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ABSTRACT Neurodegenerative diseases are common progressive nervous system disorders that show
intricate clinical patterns. The gait fluctuations reflect the physiology and pathologic alterations in the
locomotor control system. Using gait fluctuations for disease state evaluation is an essential way for clinical
trials and healthcare monitoring. The classification of gait fluctuations helps improve the life quality and
enhance clinical diagnosis ability in neuro-degenerative patients. In this work, we firstly embed the time
series of multiple gait fluctuations into the phase space. Then we use persistent homology to extract the
topological signatures of barcodes. Together with a random forest classifier, we proposed a topological
motion analysis (TMA) framework to analyze the gait fluctuations. Further, we proposed a comprehensive
comparison study using the TMA framework in the neuro-degenerative classification tasks for stance-,
stride-, and swing-based gait fluctuations. In the tasks of comparing amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD), and Parkinson’s disease (PD) to the healthy control (HC) group, the best-
achieved AUC scores were 0.9135, 0.9906 and 0.9667 respectively, which show the effectiveness of TMA
framework. In summary, our study proposed a TMA framework towards gait fluctuations classification in
the neuro-degenerative analysis tasks. The proposed method shows promising clinical application value in
earlier interventions and state monitoring for neurodegenerative patients.

INDEX TERMS Topological motion analysis, gait fluctuations analysis, neurodegenerative disease analysis,
feature extraction, persistence landscape, biomedical signal processing.

I. INTRODUCTION
Neurodegenerative disease is a common progressive disorder
of the nervous system, which might lead to serious liver
problems like the tremor of limbs, jaw or face, and stiffness of
slowing of movement [1]. This disease usually emerges grad-
ually and causes movement problems and difficulty walking,
including amyotrophic lateral sclerosis, Huntington’s dis-
ease, and Parkinson’s disease. Amyotrophic lateral sclerosis
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affects upper motor neurons and lower motor neurons, which
lead to symptoms of muscle weakness, atrophy, fasciculation,
and cramping [2]. Huntington’s disease is a hereditary disor-
der that leads by the harm from the gradual loss of motor
neurons in basal ganglia and cerebral cortex, which mani-
fested as unwanted movements, behavioral and psychiatric
disturbances, and dementia [3]. Parkinson’s disease occurs
due to the lack of dopamine production as a result of the
deterioration of neurons in basal ganglia, which leads to a
progressive movement disorder like hands and legs tremor,
movement slowness, rigidity, or postural instability [4].
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The disorder patterns lead by the three kinds of neurodegen-
erative diseases are quite different, which brought challenges
for early detection and preventing of progression.

While the gait abnormality as a deviation of walking gait
fluctuation may reflect different disorder patterns, gait fluc-
tuations analysis is an essential tool for assessing neurode-
generative disease [5]–[7]. The gait information describes
the human walking states, which exhibits periodic patterns
termed as gait cycle [8]. Each gait cycle has a sequence of
ordered gait events, which occur at specific temporal loca-
tions and thereby referred to as temporal gait parameters,
as illustrated in Figure 1. In this study, the stride, stance,
and swing parameters are involved for human walking pat-
tern analysis and distinguishing abnormal neurodegenerative
class. Hausdorff et al. [9]–[11] studied the stride interval
time series of the gait in subjects with Huntington’s disease
and also the healthy elderly subjects in compared to control
subjects, which is supposed to be the earliest work based
on the gait fluctuations-based disease analysis. Their results
showed that stride interval variations are more random in
subjects with Huntington’s disease and elderly subjects than
in control subjects. Further investigations for the discussion
on gait fluctuations analysis toward disease state analysis
are [5], [12], [13].

FIGURE 1. The example illustrations for the gait fluctuations of stride
interval for each group.

Inspired by their work, Kamruzzaman uses two basic
temporal-spatial gait parameters (stride length and cadence)
as input features and support vector machine method to
analyze the cerebral palsy gait [14]. [15] reported multiple
regression normalization strategies that incorporated patient
physical properties and self-selected speed for Parkinson’s
Disease Gait analysis. In [16], Wu used a nonparametric
Paren-window method to estimate the probability density
functions of stride interval and its sub-phases: swing interval
and stance interval, with the statistical analysis of gait rhythm.
Frequency range distribution [17], tensor decomposition [18],
texture-based images with fuzzy recurrence plots [19] were
proposed for the gait dynamics analysis for neurodegener-
ative disease classification. Studying the dynamics of gait
patterns in neurodegenerative disease to diagnose the severity
could lead to the fall prediction, treatment, and rehabilitation
strategies improvement.

