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ABSTRACT Tactile perception of the material properties in real-time using tiny embedded systems is a
challenging task and of grave importance for dexterous object manipulation such as robotics, prosthetics
and augmented reality. As the psychophysical dimensions of the material properties cover a wide range of
percepts, embedded tactile perception systems require efficient signal feature extraction and classification
techniques to process signals collected by tactile sensors in real-time. For this purpose, we developed two
embedded systems, one that served as a vibrotactile stimulator system and one that recorded and classified
the vibrotactile signals collected by its sensors. The quality of the collected data was first verified offline
using Fourier transform for feature extraction and then applying powerful machine learning classifiers such
as support vector machines and neural networks. We implemented the proposed memory-less signal feature
extraction method in order to achieve real-time processing as the data is being collected. The experimental
results have shown that the proposed method significantly reduces the computational complexity of feature
extraction and still has led to high classification accuracy even when fed to the less complex classifiers such
as random forests that can be easily implemented on embedded systems. Finally, we have also shown that
low-cost, highly accurate, and real-time tactile texture classification can be achieved using the proposed
approach with an ensemble of sensors.

INDEX TERMS Signal processing algorithms, edge computing, tactile sensors, texture analysis, machine
learning.

I. INTRODUCTION
With the recent advances in hardware design and VLSI
technology, mobile embedded systems such as IoT and
Edge devices have started to offer artificial intelligence (AI)
services [1], [2]. Considerable scientific and technologi-
cal efforts have been devoted to developing tactile sensing
embedded systems with prospective applications in many
fields, such as telehealth systems (e.g. remote examination,
palpation, and surgery), smart prosthetics, and robotics with
the sense of touch [3]–[9]. Pinker [10] described the complex-
ity of human tactile capabilities as ‘‘Think of lifting a milk
carton. Too loose a grasp, and you drop it; too tight, and you
crush it; and with some gentle rocking, you can even use the
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tugging on your fingertips as a gauge of how much milk is
inside!’’ Unlike humans that can effortlessly perform object
perception and manipulation tasks; tactile enabled embedded
systems are still primitive and need more research and devel-
opment for tasks such as discriminating material properties
(such as texture, hardness, roughness, and friction [11], [12],
dexterous object manipulation/grasping [6], [13]–[15], slip
detection [16], and so on). With high performance platforms,
such as GPUs and AI-accelerators, raw signals coming from
tactile sensors can be processed using high complexity time-
frequency transforms and/or deep learning systems for fea-
ture extraction and AI processing [17]–[19]. However, for
embedded and Edge/IoT systems the real-time processing
of such streaming input signals of various modalities with
different frequency spectrums is a big challenge [20]–[22].
As forwarding the streaming raw data to servers for cloud
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processing might not be optimal due to one or more of the
cost, energy consumption, and privacy issues, tactile enabled
embedded systems must be equipped with efficient feature
extraction and AI processing methods to be able to detect
patterns of interest in real-time. The goal of feature extrac-
tion on embedded platforms is to transform the raw signals
read from sensors into a more descriptive domain such that
simpler AI processing algorithms can perform at accuracy
levels that are close to those obtainable in high performance
offline platforms. As tactile intelligence ultimately requires
real-time processing of information collected by an array
of various types of sensors with dense spatial arrangement
for operating multiple points of contact [23], [24], in this
paper, to process our experimental tactile dataset obtained via
single contact point with the textured surface, the proposed
feature extraction algorithm was designed to fit on a low-
cost tiny embedded device. Ultimately, such methods co-
designed under the resource constraints of the embedded
and Edge/IoT devices are expected to serve better for more
advanced tactile information processing tasks, such as classi-
fying the aforementioned wider variety of texture classes and
tactile experiences. Ideally, such a real-time feature extraction
method should be memory-less (without buffering the signal
values) and thus apply fewer memory accesses to fetch data;
otherwise, dynamic power consumption will be higher due
to the digital signal activities over the internal and external
interconnects of the embedded device.

The deep learning approach has received increased atten-
tion due to the fact that the features it learns to extract in
its early layers have similar properties to those extracted
by biological neurons in the primary visual cortex (V1)
[17], [18] (V1-like features include Gabor-like edge filters,
gratings, and color blobs [25]). In our earlier work [24], [26],
[27], we have developed a neurocomputational model; self-
organized on natural images, the model learnt to extract fea-
tures that closely matches structural and functional properties
of Layer 4 of the cat primary visual cortex [26]. Kursun and
Favorov [24] have shown that these features can be used to
perform efficient texture image classification and as in deep
convolutional neural networks (CNN) [17], [18], they can
be used by subsequent cortical areas to develop gradually
more complex and perceptually advanced features. Texture
classification using tactile information can also benefit from
extraction of such robust and perceptually salient general
purpose features. As some of the prominent features that
neurons in our CNN-like model learn correspond to average
power in various frequency bands in their local receptive
fields, in this study, we investigate the effectiveness of such
bandpower features for real-time tactile information process-
ing on embedded and Edge/IoT systems. Developing such
intelligent embedded devices for tactile processing is a rela-
tively new and emerging field with many general applications
of tactile technology [7], [8], [13], [14], [28] and more specif-
ically in neuroscience for real-time animal neurophysiologi-
cal experiments that can utilize wearable tactile devices and
developing diagnostic tests of neuropathies [27], [29]–[33].

