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ABSTRACT In real application scenarios, the face images captured by cameras often incur blur, illumination
variation, occlusion, and low-resolution (LR), which leads to a challenging problem for many real-time
face recognition systems due to a big distribution difference between the captured degraded images and
the high-resolution (HR) gallery images. As widespread application of transfer learning in across-visual
recognition, we propose a novel active discriminative cross-domain alignment (ADCDA) technique for LR
face recognition method by jointly exploring both geometrical and statistical properties of the source domain
and the target domain in a unique way. Specifically, the proposed ADCDA-based method contains three key
components: 1) it simultaneously reduces the domain shift in both marginal distribution and conditional
distribution between the source domain and the target domain; 2) it aligns the data of two domains in the
common latent subspace by discriminant locality alignment (DLA); 3) it selects the representative and the
diverse samples with an active learning strategy to further improve classification performance. Extensive
experiments on six benchmark databases verify that the proposed method significantly outperforms other
state-of-the-art predecessors.

INDEX TERMS Transfer learning, domain adaptation, discriminant locality alignment (DLA), active
learning, low-resolution (LR) face recognition.

I. INTRODUCTION
Face recognition is one of the most activate research topics
in the field of computer vision. Under a controlled imag-
ing condition, most face recognition systems under HR face
images able to achieve satisfying recognition performance.
Unfortunately, in many practical scenarios, the performance
of face recognition systems tends to be degraded dramatically
due to the negative influence caused by the captured LR face
images. Therefore, how to improve the recognition perfor-
mance of LR faces has gained much attention in the domain
of cross-resolution face recognition by many researchers.

Generally speaking, for many traditional machine
learning-based image classification tasks, a fundamental
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assumption is that the samples from the source domain and
the target domain have same data distribution. Based upon
this assumption, the classifier learned from the source domain
is accurate enough for the images in the target domain. In fact,
there exists a very big distribution gap between the gallery
images and the probe images due to many degradation factors
such as illumination variation, pose change, occlusion, and
LR, resulting in a poor performance for face recognition
systems. Fortunately, transfer learning and domain adaptation
have gained huge success in cross-modality and cross-domain
image classification, which provides an enlightenment and
idea to LR face recognition.

For many visual recognition tasks, it is crucial to obtain
sufficient labeled dada. Generally, based on the availabil-
ity of labeled data in the target domain, domain adaptation
can be generally divided into semi-supervised [1]–[3] and
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unsupervised [4]–[8] domain adaptation. Since the unla-
beled images are easier to obtain in practice, it is more
significant to study unsupervised domain adaptation. In this
paper, we mainly focus on the field of unsupervised domain
adaptation.

According to a survey in [9], existing transfer learning
approaches can be roughly categorized into four groups,
namely instance-based, feature-based, parameter-based, and
relational-based approaches, respectively. Instance-based
[10]–[14] transfer learning approaches are mainly based on
the instance weighting strategy. Feature transformation-based
[15]–[19] approaches elaborate on transforming the source
domain feature subspace into the target domain feature sub-
space, or transforming the feature spaces of both source
and target domains into a common latent subspace to adapt
two domains. Nevertheless, instance-based approaches are
not fit for unsupervised visual recognition tasks due to the
need of a large number of labeled source domain samples
to train an accurate classifier for target domain. To mit-
igate this problem, in this paper, we will follow feature
transformation-based approaches.

Pan et al. [20] proposed transfer component analy-
sis (TCA) to learn the transfer components from different
domains in Reproducing Kernel Hilbert Space (RKHS) with
Maximum Mean Discrepancy (MMD), which aims to min-
imize the domain shift across domains distribution. To take
advantage of low-dimensional structures that are intrinsic to
many vision datasets, the work in [21] proposed a geodesic
flow kernel (GFK) model to reduce domain shift by inte-
grating an infinite number of subspaces that characterize
changes in geometrical and statistical properties from the
source domain to the target domain. JDA [22] improved the
TCA by combining both marginal and conditional distribu-
tions to decrease the discrepancy between source domain and
unlabeled target domain. Fernando et al. [23] introduced a
subspace alignment (SA) framework to improve the matching
of cross-domain image, which builds a subspace spanned by
both source and target domains and learns a linear mapping
to align the source subspace with the target subspace. In [24],
TJM adapts both the distribution difference and the irrelevant
instances by jointly matching the features and reweighting
the instances across domains in a principled dimensionality
reduction procedure. Considering that the existing unsuper-
vised methods failed to take into account the difference of
the two distributions in the subspace, Sun and Saenko [25]
incorporates distribution alignment into subspace adaptation
to address the problem. To improve alignment ability of the
learned common subspace, the method in [26] proposed to
impose low-rank and sparse constraints on the reconstruction
coefficient matrix, so that the global and local structures
of data can be well preserved. Tuia and Camps-Valls [27]
proposed to transfer domain adaptation in a kernel-based
feature space, and then manifold alignment is performed to
preserve manifold geometric structures of both source and
target domains. Ghifary et al. [28] presented scatter com-
ponent analysis (SCA) to improve both domain adaptation