Recently, the techniques based on ample dataset train-
ing such as deep neural networks [20], [21], and ensem-
ble learning methods [22] accomplished great success in

different applications. However, in the small-sample-size
cases, the performances are mainly decided by [23]–[25],
how the designed feature reveal the characteristics of the
pathological disease path and human body state dynamics.
The nonlinear time series analysis provided insights for
feature designing based on the dynamical system theory,
such as recurrence plot [26], Poincare plot [27], Lyapunov
exponents [28], detrended fluctuation analysis (DFA) [29],
approximate entropy, and sample entropy-based analy-
sis [30]. In nonlinear time series analysis, the phase spaces
represented by data point clouds reveal important information
of the underlying dynamical system.

Meanwhile, the topological data analysis (TDA) provided
powerful tools based on algebra topology theory proposed
for data point cloud analysis [31], [32]. The TDA techniques
had contributed in lots of recognition and classification tasks:
3-D object recognition [33]; protein folding analysis [34] and
complex data analysis & visualization [35]–[37]. In nonlinear
time series analysis problems, TDA also provided alternative
viewpoints for signal analysis [38]–[41].

We were motivated by the nonlinear analysis and topo-
logical analysis techniques. Thus, we proposed a topological
motion analysis (TMA) framework that combines the non-
linear motion analysis and TDA techniques. The proposed
work could contribute to gait fluctuations analysis and further
applications in neurodegenerative disease classification.
Contributions:

1) We proposed a topological motion analysis frame-
work toward neurodegenerative classification tasks.
The TMA of gait fluctuations is supposed to be a novel
technique to distinguish disease states.

2) We performed a comprehensive comparison study on
multiple gait fluctuations, including stride-interval,
stance-interval, and swing-interval-based time series
from each foot.

3) Using an open dataset of gait neuro-degenerative fluc-
tuation analysis with the TMA framework, achieved
results show promising ability in state recognition and
neurodegenerative disease classification.

Outline of the Paper:

1) Section 2 provides the proposed framework and the cor-
responding background on phase space reconstruction,
and TDA technique: the simplicial complex theory,
the filtration building process, and how the topological
features are extracted.

2) Section 3 introduces the data source and subject
information, and the experimental settings for the
neuro-degenerative classification tasks.

3) In Section 4, we illustrated the performance of neu-
rodegenerative classification tasks with the proposed
framework with different parameters.

4) Then, in Section 5, we discussed the results and
reviewed the related work of neurodegenerative disease
classification. Finally, Section 6 concludes the paper
and illustrates the limitations and future directions.

96364 VOLUME 8, 2020



Y. Yan et al.: Classification of Neurodegenerative Diseases via TMA—A Comparison Study

FIGURE 2. The proposed TMA framework and neuro-degenerative classification application.

II. METHOD
A. PROPOSED FRAMEWORK
As Figure 2 illustrated, the proposed work includes the fol-
lowing stages:

1) The time series of multiple gait fluctuations are pro-
cessed with an outlier detection procedure, the pre-
processing of the time series is necessary.

2) The processed time series are embedded into data point
clouds, in which the dimension adopted is 2, and the lag
parameters are from the set of {4, 5, 6, 7, 8}. The time
series samples are transformed into point clouds. Each
point cloud represents one topological space.

3) To model the corresponding topological spaces,
the data points are adopted to construct simplicial
complexes with different radius parameter. As one
gradually increases the radius from 0 to∞, a sequence

of simplicial complexes is generated, termed as filtra-
tion. The filtration of the point cloud can be used for
modeling the topological space.

4) The barcodes are extracted as features of the space,
which illustrates the duration for the topological
objects.

5) The persistence diagram and persistence landscape
are generated based on the barcodes, which is more
favorable for statistical analysis and machine learning
tasks.

6) With the former transformations, the time series set
is transformed into a persistence landscape set, from
which the HC v.s ALS, HC v.s HD, and HC v.s PD
binary classification tasks are performed with leave-
one-out cross-validation. The random forest classifier
is used in the classification tasks.
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We briefly describe these stages with corresponding tech-
nical details in the following sections and involve the more
in-depth mathematical descriptions in the appendix sections
with provided references.