To test the effectiveness of the proposed feature extraction
method for tactile information processing, we developed an
embedded system to record a pilot dataset [34] of tactile
signals collected by a set of sensors. The dataset is first used
offline to evaluate the discriminative power of these features
in classifying various materials with different textures. Sec-
ondly, another embedded system is developed to evaluate the
realtimeness of the tactile information classification based on
the proposed CMB features. The embedded system contin-
uously applies CMB in the time domain and computes the
bandpowers of the input tactile signals in frequency bands
of gradually increasing ranges. Even with a small number
of bands, the embedded system achieves high classification
accuracy by applying the proposed CMB feature extraction
method and a Random Forest classifier (an ensemble of rule-
based decision trees) in real-time.

The Fourier Transform (FT) of a signal can be used to
decompose a signal to its frequency components and provides
a very high resolution and lossless description (features)
of the input signal. However, its computational and space
complexity might overwhelm low-cost embedded systems.
Comparable levels of signal classification accuracy is achiev-
able using features extracted in the time domain as in the
frequency domain [17]–[19]. In order to achieve real-time
processing on tiny embedded systems, we can exploit the
trade-offs between the descriptiveness of the representation
and its computational complexity by performing the compu-
tations of the feature extraction in the time domain, instead
of the frequency domain. These simpler features can be
characterized as lossy and lower resolution approximations
to the frequency/power spectrum of the signal [19], [35].
Computing the total power of a signal can be considered
as one of the simplest features of such a low resolution
approximation to spectral analysis. The total-power feature
can be computed by summing the squares of all frequency
harmonics in the wideband decomposed by the Fourier trans-
form. Moreover, this sum can also be computed in the time
domain per Parseval’s theorem [36] (as described in more
detail in Section II). That is, performing the Fourier transform
is not required to compute the total power of a signal; instead,
it can be computed by summing up the squares of the signal
amplitudes across the given time window. In addition to
the wideband computation suggested by Parseval’s theorem,
extending this idea further by computing the bandpowers in
cumulative frequency bands will complement/enrich the set
of features extracted in the time domain and help obtain finer
approximations to the power spectrum.We called this method
cumulative multi-bandpower (CMB) feature extraction
method.

The contributions of this paper are the following:
• Design and development of a data collection and texture
classification embedded system with tactile sensors (the
collected dataset is available at [34]),

• Development of a novel feature extraction method for
signal processing in embedded and IoT systems and
comparison with the Fourier transform.
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The rest of this paper is organized as follow. Section II
discusses the required background including Parseval’s the-
orem and the basics of exponential smoothing and low-pass
filtering. Section III describes our proposed embedded sys-
tem and the collected tactile dataset. The proposed CMB
feature extraction method is introduced and discussed in
Section IV. The real-time embedded classifier and the clas-
sification results based on the CMB features is presented in
Section V. Finally, Section VI concludes the paper.

II. BACKGROUND
We review Parseval’s theorem and its relation to the
exponential smoothing as background for the proposed
CMB (cumulative multi-bandpower) feature extraction
method. Combining Parseval’s theorem and the exponential
smoothing technique, CMB leads to a simple yet efficient
implementation on the proposed embedded system for tactile
signal processing/classification. CMB is designed to avoid
the computational and space complexity of the Fourier trans-
form at runtime due to the computational/memory limitations
of target embedded systems. We review Parseval’s theorem
and how it can be used to extract a set of simple yet powerful
features (bandpowers in various frequency ranges) for use in
embedded platforms.

Based on Parseval’s relation, the average energy of a signal
recording, x[n], can be determined either by adding up the
energy of the signal per each sample (i.e.,

∑
| x[n] |2) at

the time domain, or by taking the energy of signal in the
frequency domain as summation of | X (jω) |2 /2π as shown
in Eq. 1.

+∞∑
n=−∞

| x[n] |2=
1
2π

∫
2π
| X (jω) |2 dω (1)

As Parseval’s theorem relates the signal’s total power in
the time and frequency domains, it allows keeping track of
the power in real-time without the need of keeping a sliding
window of past signal samples for transforming into the
frequency domain. Therefore, the theorem offers a method
for staying in the time domain yet being able to do useful
feature extraction in the frequency domain.

