataset 4a are presented in Table 1. In all of the cases,
SVM performs better than LDA and KNN. Although LDA
outperforms with subject ‘aa’ for NCFS, the average accu-
racy of SVM is significantly higher than that of the other
classifiers. The proposed NCFS method with any classifier
performs better than UDFS. The Tukey–Kramer-based post-
hoc test is performed to verify the significance of SVM with
NCFS compared to LDA and KNN. From the results of
the Tukey–Kramer-based post-hoc test, the SVM classifier
with the proposed NCFS achieves significant improvement
of classification accuracy for MI-BCI over the subjects than
other classifiers (NCFS-SVM vs. NCFS-LDA: p < 0.05;
NCFS-SVM vs. NCFS-KNN: p < 0.04).
The BCI Competition III dataset 4a is also used to eval-

uate the MI classification performance of several recently
reported methods [41]–[44]. The comparative performances
in terms of classification accuracy of the proposed method
with the recently developed algorithms are illustrated in
Table 2. The average classification accuracy over all subjects
of the proposed approach is 92.20%. The performance of this
method is compared with the methods implemented using
regularized Riemannian features (RRF) [15] and sparse group
representation model (SGRM) of the CSP features [24]. The
average classification accuracies of RRF and SGRM with
dataset III (4a) are 87.21% and 77.70%, respectively. It is
noted that the Riemannian manifold-based feature is used in
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TABLE 2. Classification accuracy (%) on BCI competition III dataset 4a.
the performance of the proposed method is compared with that of the
recently developed seven algorithms. for each of the five subjects, the
best result is marked in boldface.

regularized Riemannian features (RRF) [15] method rather
than CSP. The attractor metagene-based feature selection is
used in [41] with proper parameter optimization of SVM
(AM-SVM) to implement theMI classification for BCI appli-
cation with an average accuracy of 85.00%. The NCFS-based
method achieves a noticeable improvement of accuracy using
the effective method for discriminative feature selection. It is
observed that SSCSP method [42] uses sparse CSP to obtain
an accuracy of 73.36%. The spatial regularization of CSP is
implemented in SRCSP [43] with a classification accuracy of
76.37% using BCI Competition III (4a) dataset. The transfer
kernel common spatial pattern (TKCSP) is introduced by
Dai et al. [44]. The proposed method outperforms TKCSP
by 13.44% in terms of classification accuracy. Moreover, the
average performance across all subjects of our previous work
involving UDFS [35] is 2.33% less than the accuracy of the
NCFS-based proposed method.

Friedman’s ANOVA is performed to study the significance
level. The test is performed to detect the differences in the per-
formances of the various methods, including NCFS. Accord-
ing to the result of Friedman’s ANOVA, the methods have a
significant main effect on classification accuracy (p < 0.05).
To test the statistical significance of themethodsmentioned in
Table 2, the Tukey–Kramer-based post-hoc test is performed.
Based on the results of this statistical test, the NCFS-based
proposedmethod achieves a more significant improvement of
performance forMI-BCI over the subjects than other methods
(NCFS vs. RRF: p< 0.04; NCFS vs. SGRM: p< 0.01; NCFS
vs. SSCSP: p< 0.02; NCFS vs. SRCSP: p< 0.03; NCFS vs.
TKCSP: p< 0.03; NCFS vs. AM-SVM: p< 0.03; NCFS vs.
UDFS: p < 0.05).

The MI classification accuracies of all the nine subjects
of BCI Competition IV dataset 2b obtained by the proposed
method NCFS are illustrated in Table 3. The values of the
parameters used in the NCFS algorithm are kept similar to the
implementation of BCI Competition III dataset 4a. To obtain
the maximum average MI classification accuracy using BCI
Competition IV dataset 2b, the eight top-ranked features are
used. The average accuracy over the subjects achieved by
NCFS is 81.52%. The results are compared with the recently

TABLE 3. Classification accuracy (%) on BCI competition IV dataset 2b.
the performance of the proposed method (NCFS) is compared with that of
the two recently developed algorithms (DLAV [14], SGRM [24], and UDFS
[35]). for each of the nine subjects, the best result is marked in boldface.

developed three methods, namely, deep learning with vari-
ational autoencoder (DLVA) [14], SGRM [24], and UDFS
[35]. The average accuracies over the nine subjects derived
by DLVA [14], SGRM [24], and UDFS [35] are 78.19%,
78.24%, and 78.40%, respectively. The average MI classi-
fication accuracy for the BCI Competition IV dataset 2b of
the proposed method outperforms the three mentioned algo-
rithms at least by 3.12%. The Tukey–Kramer-based post-hoc
test is performed to test the statistical significance of the
methods. Based on the results of this test, the NCFS-based
proposed method achieves more significant improvement of
performance for MI classification accuracy over the subjects
than most of the mentioned methods (NCFS vs. UDFS:
p < 0.01; NCFS vs. SGRM: p < 0.03; NCFS vs. DLVA:
p = 0.324). Although the performance improvement of
NCFS is not statistically significant compared to DLVA
[14], the average classification accuracy of the proposed
NCFS-based method outperforms DLVA by 3.33%.