and domain generalization by simultaneouslymaximizing the
separability of classes and minimizing the mismatch between
two domains. In [29], two coupled projections are learned
to project the source domain and target domain data into a
low-dimensional subspace by simultaneously reducing the
geometrical shift and distribution shift. Wang et al. [30]
proposed class-specific reconstruction transfer learning
(CRTL) model to exploit the intra-class dependency and
inter-class independency of the reconstructed transfer matrix.
In the particular method low-rank and sparse constraints
are imposed on the class-specific reconstruction coeffi-
cient matrix such that the global and local data structures
that contribute to domain correlation can be effectively
preserved.

Recently, utilizing deep adaptation network [31]–[33] to
deal with domain adaptation has gained much attention by
many researchers. For example, Tzeng et al. [34] proposed
to use CNN to solve deep domain adaptation, where an
adaptation layer and an additional domain confusion loss are
introduced to learn a semantic and domain invariant represen-
tation. In [35], Sun et al. presented to extend CORAL [36]
to learn a nonlinear transformation to align the correlations
of layer activations in deep neural networks (called Deep
CORAL). [37] and [38] proposed to unite adversarial learn-
ing and domain adaptation to narrow the distribution differ-
ence between source and target domains data by combining
discriminative modeling, weight sharing, and a GAN loss.
Kang et al. [39] utilized a contrastive adaptation net-
work (CAN) to optimize a new metric which explicitly mod-
els the intra-class domain discrepancy and the inter-class
domain discrepancy.

In this paper, we develop a novel active discriminative
cross-domain alignment (ADCDA) approach to target LR
face recognition. Fundamentally, our method is related to
JDA [22] and JGSA [29] but has many unique features.
First, the newly proposed method joints both geometrical
and statistical properties to adapt data distribution between
labeled source and unlabeled target domains. Different from
the two previous methods, we simultaneously minimize the
difference of both the marginal distribution and conditional
distribution between two different image domains, where
Maximum Mean Discrepancy (MMD) [40] is employed to
measure the difference in both marginal and conditional dis-
tributions. Moreover, inspired by the philosophy of subspace
alignment proposed in [41], we explore both global and
local manifold geometric structures in the source domain
for obtaining more discriminative latent common subspace.
In addition, we select more representative and diverse sam-
ples in the source domain to train the latent common subspace
so as to benefit more accurate classification for the target
domain. Taking the aforementioned factors into consider-
ation, we propose an Active Discriminative Cross-Domain
Alignment (ADCDA) by jointing active learning and domain
adaptation to target LR face recognition task.

In summary, the major contributions of this paper are
outlined as follows.
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1) We reduce the domain shift between the labeled source
and the unlabeled target domains by jointing both geo-
metrical and statistical properties.

2) We align the feature subspaces spanned by both labeled
source and unlabeled target domains in a learned com-
mon latent subspace by integrating subspace learning
with DLA.

3) To further improve the classification accuracy for target
domain, we employ the philosophy of active learning to
select the representative and the diverse source samples
to train our domain adaptation model.

4) Our proposed ADCDA approach can achieve the best
recognition performance on six standard face datasets
among eight state-of-the-art predecessors.

The rest of this paper is organized as follows. We briefly
review the related work in Section II. Section III details the
proposed Active Discriminative Cross-Domain Alignment
(ADCDA). The validating experiments on six benchmark
face datasets are demonstrated in Section IV. Finally
Section V concludes this paper.

II. RELATED WORK
A. DISCRIMINANT LOCALITY ALIGNMENT
In the literature of machine learning, DLA [41] is an effec-
tive nonlinear dimensionality reduction algorithm. Unlike
other classical dimensionality reduction algorithms such as
principal component analysis (PCA) and linear discriminant
analysis (LDA), the DLA performs a discriminant dimen-
sionality reduction by using both local alignment and global
alignment. It shows powerful capability of solving dimen-
sionality reduction towards the samples with nonlinear
distribution.

Generally, the DLA algorithm consists of three major
stages: the part optimization, the sample weighting, and the
whole alignment. In the phase of part optimization, the local
patch constructed from the source domain samples contains
rich discriminant information, where the local patch of each
sample is associated with itself and its neighborhood samples
belonging to the same class and different classes. In the phase
of sample weighting, each partly optimized local patch is
weighted by the margin degree to measure the importance
of a given sample for classification. In the phase of whole
alignment, the weighted and optimized local patches regard-
ing each sample are globally aligned to further optimize the
alignment matrix. Finally, a standard eigenvalue problem is
solved to obtain the desired projection matrix for dimension-
ality reduction. The DLA shows good performance for high
dimensional data with complicated nonlinear distribution.