The exponential smoothing offers an efficient, memory-
less approach to apply low-pass filter on the stream of sam-
ples of a given signal [36]. The exponential moving average
filter on the signal x[n] is defined as in Eq. 2:

y[0] = x[0]

y[n] = αx[n]+ (1− α)y[n− 1], n > 0

= α

n∑
m=0

(1− α)n × x[n− m] (2)

As the smoothing factor α of the exponential smoothing
decreases, high frequencies are attenuated. The angular cutoff
frequency,ωc, can be taken as the half-power point (or−3dB-
point) and computed as in Eq. 3, which can be converted
to ordinary frequency as ωcfs/2π . Figure 1 plots the cut-off

FIGURE 1. The frequency response (magnitude response) of exponential
filtering. Lower smoothing factors, α, yield low-pass filters with lower
cut-off frequencies. The cut-off is the angular frequency (in π rad/sample)
at which the DTFT magnitude goes below the plotted −3dB attenuation
level.

frequencies corresponding to various α values.

ωc = arccos(
α2 + 2α − 2

2α − 2
) (3)

III. DATA COLLECTION SYSTEM
In this section, we describe the proposed data collection
embedded systems. Figure 2a shows the overall architec-
ture of the data collection system. We have developed two
embedded systems, one that serves as a vibrotactile stimulator
system and one that records and classifies these tactile signals
collected from tactile sensors. The vibrotactile stimulator
system serves for data collection in a controlled environment;
it controls a stepper motor that rotates the drum. Considering
the fact that the psychophysical dimensions of the material
properties cover a wide range of percepts (such as roughness,
softness, warmness, and friction) [11] and they require com-
plex spatiotemporal analysis, we have limited our study to the
machine perception/discrimination of various textures that
can be sensed by sensors attached to a probe/stick touching
the material surfaces via a single touch point. As the probe
rubs against the surface of the textured material on the stimu-
lator, the sensors attached to the probe capture the vibrotactile
signals for real-time classification. The probe is 3D printed
with high printing density so that it transmits the vibrations
at its tip without distortion.

The stimulator system consists of a control unit, a motor
driver module, and the rotating drum module. The con-
trol unit, reads the experiment specifications (including
the speed and direction of rotation) to control the drum
accordingly.

Figure 2b shows the physical implementation of the sys-
tem. The diameter of the drum is 7 cm and it rotates at
a linear speed of 5 cm s−1 which was chosen as a typical
touch velocity. For each texture, 20 seconds of recordings
are collected (corresponding to nearly five rotations of the
drum).
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FIGURE 2. Block diagram of the proposed embedded systems (a) for sensor stimulation and tactile data collection/classification. The right-hand
side (b) shows the physical implementation of the embedded systems.

For this study, we have explored a number of commercial-
off-the-shelf sensors and embedded boards. To acquire
multimodal tactile information, we studied various sensors,
including accelerometers, piezo sensors (e.g. Piezoelectric
Polymer sensor), motion sensors (e.g. Vibration module
based on the vibration sensor SW-420) and microphones. For
the recording embedded system, we have used the Arduino
UNOSoC board to read and collect data in a flexible sampling
rate. Based on the limited memory and performance budget
of the embedded system used in this study, we have chosen
the 3-dimensional accelerometer sensor (MMA-7660 from
NXP Company [37]) and an electret condenser microphone
(CMA-4544PF-W from CUI Company [38]) as the sources
of recordings in our tactile dataset. Although using a richer
combination of sensors on a more expensive embedded board
would achieve even higher classification accuracy, devel-
oping efficient methods for real-time signal processing on
embedded systems will help improve the throughput of both
low-cost and advanced embedded systems.

We have used the on-chip analog to digital con-
verter (ADC) of the AVR processor available on the Arduino
board. The AVR’s ADC is set to work with the maximum
available clock speed which is the Arduino’s Clock/128 =
16MHz/128 = 125 kHz. Based on the technical details of
the AVR’s ADC, each analog to digital conversion operation
takes 13 ADC clocks that makes a total of 104 µs for each
conversion. This yields the highest available sampling rate
of 9615Hz on our Arduino data collecting system. Knowing
this limitation, we have set up the sampling rate of data
collecting system to 200Hz for the accelerometer to collect
the motion data and to 8 kHz for the microphone to collect the
sound data.