The BCI Competition IV dataset 2b is also used in [13],
[18]. In both of the methods, each EEG trial is divided into
segments that are 2 s in length with a 1.9 s overlap. The effec-
tive length of the segment is only 0.1 s. Then, the maximum
Kappa value is selected over the time course and employed
as the evaluation criterion. It is a somewhat different way
to evaluate the MI classification accuracy compared to the
traditional approach, yet higher classification accuracies are
obtained. In the proposed method and in the methods men-
tioned in Table 4, each trial is considered as a single sample
for classification. Then, the classification accuracy (%) is
measured by the number of correctly recognized samples over
the total number of test samples.

Feature selection has a vital role in MI classification. The
features that are relevant in performing the classification are
selected while removing the irrelevant or less important fea-
tures that do not contributemuch to the target variable in order
to achieve better accuracy for the classification. Irrelevant
or partially relevant features can negatively impact model
performance. Thus, the feature selection method has certain
advantages in improving the classification performance. The
mean accuracy (over all subjects) without feature selection is
much lower than that of the methods with feature selection
approach. The reason is that the method without feature
selection uses additional features that are not relevant and also
decrease the performance of the classifier.
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FIGURE 7. Average classification performance across five subjects (BCI
Competition III dataset 4a) as a function of the number of selected
features using UDFS and NCFS.

FIGURE 8. Features selected (green color) from the different subbands
according to their weights assigned by the NCFS method.

The features extracted from the different narrowband
signals also has a significant role in the improvement of
classification accuracy. The features selected from the dif-
ferent subbands for subjects ‘av’ and ‘ay’ of dataset BCI
Competition III (4a) are illustrated (single trial) in Fig. 8.
The 10 desired features are selected from all subbands for
subject ‘av’, whereas none of the 10 features are selected
from subband 22–35 Hz for ‘ay’. It is noticed that different
narrowband signals (subbands) contribute to building the sub-
set of discriminative feature using the NCFS-based method.
The evaluation results validate that the use of selected features
improves the classifier performance. It is also observed that
the proposed NCFS-based approach outperforms the recently
reported algorithms.

The proposed NCFS-based method has some limitations.
A fixed time window starting at the same temporal location
of recorded EEG trial is used in this study. The latency in

responding to the stimuli and the duration of MI are subject
dependent. Therefore, the use of such time window is not
compliant with the concept of BCI. The CSP-based features
used in this work are suitable only for the binary class and
not extendable for multiclass MI classification problems.
Keeping these limitations in mind, this work can be extended
in the future to overcome the mentioned drawbacks.

V. CONCLUSIONS
A supervised feature selection method is implemented in
this paper for MI classification using EEG signals. The
experimental evaluation is performed by publicly available
BCI Competition III dataset 4a and BCI Competition IV
dataset 2b. With the first dataset, 30 out of 118 channels are
used to represent a two-class (right hand and right foot move-
ment) MI task for EEG classification in the BCI paradigm.
The multichannel EEG is decomposed into four subbands
that include mu, low beta, high beta, and fullband within the
frequency range of 8–35 Hz. Four pairs of CSP features are
extracted from each subband and then combined to derive a
high-dimensional feature vector. Not all of the features are
always relevant for classification. The proper elimination of
irrelevant and redundant features makes the feature vector
more discriminative and, thus, improves the classification
performance. The proposed NCFS method effectively selects
the discriminative features.

An unsupervised feature selection method is implemented
in previous work [35]. Given the label information avail-
able in both BCI Competition III dataset 4a and BCI
Competition IV dataset 2b, the supervised approach is more
suitable. The proposed supervised feature selection method
outperforms the unsupervised approach UDFS [35], as illus-
trated in Table 2 and 3. It is a non-parametric method, that
is, it does not require any information about the statistical
distribution of the samples. Along with reducing the amount
of data used in machine learning, it alleviates the effect of
the problem of dimensionality to improve the algorithms’
generalization performance. In this study, the optimal num-
ber of features for all subjects in a dataset is effectively
implemented. It is extendable for multiclass problems of MI
classification in the BCI paradigm.

Instead of using a filter bank to separate the rhythmic com-
ponents, a number of bandpass filters are designed to extract
the narrowband signals containing the components suitable
for movement-related MI classification. In addition to the
subband signals, the CSP-based features are also extracted
from the full band (8–35 Hz) EEG signals. The inclusion of
the fullband signal has a vital role in the discrimination of MI
tasks. The scenario becomes clear when the proposed fea-
ture selection approach is implemented. The discriminative
features are selected using NCFS from different subbands,
as well as fullband EEG signals. Different experimental
evaluations are conducted for the two-class MI-based EEG
classification problem. The obtained results are compared
with different recently developed algorithms. The experi-
mental results establish that NCFS-based supervised feature
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selection with SVM classifier outperforms the recently devel-
oped algorithms. Thus, the proposed combination of fullband
and subband signals, as well as the implementation of feature
selection approach, enhances the MI classification accuracy,
as presented in Table 3 and 4. The foregoing therefore estab-
lishes the superiority of the proposed method.
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