B. ACTIVE LEARNING
In the machine learning domain, active learning sam-
pling [42] is popular due to its capacity of finding a small
number of representative and diverse labeled samples from
a large number of training samples to train a more effec-
tive classifier. Usually, two important criterions, namely

representativeness and diversity, are widely considered in the
active learning sampling. Given a sample, its representative-
ness is evaluated by a Gaussian kernel as

R (xi) =
1
Ni

∑
xi,xj∈X,j 6=i

exp
(
−
∥∥xi − xj∥∥22 /2σR2), (1)

where R (xi) is the representativeness of sample xi; Ni is the
neighbors of sample xi; X =

[
x1, x2, . . . , xns

]
is the set

of original source domain samples; σR is the bandwidth of
the Gaussian kernel, which is adaptively determined by the
following Eq. (2), i.e.,

σR =

√
ρ

(
median
xi,xj∈X,i 6=j

∥∥x i − xj∥∥22), (2)

where ρ is a scale coefficient. Fundamentally, a sample with
higher representativeness will share more common informa-
tion than those with lower representativeness.

The other criterion is diversity, which is evaluated by the
following expression, i.e.,

D (x i) = minxj∈S
[
−exp

(
−
∥∥x i − xj∥∥22 /2σR2)] , (3)

where D (x i) represents the diversity of sample xi, S is the set
of selected informative samples. For face images, the regions
of eyes, nose, and mouth show diverse characteristics. Hence,
we can utilize the diversity criterion to probe those samples
with different appearances to improve the generality of pro-
posed method.

In order to balance the function of both representativeness
and diversity, Hoi et al. [42] proposed to find the most infor-
mative sample repeatedly in the remaining candidate sample
set: U = X − S by using the convex combination as below

arg maxxi∈U (λR (x i)+ (1− λ)D (x i)) , (4)

where λ is a trade-off parameter between the representative-
ness and the diversity of samples.

III. ACTIVE DISCRIMINATIVE CROSS-DOMAIN
ALIGNMENT
In this section, we first describe the problem statement of
proposed method. Next the details about ADCDA-based
method, including its objective function and its optimization
approach are described. Finally, a summarized algorithm for
ADCDA-based LR face recognition is demonstrated.

A. PROBLEM DEFINITION
At first, we introduce the terminologies about transfer learn-
ing. The source domain data is indicated as X s

∈ <
D×ns

and its marginal probability distribution as Ps (X s), the target
domain data is denoted as X t

∈ <
D×nt and its marginal

probability distribution as Pt
(
X t), where D is the dimen-

sional size of image feature, ns and nt are the numbers
of samples in the source and target domains, respectively.
In this paper, we address an unsupervised domain adap-
tation problem of learning an accurate classifier with the
help of sufficient labeled samples from the source domain
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FIGURE 1. Illustration of the proposed method.

Ds =
{
(x1, y1) , (x2, y2) , . . . ,

(
xns , yns

)}
, and then apply

it to classify the unlabeled samples in the target domain
Dt =

{
x1, x2, . . . , xnt

}
. Assuming that the feature subspace

and label subspace of the source and target domains are
identical such that X s

= X t , Y s = Y t . Due to domain
shift of two domains, we have Ps (X s) 6= Pt

(
X t) and

Qs
(
Y s
∣∣X s )

6= Qt
(
Y t
∣∣X t ). As a result, our aim is to

reduce the distribution difference by assuming Ps (X s) ≈

Pt
(
X t) and Qs (Y s ∣∣X s )

≈ Qt
(
Y t
∣∣X t ). However, the con-

ditional probability distribution Qt
(
Y t
∣∣X t ) of target domain

data is unknown. We address this problem by assuming
Qt
(
Y t
∣∣X t )

≈ Qs
(
Y t
∣∣X t ) [22].

B. ADCDA FRAMEWORK
The systematic flow chart of the proposed method is
demonstrated in Fig.1. As illustrated, the newly proposed
ADCDA-based LR face recognition method joints both geo-
metrical alignment and statistical distributions to lessen the
domain shift gap between the labeled source and unlabeled
target domains. Moreover, to further improve the generality
capability of the proposed method, we are in favor of using
active sampling rather than random sampling, to choose more
informative samples to train a more accurate classifier for the
target domain. To accomplish LR face recognition, we con-
duct the domain adaptation by finding two coupledmappings,
namely A for source domain and B for target domain to
project the feature spaces of the source and target domains
into a common latent subspace.