For every sampling instance, the proposed data collection
system reads a new data sample, the data is sent through
serial USART communication to the computer for populating
the tactile dataset. The 3-dimensional accelerometer sensor
that we used for data collection measures movements in
X, Y, and Z directions and gives a total of 3 values per

FIGURE 3. The 12 texture classes used in our data collection and
classification.

sample, from which the acceleration can also be computed.
Movement recordings are integer values that are sent to the
base computer for storage. The statistics of recorded values
from the sensors are given in Table 1. As the readings to be
transferred to the computer (for populating the dataset) have
different orders of magnitude, the transfer time is not fixed as
the Arduino’s USART communication converts data to string
before the transfer. This negatively alters the data sampling
period of the sampling loop. To avoid sampling rate variation,
we have set one of the ARV on-chip timers to interrupt the
processor every specific amount of time (determined based on
the desired sampling frequency) that calls the sensor reading
and data transfer routines.

We have used commercial off-the-shelf embedded boards
and electrical components (AVR-based embedded boards,
stepper motors, etc.) as well as our own designed and 3D
printed mechanical components (including the rotating drum
glued with different texture strips). The collected tactile
dataset has 12 texture classes and Figure 3 shows an exem-
plary subset of texture strips that used for the experiments.
Textures include sandpapers of various grits, Velcro strips
with various thicknesses, aluminum foil, and rubber bands
of various stickiness. The dataset collected is available upon
request and can be found at [34].

To validate the data collection system, we analyzed the
recordings of the 12 texture classes using discrete time Fast
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Fourier Transform (FFT). As outlined in Section V, using one
to three seconds of contact with these texture materials were
sufficient to distinguish them. The recordings are first tested
offline and shown to include discriminatory information for
texture classes. We cropped a number of training examples
from each texture; we used 256-sample windows for each
example (that corresponds to about one second recording of
the accelerometer). Then, we applied the Fourier transform
for feature extraction and tested how discriminable the classes
are using various machine learning algorithms, including
K-nearest-neighbor (KNN), support vector machines (SVM),
and random forests (RF) [39], [40]. Window sizes smaller
than 256-samples (e.g. 128) correspond to less than half
a second of the accelerometer recordings (and much shorter
for the sound signals sampled at 8 kHz) and result in signif-
icantly lower classification accuracy. However, even with a
window length of 128-samples, the FFT-based implementa-
tion on the embedded system failed due to the data memory
limitation. A method that avoids the window-based buffering
of sample readings has been proposed and discussed in the
next section.

IV. PROPOSED CUMULATIVE MULTI-BANDPOWER
FEATURE EXTRACTION METHOD
Embedding an efficient feature extraction method into the
hardware platform shown in Figure 2 enables it to collect and
real-time classify the texture data. Instead of buffering the
samples of sensor readings in time windows for spectral anal-
ysis in the frequency domain, we propose a simple (memory-
less) yet efficient (discriminatory) signal feature extraction
method easily implemented on our intelligent embedded sys-
tem for tactile classification. Such feature extraction methods
are of significant importance for real-time, energy-efficient,
mobile embedded systems. The memory and performance
constraints of an embedded implementation may prohibit the
use of resource demanding feature extraction methods such
as the Fourier transform and deep learning. Our proposed
feature extraction method computes a small yet descriptive
statistics of power spectral density of the streaming signals
coming from the vibrotactile sensors. Parseval’s theorem
described in Section II allows the computation of the total
power of a signal in the time domain. Combining this idea
with exponential smoothing of the input signals, the band-
powers in various cumulative frequency bands can form a
rich set of features extracted in the time domain in real-time.
The proposed method, called cumulative multi-bandpower
(CMB) feature extraction method, is described below.

Let x[n] denote the discrete readings obtained from a given
sensor at time step n (e.g., the data coming from one of the
three channels of the accelerometer sensor and the feature
extraction can be performed in parallel in each dimension
separately).

Parseval’s theorem (Eq. 1) states that the total energy
(thus, average power) of a signal can be calculated either
using the amplitudes in the time domain or spectral power
in the frequency domain. More specifically, summing

power-per-sample across time (i.e. sum of the squares of the
amplitudes of the data samples) is another way of computing
the total spectral power across frequency. On one hand,
FFT returns the power spectrum that precisely describes the
distribution of power into individual frequency components
of the given signal; on the other hand, working in time domain
with summations (accumulation of powers of samples, x[n]2,
provides a memory-less mechanism that can help the embed-
ded system avoid complex and computationally demanding
FFT approach. To take advantage of both approaches, instead
of using average power as the single feature over the whole
frequency spectrum, we propose to extract an array of such
features receiving their incoming samples from smoothened
versions of the signal (i.e. low-pass filtered data samples
with various pass-band/cut-off characteristics). We approx-
imate the low-pass filters using exponential smoothing (see
Eqs. 2 3) as defined in Eq. 4:

Sαk [n] = (1− αk )× Sαk [n− 1]+ αk × x[n] (4)

for a set of K smoothing factor values, 0 < αk < 1, for
k = 1, . . . ,K . Using lower smoothing factors, αk , computes
low-pass filters with lower cut-off frequencies (i.e. lower
values of αk actually increase the level of smoothing; see Fig-
ure 1 for the relationship between exponential smoothing and
low-pass filters). Let us assume smoothing factors are sorted
in decreasing order and let us include an additional α0 = 1,
which does not perform any smoothing, Sα0 [n] = x[n], and
it will be used for computing the average power of the signal
as suggested by Parseval’s theorem: 1 = α0 > α1 > α2 >

. . . > αK > 0. Note that Eq. 4 can be computed memory-less
without the need for storing the past Sαk [n] values. In fact the
computational code performs the following assignment.

Sαk ← (1− αk )× Sαk + αk × x[n] (5)

Having such an array of Sαk data values, the Parseval’s
theorem can now be applied to sum up the squares of these
values in order to calculate average powers in gradually
narrower bands of frequencies as shown in Figure 1 (due to
gradually lower cut-off frequencies these consecutive low-
pass filters have). Let Fαk denote the (average power) feature
extracted for a given alpha value as in Eq. 6:

Fαk [n] =
1
n

∑
i

|Sαk [i]|2 (6)

Note that we can avoid buffering Fαk [n] values and again
use exponential smoothing to estimate the sum of power-per-
sample, Sαk 2, in our calculations:

Fαk ← (1− β)× Fαk + β × |Sαk |2 (7)

Also note that using exponential smoothing applies exponen-
tially decreasing weights over time that fits well with the
transient nature of the incoming data as the data changes
from one texture class to another. These set of Fαk , k =
0, 1, . . . ,K , features can discriminatory signals based on not
only their frequency components but also their amplitudes
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TABLE 1. Statistics of the collected dataset including mean, standard deviation, and data range for signals recordings. The sources of data include sound
recorded by the microphone and X, Y, and Z channels of the accelerometer.

and DC-offsets (c0 of FFT or the average amplitude). How-
ever, the following simple normalizations can be incorporated
into the feature extraction for obtaining features sensitive
only to frequency variations.

To achieve DC-offset invariance, first we modify Eq. 6 as
Eq. 8:

Fαk [n] =
∑
i

|Sαk [i]− x[i]|2, k = 1, . . . ,K (8)

For k = 0, we do not change the formulation of Eq. 6

Fα0 [n] =
∑
i

|Sα0 [i]|2 =
∑
i

|x[i]|2 (9)

As before, these F values can be obtained using memory-
less computation by exponential smoothing:

Fαk ← (1− β)× Fαk + β × |Sαk − x[n]|2 (10)

Fα0 ← (1− β)× Fα0 + β × |Sα0 |2, (11)

Finally, the normalized features, R, are computed as:

Rαk =
Fαk

Fα1
, k = 1, . . . ,K (12)

It is straightforward to show that Rαk features are both
amplitude-scaling and DC-offset invariant. We can show that
scaling the amplitude of the signal, x[n], by a factor, m,
and changing the DC-offset by a constant, c = c0, does
not change these R features. Let xm,c[n] = m × x[n] + c
represent this new signal and let Fαkm,c and R

αk
m,c represent the

unnormalized and normalized features of xm,c, respectively.

Fαkm,c[n] =
∑
i

|Sαkm,c[i]− xm,c[i]|
2

=

∑
i

|(m× Sαk [i]+ c)− (m× x[i]+ c)|2

=

∑
i

|m(Sαk [i]− x[i])|2

= m2
∑
i

|Sαk [i]− x[i]|2

= m2
× Fαk [n], k = 1, . . . ,K (13)

Since all F ′αk [n] features for all α values are scaled up
by a factor of m2, the scaling can be cancelled out by using
the ratios of the Fαk values to each other. A good strategy to
control the magnitude of the features would be to normalize
each Fαk by the previous feature, Fαk−1 . For simplicity of for-
mulating the theory and the subsequent discussion, we choose
to normalize by Fα1 and compute the normalized features,
Rαkm,c, of xm,c as:

Rαkm,c[n] =
Fαkm,c[n]
Fα1m,c[n]

=
m2Fαk [n]
m2Fα1 [n]

= Rαk [n], k = 1, . . . ,K (14)

Clearly, Rα1 = 1 and it can be omitted. Moreover, aug-
menting the set of K − 1 normalized features, Rαk , k =
2, . . . ,K , withFα0 andFα1 has the same descriptive power as
the set ofK+1 unnormalized features, Fαk , k = 0, 1, . . . ,K .
Having Fα0 and Fα1 with the scaling and DC-offset invariant
normalized features can help machine learning classifiers
detect average power and amplitude variations as they also
might be valuable sources of information.