1) SOURCE DOMAIN GEOMETRIC INFORMATION
PRESERVING
The success of DLA [41] motivated us to explore discrimi-
native subspace spanned by the source domain. To this end,
we combine local alignment, sample weighting, and global
alignment to optimize a transformation matrix such that the

discriminative information of source domain can be well
preserved. The local alignment is donated as

argmin
xsi

 kw∑
j=1

∥∥xsi − xsij∥∥2 − µ kb∑
p=1

∥∥∥xsi − xsip∥∥∥2


= argmin
xsi

 kw∑
j=1

∥∥xsi−xsij∥∥2(φi)j+ kb∑
p=1

∥∥∥xsi−xsip∥∥∥2(φi)p+kw


= argmin
Xs
i

tr
[
X s
iW i

(
X s
i
)T ]

, (5)

where µ is a scaling factor ranged in [0, 1] to balance the
importance of intra-class and inter-class samples with respect
to xsi ; kw and kb are the nearest neighborhood samples belong-
ing to the same class and the different classes with respect
to xsi , respectively;

φi =


kw︷ ︸︸ ︷

1, . . . , 1

kb︷ ︸︸ ︷
−µ, . . . , −µ


T

indicates a coefficient vector of the i-th local patch and

W i =

 kw+kb∑
j=1

(φi)j −φi
T

−φi diag (φi)


is the corresponding local alignment matrix.

To obtain better alignment, a margin degree function mi
is introduced to punish the samples nearby the classification
boundary. The margin degree functionmi regarding to the i-th
sample xsi is donated as

mi = exp
(
−

1
(ni+δ)t

)
i = 1, . . . , ns, (6)
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where ni is the number of samples xsj whose labels are dif-
ferent from the label of xsj around a neighborhood circle of
the sample xsi , δ is a regularization parameter, and t denotes a
scaling factor [41]. By this way, the part optimization towards
the i-th local patch can be weighted by a margin degree
function of the i-th sample xsi , i.e.,

argmin
Xs
i

mi tr
(
X s
iW i

(
X s
i
)T)

= argmin
Xs
i

tr
(
X s
imiW i

(
X s
i
)T)

. (7)

For each local patch X s
i , Eq. (7) is used to weight the part

optimization to obtain the discriminative alignment matrix.
Finally, the part optimizations of all the local patches are
unified as a whole one by assuming that the coordinate for the
i-th patch X s

i =

[
xsi , x

s
i1
, . . . , xsikw , x

s
i1
, . . . , xsikb

]
is selected

from the global coordinate XS =
[
X s
1, . . . ,X

s
ns

]
[41], such

that

X s
i = XSSi, (8)

where Si ∈ <
ns×(kw+kb+1) indicates the selection matrix,

which is defined as

(Si)pq =
{
1 if p = F i{q}
0 else

, (9)

where F i =
{
i, i1, . . . , ikw , i1, . . . , ikb

}
is the index set for the

i-th local patch.
By incorporating the selection matrix Eq. (9) into Eq. (7),

the objective of alignment can be further rewritten as

argmin
XS

tr
(
XSSimiW iSiT

(
XS
)T)

. (10)

By summing over all the part optimization described in
Eq. (10) together, we can obtain the whole alignment as

argmin
XS

ns∑
i=1

tr
(
XSSimiW iSiT

(
XS
)T)

= argmin
XS

tr

XS

 ns∑
i=1

SimiW iSiT

(XS
)T

= argmin
XS

tr
(
XSW

(
XS
)T)

, (11)

where W =
∑ns

i=1 SimiW iSiT ∈ <ns×ns represents the
discriminative alignment matrix. Finally, we can obtain the
updated discriminative alignment matrix by an iterative pro-
cedure, which contains the local manifold structures, the dis-
criminant information, and the label information of source
domain samples. The update procedure is represented as
below

W (F i,F i)← W (F i,F i)+ miW i. (12)

Finally, the constructed discriminative alignment matrix
for preserving the geometrical discriminative information of
labeled source domain samples is formulated as below

min
A
Tr
(
ATWA

)
. (13)

2) DOMAIN SHIFT MINIMIZATION
We utilize the Maximum Mean Discrepancy (MMD) [40]
criteria to reduce the statistical probability distribution of both
source and target domains. The distribution distance between
two domains can be measured by MMD as follow

min
A,B

∥∥∥∥∥∥ 1
ns

∑
xi∈Xs

AT x i −
1
nt

∑
xj∈X t

BT x j

∥∥∥∥∥∥
2

F

. (14)

In the JDA [22], the authors proposed to apply a certain
base classifiers trained on the labeled source data to find
pseudo labels of the target data by employing an iterative
pseudo label refinement strategy to minimize the differ-
ence between the conditional distributions of two domains.
In the proposed method, we also follow JDA [22] to reduce
the conditional distribution shift across two domains as
below

min
A,B

∥∥∥∥∥∥∥
1

n(c)s

∑
xi∈Xs,(c)

AT x i −
1

n(c)t

∑
xj∈X t,(c)