As a first demonstration of the proposed feature extraction
method, we use simple sine waves with various frequency,
amplitude, phase, and DC-offsets. For this aim, we define the
following six functions with w1 = 2π × 600 and w2 = 2π ×
250 (frequencies of 600Hz and 250Hz):
• x1(t) = sin(w1 t),
• x2(t) = sin(w2 t),
• x3(t) = 0.2 x1 + 0.7 x2,
• x4(t) = 2 sin(w1 t),
• x5(t) = sin(w1 t + ω0), for ω0 = 83, and
• x6(t) = 10+ sin(w1 t)
These signals, x1(t) through x6(t), are sampled for 1 s

at a rate of Fs = 4 kHz and their Fourier transforms
show frequency harmonics at either/both 600Hz and 250Hz,
as expected. Figure 4 shows that the proposed features, Rαk ,
have frequency sensitivity as the plots for x1, x2, and x3
have different feature values. Moreover, the figure shows
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FIGURE 4. Normalized Rα features, F αk /F αk−1 , detect the differences in
the power spectrum while showing invariance to scaling, DC-offset, and
phase differences as demonstrated on signals x1 through x6.

that these features are invariant to amplitude-scaling and
DC-offset as the plots for x1, x4, and x6 are perfectly identical.
The features are also very robust to phase changes as the
differences between the features of x1 and x5 are negligibly
small (≈0.0001dB) in Figure 4, which demonstrates that the
changes in the feature values are due to the difference in the
power spectrum of signals.

The algorithm of the feature extraction algorithm is given
in Algorithm 1. The time and space complexity of the CMB
feature extraction algorithm are both linear in K,O(K ), where
K is the number of cumulative bands used by CMB (corre-
sponding to the number of alpha values). Fast Fourier Trans-
form (FFT), on the other hand, hasO(nlogn) time complexity
and O(n) space complexity, where n is the length of the FFT-
window with n � K , especially when the sampling rate is
high. This difference makes CMB more applicable than FFT
in real-time with a small compromise in accuracy.

V. EXPERIMENTAL RESULTS
To evaluate the proposed embedded system for tactile classifi-
cation, we have performed awide range of experiments. In the
first experiment, we have implemented and tested various
classifiers on the texture classification task using both the
proposed CMB features and the FFT features for comparison.
We have used the following six classifiers [39], [40]:
• Random forest classifier, which is referred to as RF
in the figures. The RF classifier is a majority vot-
ing ensemble of a number of decision trees. We have
varied the number of trees for optimization purposes.
With improved generalization capabilities, RF is one
of the simplest yet accurate classifiers in machine
learning [40], [41].

• Support vector machine classifier with the radial basis
function (RBF) kernel, which is referred to as RBF −
SVM in the figures. As a nonlinear maximum margin
classifier,RBF−SVM is one of the most successful clas-
sifiers in machine learning (especially with small/mid
size datasets).

• Linear support vector machine classifier, which is
referred to as Linear − SVM in the figures. Linear −
SVM is less powerful than RBF − SVM but it has good
generalization due to margin maximization. Moreover,

Algorithm 1 Proposed Memory-Less Cumulative
Multi-Bandpower (CMB) Feature Extraction Algorithm

1 function CMB_Features(x, α[0..K ], S[0..K ],
F[0..K ], β)

// Input:
// x: Data value at the current time

step, x[n] of Eq. 4
// α[0..K ]: Smoothing factors
// S[0..K ]: For each smoothing factor α,

smoothed data value of the previous
time step that correspond to
Sαk [n− 1] of Eq. 4

// F[0..K ]: Unnormalized features at the
previous time step that correspond
to Fαk [n− 1] of Eq. 6

// β: Time constant for estimating the
running average of F[0..K ]

// Output:
// R[1..K ]: Normalized features that

correspond to Rαk [n] of Eq.12
// F[0..K ]: Updated values of the

unnormalized features given as input
// S[0..K ]: Updated values of the

smoothed data values given as input
//

2 for (k ← 0 to K) do
3 S[k]← (1− α[k])× S[k]+ α[k]× x
4 if (k == 0) then
5 F[k]← (1− β)× F[k]+ β × x2

6 else
7 F[k]← (1− β)× F[k]+ β × |S[k]− x|2

8 R[k]← F[k]/F[1]
9 end

10 end

it is easy to train, scales to large number of samples, and
the discriminant can be computed explicitly.

• K-nearest neighbors classifier using the Euclidean dis-
tance metric, which is referred to asKNN−Euclidean in
the figures. Other distance metrics have also performed
comparable in our experiments. This algorithm does not
perform any training, it only stores the training dataset
and measures the distance of a test example to these
training examples to make its inference).KNN can serve
as a good baseline for accuracy but even for K = 1, it is
inefficient due to high time and space complexity.

• Multi-layer perceptron classifier, which is referred to
as MLP in the figures. MLP has a number of neurons
in each one of its hidden layers. The hidden units in
each hidden layer extract nonlinear combinations of
the inputs from the previous layer in order to define
sufficiently nonlinear discriminants. With more layers
and neurons, the number of parameters increase and the
generalization reduces [39].

• Logistic regression (referred to as Logistic−R in the fig-
ures) is a statisticalmethod thatmodels the probability of
classes (dependent variables) using a linear combination
of features (predictors or independent variables).

We picked classifiers that are suitable for our embedded
implementation and that are also straightforward to optimize
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FIGURE 5. Test accuracies of classification using various combinations of accelerometer and sound data. The classifiers are (a) Random Forest,
(b) RBF Support Vector Machine, (c) 1-Nearest Neighbor, (d) Multi-Layer Perceptron, (e) Logistic Regression, and (f) Linear Support Vector
Machine.

without requiring many hyperparameters so that we can keep
the focus on feature extraction (not the selection/optimization
of an advanced classifier). The default settings were generally
preferred to avoid over-fitting. For KNN , we used K = 1, for
linear SVM we used the default value for the regularization
parameter (C = 1). For RBF − SVM , we used automatic
scaling for the gamma value (gamma is inversely proportional
to the RBF radius). For MLP, we used a single hidden layer
with 100 neurons with ReLU activation function with a learn-
ing rate of 0.001 and momentum = 0.9. For random forests,
we used 100 trees and the percentage of features to consider
for the best split was set to 50%.

Snipping recordings of various lengths and applying fea-
ture extraction, we created the training and test sets for

the machine learning classifiers. We created two datasets,
one with shorter snips of 1 to 1.5 seconds in length (cho-
sen randomly in that range to mimic variations in a typi-
cal finger swipe/touch) and one with longer snips of 2 to
3 seconds. We have repeated these experiments 30 times.
Each training set contains 120 example snips (10 per class)
and the test sets contain 480 examples (40 examples per
class). To extract features from the snips, we apply and
compare the following three feature sets and use them
as input to the aforementioned classifiers. For the imple-
mentation of the classifiers on PC for offline analysis,
including optimization/validation of the classifier hyper-
parameters, we used scikit-learn Python module for machine
learning [42].

VOLUME 8, 2020 97469



O. Kursun, A. Patooghy: Embedded System for Collection and Real-Time Classification

TABLE 2. True positive and true negative rates for the classification methods using the CMB features.

• The proposed CMB features. These features are referred
to as CMB1 and CMB2 in the figures for the short (≈1 s)
and for the long (≈2 s) recordings, respectively. CMB
works in time domain by updating its features in real-
time and the length of the snips does not complicate its
computations.

• The Fourier transform (FFT) features. The frequency
spectrum of the snips are computed by FFT and fed as
the feature vector to the classifiers. In the figures, for the
short and long recordings, FFT features are referred to
as FFT1 (using one-second windows) and FFT2 (using
two-second windows), respectively.

• The third set of features is a tiny subset of our proposed
CMB features, hence we named it Tiny-CMB (TCMB).
Here, we use CMB only with the two most extreme α
values, α = 1 that computes the total power of the signal
i.e., F1[n] = 1

n

∑
i x[i]

2, (as also mentioned in Eg. 9)
and α = 0 that computes the variance of the signal
(F0[n] = 1

n

∑
i (x − x[i])

2, where x = 1
n

∑
i x[i]).

From the power and the variance, the square of the
average of the signal window can also be computed,
x2 = F1

−F0, which makes TCMB features interesting
from the machine learning perspective as using the mean
and the standard deviation of classes play an important
role in inference in machine learning [39]. In the figures,
we refer to the features as the short and long recordings
as TCMB1 and TCMB2, respectively.

Figure 5 compares the classification accuracies obtained
with most classifier-feature-sensor combinations on the short
and long recording datasets. The sensors include X, Y, and
Z channels of the accelerometer and the sound (denoted
by S in the figures). The figure shows that increasing the
length of data recordings for feature extraction improves the
classification accuracy in most cases for the CMB features.
However, for the FFT features, longer windows have led to
no improvement or even accuracy loss in some cases e.g.,
in Figure 6d when all channels of data are used. That small
degradation might be due to the curse of dimensionality
phenomenon [39]: Using longer recordings leads to very
high dimensional feature vectors (frequency components)

for FFT. However, for the proposed CMB features, using
longer or shorter recordings does not change the number of
features (which depends only on the number of α values).
The results summarized in the figure also suggests that the
proposed CMB feature extraction method offers accuracy
levels comparable to those of FFT and achieves that without
the memory/computation demands that FFT has.