BT x j

∥∥∥∥∥∥∥
2

F

. (15)

To achieve effective and sufficient domain adaptation,
we simultaneously reduce the shift in both themarginal distri-
bution and the conditional distribution between two domains.
As such, the objective of minimizing domain shifts can be
reformulated as below

min
A,B


∥∥∥∥∥∥ 1
ns

∑
xi∈Xs

AT x i −
1
nt

∑
xj∈X t

BT x j

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥∥
1

n(c)s

∑
xi∈Xs,(c)

AT x i −
1

n(c)t

∑
xj∈X t,(c)

BT x j

∥∥∥∥∥∥∥
2

F

 . (16)

Like JGSA [29], Eq. (16) can be further transformed into a
more concise matrix form by the knowledge of linear algebra,
i.e.,

min
A,B

Tr
(
[AT BT ]

[
M s M st
M ts M t

] [
A
B

])
, (17)

where

M s = X s

(
Hs +

C∑
c=1

H(c)
s

) (
X s)T , Hs=

1
nsns

1s1Ts ,

(
H(c)
s

)
ij
=


1

n(c)s n(c)s
if x i, x j ∈ X s,(c)

0 otherwise,
(18)

M st = X s

(
Hst+

C∑
c=1

H(c)
st

) (
X t)T , Hst =−

1
nsnt

1s1Tt ,

(
H(c)
st

)
ij
=

−
1

n(c)s n(c)t
if x i ∈ X s,(c), x j ∈ X t,(c)

0 otherwise,
(19)
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M ts = X t

(
H ts+

C∑
c=1

H(c)
ts

) (
X s)T , H ts=−

1
ntns

1t1Ts ,

(
H(c)
ts

)
ij
=

−
1

n(c)t n(c)s
if x i ∈ X t,(c), x j ∈ X s,(c)

0 otherwise,
(20)

M t = X t

(
H t +

C∑
c=1

H(c)
t

) (
X t)T , H t =

1
ntnt

1t1Tt ,

(
H(c)
t

)
ij
=


1

n(c)t n(c)t
if x i, x j ∈ X t,(c)

0 otherwise.
(21)

3) SUBSPACE ADAPTATION
To simultaneously minimize the distribution difference and
achieve domain adaptation match between two different
domains, similar to SA [23] and SDA [25], we make the
feature subspaces of both source and target domains as closer
as possible such that the domain shift can be effectively
reduced. In order to reduce the distribution discrepancy across
domains, the SA-based method [23] formulates an additional
transformation matrix M to project the source feature sub-
space into the target feature subspace. Different fromSA [23],
we minimize distribution difference of cross-domain adap-
tation by learning two coupled mappings (A and B). With
the two mappings, we can convert the feature spaces of two
different domains into a common latent subspace. The mini-
mization of adaptation towards the two coupled mappings is
represented as

min
A,B
‖A− B‖2F . (22)

To simultaneously explore the shared and domain specific
features across domains, we incorporate Eq. (22) into Eq. (17)
to adapt the geometrical and statistical distributions of source
and target domains.

4) ACTIVE SAMPLING
To further boost up the performance of the proposed DCDA
method, we employ an active sampling, which has been
reviewed in Section II-B, to select more informative labeled
samples in the source domain to train an accurate classi-
fier for classification of the unlabeled samples in the target
domain. The effectiveness between DCDA and ADCDA will
be proved in the following experimental section.

C. OBJECTIVE FUNCTION AND OPTIMIZATION
By incorporating Eqs (13), (17), and (22) together, the final
objective function of the proposed method is described as
follow

min
A,B

(
Tr
(
[AT BT ]

[
M s M st
M ts M t

][
A
B

]
+αATWA

)
+β‖A−B‖2F

)
s.t. ATX sCs(X s)TA = I and BTX tC t(X t)TB = I, (23)

where α and β are two trade-off parameters to balance the
importance between different terms; Cs

= Is − 1
ns
1s1sT and

C t
= I t − 1

nt
1t1t T are the centering matrixes; 1s ∈ <ns and

1t ∈ <nt are the column vectors with all ones.
Afterwards, two coupled mappings are constructed to

match the source and target domains in a learned common
latent subspace, which leads to an optimization problem as
below

min
A,B

Tr
(
[AT BT ]

[
M s+αW+βI M st−βI
M ts−βI M t+βI

][
A
B

])
s.t. ATX sCs(X s)TA=I and BTX tC t(X t)TB=I. (24)

Similar to JDA [22], to obtain a more concise expression,
let GT = [AT BT ]. Thus, the objective function in Eq. (24)
can be rewritten as

min
A,B

Tr
(
GT

[
M s + αW + βI M st − βI

M ts − βI M t + βI

]
G
)

s.t. ATX sCs(X s)TA=I and BTX tC t(X t)TB=I. (25)