Tables 2 and 3 shows the details of classification results
with the proposed CMB and FFT features in terms of the
true positive and true negative rates for each class. Here,
the true positive rate (TP in the tables) of a class refers
to the proportion of the actual textures of that class that
are correctly identified as such by the classifier; while the
true negative rate (TN) measures the proportion of texture
examples of other classes that are correctly predicted to be
nonmembers of that class by the classifier. The tables are
color-coded in a way that values closer to 100% are dark
green; and as the values get lower, the color gets closer to dark
red. Comparing the corresponding cells of these two tables,
we see that the FFT features offer better TP/TN. This comes
from the fact the FFT provides more powerful (full resolution
view of the spectrum) features that lead to more accurate
classifications. However, the FFT implementation was not
feasible on our tiny embedded platform. On the other hand,
the CMB features can provide comparable levels of TP/TN
in almost all cases with its simple implementation on the
embedded board.

In the next experiment, we studied the accuracy of the
CMB-based classification with respect to the number of fea-
tures (i.e. the number of α values that controls the number of
cumulative bands). Figure 6 presents the results obtained in
this set of experiments; the results on the accelerometer sen-
sors are given in Figure 6a and the results on the sound signals
collected by the microphone sensor are given in Figure 6b.
We see that increasing the number of bands (features) help
the sound data a lot more for achieving high classification
accuracy. However, as the accelerometer carries information
in a limited band of frequencies, its accuracy reaches its peak
at a faster rate (using only a few α values). This observa-
tion means that the optimum number of bands in the CMB
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TABLE 3. True positive and true negative rates for the classification methods using the FFT features.

FIGURE 6. Accuracy of the random forest classifier vs the number of
frequency bands (α values) of the CMB method. Separate plots are shown
for each one of the four sensor channels (X, Y, Z, and S) collected in
parallel. The increase in the accuracy saturates faster for the
accelerometer data shown in (a) that has simpler frequency distribution
than the more complex sound data shown in (b).

feature extraction method indeed depends on the nature of
the distribution of the useful information on the frequency
bands. Embedded system designers may use this opportunity
in their designs to minimize the number of bands needed by
the feature extraction for the given application.

As the random forest classifier [41] can be expressed as
an ensemble of nested if − then − else statements, it is a
good candidate to be implemented on embedded systemswith
minimum data memory requirements and faster execution for

TABLE 4. Performance of the proposed CMB features for the random
forest classifier implemented on an Arduino-based embedded system.

inference after its training. In the next experiment, we have
worked on optimizing the random forest classifier to better
meet the the resource limitations of our Arduino-based imple-
mentation. We have used Arduino-UNO, one of the tiniest
Arduino boards, in the implementation of the proposed CMB
feature extraction based random forest classifier to show that
the hardware requirements for extracting the features and the
subsequent classification are minimal. We tried 10 random
forest classifiers starting with a single decision tree and by
doubling the number of trees up to 1024. The execution
time (on both the embedded and PC implementation) and the
classification accuracy of these random forest classifiers are
reported in Table 4. Our experiment revealed that the Arduino
system is not able to host more than 32 decision trees due to
the lack of sufficient code/data memory. Nevertheless, even
with a low number of trees in the random forest (such as
16 and 32, which are implementable on the host embedded
system), a good classification accuracy is achieved. Com-
pared to the implementation on our high-end PC with GPU,
the embedded implementation needs about 20 times longer
runtime for classification due to its limited computational
power and lower clock frequency.

VI. CONCLUSIONS
In this study, we developed an intelligent embedded sys-
tem equipped with vibrotactile sensors to populate a tactile
dataset and to classify tactile signals as they are collected in
real-time. For feature extraction, we also proposed a novel
power spectral feature extraction method that we called
CMB (cumulative multi-bandpower). The proposed feature
extraction method CMB is based on the memory-less total
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power computation suggested by Parseval’s theorem and the
memory-less low-pass filtering achieved by the exponential
smoothing approach to compute the band-powers of the
input signals in cumulative frequency bands. Therefore, CMB
works in the time domain and achieves real-time computa-
tions on the streaming tactile input signals.

For the classification of the textures, CMB features are fed
to a random forest classifier implemented as an ensemble
of (majority voting) rule-based decision trees. Although the
combination of more descriptive Fourier transform and more
powerful support vector machines achieved a higher accuracy
for offline classification, its implementation for real-time
online processing on the embedded board was not feasible
due to data and code memory limitations. Nonetheless, our
embedded implementation of the combination of the CMB
features and the random forest classifier achieves comparable
classification accuracy especially when multiple sensors are
fused for classification.
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