Next, according to the constrained optimization theory,
we let 8 = diag (λ1, λ2, . . . , λk) ∈ <k×k be the Lagrange
multiplier, and the Lagrange function for problem (25) is
derived as

L = Tr
(
GT

[
M s + αW + βI M st − βI

M ts − βI M t + βI

]
G
)

+Tr
((
ATX sCs(X s)TA)8)

+Tr
((
BTX tC t(X t)TB)8) . (26)

By setting ∂L
∂G = 0, we obtain a generalized eigenvalue

decomposition as below[
M s+αW+βI M st−βI
M ts−βI M t+βI

]
G =

[
X sCs(X s)T

X tC t(X t)T
]
G8. (27)

Finally, the optimal adaptation matrix G is boiled
down to solving Eq. (27) for the k smallest eigenvectors
G = [g1, g2, .., gk ]. A complete procedure of ADCDA-based
method for LR face recognition is summarized in
Algorithm 1.

IV. EXPERIMENTS
In this section, we conduct extensive experiments on six
benchmark face databases to verify the effectiveness of pro-
posed ADCDA-based method. The compared approaches
include two baseline methods (i.e., HR-PCA and HR-LDA),
four state-of-the-art transfer learning based approaches (i.e.,
transfer component analysis (TCA) [20], joint distribution
analysis (JDA) [22], transfer joint matching (TJM) [24], and
joint geometrical and statistical alignment (JGSA) [29]), and
two coupled mapping based methods (i.e., coupled locality
preservingmappings (CLPMs) [43] and coupled discriminant
multi-manifold analysis (CDMMA) [44]).

A. BENCHMARK FACE DATABASES
In the experiment, we employ six benchmark face databases
including YALE-B, UMIST, ORL, FERET, CMU-PIE, and
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Algorithm 1 (Active) Discriminative Cross-Domain
Alignment (DCDA and ADCDA)
Input:

The source domain face images X s
∈ <

D×ns , the target
domain face images X t

∈ <
D×nt , the class labels of

source domain face images Y s ∈ <1×ns , the dimensional
size of subspace k , and the model parameters λ, α, and β.

Output:
Adaptation transformation matrices: A and B, embed-
dings: Zs and Zt , and adaptive classifier f .

1: Select informative samples from the source domain via
Eqs. (1-4) (ADCDA);

2: Construct discriminative alignment matrix via
Eqs. (5-12);

3: Build M s, M st , M ts, and M t via Eqs. (18), (19), (20),
and (21), respectively;

4: repeat
5: Solve the generalized eigenvalue decomposition

problem in Eqs. (27);
6: Obtain the adaptation transformation matrices A and

B from G;
7: Project the face features of source domain and target

domain into the embedded subspaces via Zs = ATX s

and Zt = BTX t ;
8: Train a base classifier f on

{
Zs,Y s

}
and update the

pseudo labels of the target domain via Ŷ t = f
(
Z t
)
;

9: Update M s, M st , M ts, and M t via Eqs. (18), (19),
(20), and (21);

10: until Convergence
11: Obtain the final adaptive classifier f trained on

{
Zs,Y s

}
.

AR to assess the performance of compared methods. Fig.2
shows some example samples selected from six benchmark
face databases.

The Extended YALE-B database contains 16,128 face
images of 38 subjects with 9 different poses and 64 different
illumination conditions. Each individual in the database has
about 64 face images with frontal pose and different illumina-
tion conditions, a total of 2,414 face images. The CMU-PIE
face database contains 41,368 face images of 68 subjects
with 13 different poses, 43 different lighting conditions, and
4 different expressions. In this database, each person has
about 49 face imageswith 27 positive postures and all lighting
conditions, a total of 3,329 face images. All the face images
are manually aligned and cropped, and the size of HR face
images is set to 32 × 28.

The UMIST face database contains 564 face images
of 20 subjects with different angles and postures. The ORL
face database contains 400 face images of 40 individuals with
10 different postures, expressions, and occlusions for each
person. All the face images aremanually aligned and cropped,
and the size of HR face images is set to 90 × 80.

FIGURE 2. Some example samples of six benchmark face databases. (The
first row is HR images, and the second row corresponds to LR images.)

The FERET database contains 14,126 face images
of 1199 subjects with different poses, expressions,
and illumination conditions. In our experiments, we randomly
choose 200 individuals from 1199 subjects, each person
has about 7 face images with frontal pose, expressions, and
different illumination conditions, a total of 1,400 face images.
All the face images aremanually aligned and cropped, and the
size of HR face images is set to 40 × 40.
The AR database contains 3,288 face images of

116 subjects with different poses, expressions, and illumi-
nation conditions. In our experiments, we randomly choose
100 individuals from 116 subjects, in which each person has
about 26 face images with frontal pose, expressions, and
different illumination conditions, a total of 2,600 face images.
All the face images are manually aligned and cropped. The
size of all HR face images is set to 140 × 120.

For each face database, we randomly select one half of each
person as the source domain, and the remaining half as the
target domain. To mimic the LR face images, the original HR
face images in the YALE-B and CMU-PIE face databases are
smoothly down-sampled to the size 16 × 14 and 8 × 7 by
the factors of 2 and 4, respectively. Similarly, the HR face
images in the UMIST and ORL face databases are smoothly
down-sampled to the size 18 × 16 and 9 × 8 by the fac-
tors of 5 and 10, respectively. The HR face images in the
FERET face database are smoothly down-sampled to the size
10 × 10 and 8 × 8 by the factors of 4 and 5, respectively.
The HR face images in the AR face database are smoothly
down-sampled to the size 14 × 12 and 7 × 6 by the factors
of 10 and 20, respectively.
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TABLE 1. Accuracy (%) of Eight State-of-the-Art Approaches and the Proposed Method with Two Resolutions on Six Standard Face Databases.

FIGURE 3. Recognition results of different methods with different dimensions on six face databases.

B. EXPERIMENTAL RESULTS
The recognition performance of the proposed method and
the eight state-of-the-art approaches on six face datasets
are illustrated in Table 1. As reported in Table 1, except
slightly lower recognition than CDMMA on the YALE-B and
AR face databases, the proposed DCDA (randomly divides
source and target domains) method constantly achieves the
best recognition performance on the rest of face databases
with two resolutions. Moreover, when active learning is used
to select source domain samples, the proposed ADCDA
method significantly outperforms other competitors for all
the face databases at different resolutions. More specifically,

the improvement of ADCDA increases by 9.48 percent and
4.83 percent on YALE-B face database, and 4.02 percent
and 3.41 percent on UMIST face database, and 6.9 per-
cent and 6.0 percent on ORL face database, and 19.85 percent
and 19.08 percent on FERET face database (except for
HR-LDA), and 2.17 percent and 2.46 percent on CMU-PIE
face database, and 9.59 percent and 4.84 percent on AR face
database, respectively. Particularly, the recognition rate of
our ADCDA-based method surprisingly achieves 100 percent
on UMIST and CMU-PIE face databases, respectively. The
perfect performance mainly contributes to jointly applying
both geometrical and statistical properties, which benefits
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FIGURE 4. Recognition results of different methods with different ranks on six face databases.

to not only reduce the geometrical shift of subspace but
also minimize the distribution shifts between two domains.
Moreover, active sampling selects more informative sam-
ples from the source domain and therefore it is propitious
to enhance the generality performance of the proposed
DCDA-based method. In the following experiments,
we only demonstrate the experimental results obtained by
ADCDA-based method as comparison.

C. EXPERIMENTAL ANALYSIS ON DIMENSIONALITY k OF
FEATURE SUBSPACE
In this subsection, we study how the dimensional size k
(Dim) of feature subspace affects the recognition perfor-
mance. In this experiment, the rank is set to 1 for all databases.
The size of LR face images of the YALE-B and CMU-PIE
face databases is set to 8 × 7, that of UMIST and ORL face
databases is set to 9 × 8, that of FERET face database is
set to 8 × 8, and that of AR face database is set to 7 × 6,
respectively. As shown in Fig.3, the proposed ADCDA can
achieve the best performance when the highest feature dimen-
sion is used for matching. Except the AR face database,
the performance of the newly proposed approach constantly
performs better than other methods. Moreover, our method
also exceeds the four transfer learning-based approaches.

D. EXPERIMENTAL ANALYSIS ON RANK
To examine how the rank influences the recognition rate,
we range the rank from 1 to 10 to verify the advantage of
the proposed method. In this experiment, the experimental
settings are same as Section IV-C. As shown in Fig.4, for all
benchmark face databases, the recognition rates of ADCDA
as well as other approaches steadily increase as the rank
increases within the range from 1 to 10. Particularly, the per-
formance of our method is always better than other compared
methods at each case except for AR face database.

E. EXPERIMENTAL ANALYSIS ON DIFFERENT
RESOLUTIONS
In this subsection, we further evaluate the performance of
different methods at two different resolution levels, namely
8 × 7 and 16 × 14 for the YALE-B and the CMU-PIE
face databases, and 9 × 8 and 18 × 16 for the UMIST and
the ORL face databases, and 8 × 8 and 10 × 10 for the
FERET face database, and 7 × 6 and 14 × 12 for the AR
face database, respectively. Fig.5 demonstrates the compared
results on corresponding to different methods and two reso-
lution levels. In terms of the results, we can see that except
for AR face database, the proposed ADCDAmethod exceeds
other methods at the all cases.
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FIGURE 5. Recognition results of different methods with two different resolutions on six face databases.

F. EFFECTIVENESS ANALYSIS OF FEATURE SUBSPACE
In this subsection, we further examine the effectiveness of
our cross-domain alignment method by projecting the learnt
common features of six benchmark face databases into a 2-D
space via PCA-based dimensionality reduction. The visu-
alization results of compared approaches are illustrated in
Fig.6. In terms of the results, we can find that the trans-
formed features of source and target domains by the proposed
ADCDA method in the common feature subspace can be
aligned better than other predecessors. The major reasons lie
in the following interpretations. The classical TCA method
only considers marginal distribution of data without utilizing
label information. The JDA method considers both marginal
distribution and conditional distribution of data into con-
sideration, but fails to reduce the geometrical shift during
cross-domain adaptation. The TJM method minimizes the
domain shift by jointly matching the features and reweighting
the instances across domains but cannot consider any dis-
criminative information, leading to the worst discrimination
and separability. Although the JGSA method can effectively
reduce both geometrical shift and distribution shift, it only
explores the global discriminative information by using LDA.
The CLPMs method elaborates on preserving the local geo-
metric structures of source domain samples into the latent
common subspace. Nevertheless, the method ignores the dis-
criminative information of samples in the source domain.
The CDMMA approach explores both the local geometric
structure information and the label information to improve

the discrimination of mappings. Unfortunately, many notice-
ably aggregated samples remain in the feature subspace.
In contrast to the above competitors, the newly proposed
ADCDAmethod can significantly promote the discriminative
capability and separability of the samples in the common
latent subspace. Particularly, the counterparts of face images
within the same class are well aligned and aggregated while
those from different classes are obviously separated from
each other in the learnt common latent subspace. This is due
to that the proposed method jointly frames the local patches
optimization, the sample weighting, and the global alignment
of samples into a unified discriminative alignment matrix,
which benefits to adapt the nonlinear distribution of face
images in the source and target domains, leading to a more
discriminative feature subspace than other competitors.

G. PARAMETER SENSITIVITY
In the proposed ADCDA, three important parameters, namely
λ, α, and β, fundamentally affect the performance of pro-
posed algorithm. To investigate how the three parameters
have influence on the recognition performance, we take the
YALE-B face database as test and repeat the experiments five
times to explore the influence. To this end, we vary λ from
0 to 1 at an interval of 0.1, and empirically set α ∈ [0, 0.1]
and β ∈ [0.001, 100] to search the optimal parameters.
It is worth noticing that λ is a trade-off parameter between
the representativeness and the diversity, where λ → 0
indicates the diversity of samples while λ→ 1 represents the
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FIGURE 6. Comparison of the projection feature visualization for
different approaches on the UMIST, ORL, and CMU PIE face databases. For
visualization, we display the first two principal components of learned
common features on a 2-D feature space, where the points of the same
color and different shapes represent the source and target domains face
images belonging to the same person, and those of different colors
indicate different persons.

representativeness. Fig.7a illustrates the changes of
recognition rate varying with λ. As illustrated from Fig.7a,
the proposed ADCDA-based method tends to obtain

better performance with a smaller value of λ. It reflects
the importance of diversity of samples to classifier. α is
another trade-off parameter for balancing the importance
of geometric structures of samples. As shown in Fig.7b,
we can find that the recognition performancewill drop greatly
when the geometric structures of samples are not considered.
By contrast, the recognition rate rises rapidly when the
geometric structures of samples can be fully utilized. The fact
proves that it is essential to explore both the intra-class and
the inter-class information for improving the performance of
transfer learning based visual recognition tasks. In addition,
β is used to adapt the geometrical and statistical distributions
between the source and target domains. As shown in Fig.7c,
the recognition rate of the proposed method descends rapidly
as β increases, which means that a smaller value of β is more
beneficial to improve the recognition performance.

V. CONCLUSION
In this paper, we have proposed a novel ADCDA-based trans-
fer subspace learning approach for LR face recognition. In the
proposed method, both marginal distribution and conditional
distribution between the source domain and the target domain
are simultaneously explored to reduce the discrepancy of the
two domains. To further improve the generality performance
of proposed method, we employ active sampling to select
more representative as well as diverse samples for subspace
learning. Comprehensive experiments carried out upon six
benchmark face databases have verified the effectiveness of
our newly proposed method.

In the future, we will extend our model from two aspects.
On one hand, to enhance the robustness of estimated pseudo
labels of target domain samples, we can frame our method
under a co-transfer ensemble learning framework [45]. On the
other hand, to estimate more accurate conditional distri-
bution of target domain, other semi-supervised manifold
learning-based method [46] can be utilized to optimize the
pseudo labels.

FIGURE 7. Recognition results of the proposed method with different parameters based on the YALE-B face database.
(a), (b), and (c) indicate λ, α, and β respectively.
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