B. TIME-DELAY EMBEDDING
The time-delay embedding technique is a typical method for
phase space reconstruction. In the proposed TMA frame-
work, i.e., the time series are converted into point clouds.
Reference [42] proposed a standard description of time-delay
embedding. Time-delay embeddings aim to reconstruct the
state and dynamics of unknown dynamical systems from the
observations (i.e., the measured time series). Phase space
reconstruction can embed the time series into points in
abstract space. The Takens’ theorem [43] tells that if one vari-
able of the system is observable, then a complete system can
be reconstructed from the observations. The reconstructed
phase spaces reveal the dynamical system’s character,
which can act as the extracted features in recognition
applications [44].

In this study, the stride, stance, and swing time series
are observations for each subjects’ body systems. Each time
series from one subject embedded into the corresponding data
point cloud reveals the properties for the body dynamical
system.Mathematically, suppose the gait fluctuations interval
sequence f (n), n ∈ Z+, in which n is the sampling index.
Based on the Takens’ theorem, let τ ∈ Z+ be the delay step
and the dimension as d ∈ Z+, then the time delay embedding
process can be illustrated as:

DE(f , t; τ, d) = {f (t), f (t + τ ), · · · , f (t + (d − 1)τ )} (1)

Then the data point clouds are generated by this phase space
reconstruction method. A point cloud is a sampling represen-
tation of its underlying topological space of the real dynam-
ical system. A good approximation of the real dynamics
needs appropriate embedding parameters of d and τ . Lots
of work had been done for searching for optimal embedding
dimension d and time-delay lag parameters τ , refer [45]
for details. However, for the classification task, we use a
practical choice for embedded dimension d = 2 to reduce
the computation cost for topological feature generation. The
time lag parameter set is set as τ ∈ {4, 5, 6, 7, 8}.

C. TOPOLOGICAL GAIT FLUCTUATION ANALYSIS
The core of the TMA framework is the topological feature
extraction. We adopt the TDA techniques in the gait fluctua-
tions point cloud analysis to build the feature set for further
classification. In this section, we briefly introduce the process
of topological feature extraction. We explain the correspond-
ingmathematical explanations in the appendix and references
further.

1) TOPOLOGICAL SPACE AND HOMOLOGY
In the phase space, the point clouds are supposed to be lying
on some abstract space, i.e., one point cloud is a sampling
of a topological space. Once the time series are embedded

into point clouds, the time series classification problem is
converted into point clouds classification problem. We try
to study the characteristics of the corresponding topological
spaces in which the point clouds are lying on to distinguish
different time series classes.

Two shapes in the space can be distinguished by exam-
ining the structures like connected components and holes.
Consider a disk and a circle, and the corresponding topo-
logical spaces are different since the circle has a hole, while
the disk contains a solid connected component. The topolog-
ical objects of connected components and holes are called
0-dimensional homology and 1-dimensional homology,
respectively. The higher dimensional homologies can be
understood as ‘high-dimensional holes.’ Thus one topological
space can be described as a set of such ‘high-dimensional
holes.’ Informally, for a topological space X there is one
corresponding set of homologies, i.e., homology groups:

H0(X),H1(X),H2(X), . . . (2)

We explore a dynamical process based on homologies with
diverse settings of the topological space in the following
section, which forms the topological feature set we use in a
later stage.

2) PERSISTENT HOMOLOGY AND BARCODES
With a given data point, the underlying topological space
shows different characteristics with different resolutions. The
persistent features based on the point clouds are detected over
a range of spatial scales, which better represent the under-
lying space’s essential features compared to the noise [31].
Simplicial complexes are discrete objects used to study the
topological spaces, such as points, line segments, triangles,
or even higher n-dimensional objects. As Figure 3 illus-
trated, we consider a resolution parameter of ε (the radius
of a unit ball). Consider the process of increasing the res-
olution parameter to the values of {ε0, ε1, ε2, . . .}, each
value corresponds to one simplicial complex. For example,
the original embedded point cloud (ε = 0), the two-hole
simplicial complex (ε = ε3), and the one connected com-
ponent when ε = ε8. We can see that in this ε growing
process, different topological objects appear and disappear,
as the 0-dimensional homology (connected objects), and
1-dimensional homology (holes) in Figure 3. The set contains
the simplicial complexes generated with different ε values is
a nested sequence (termed as filtration).

The topological space characteristics are illustrated by the
durations of these topological objects, which termed as bar-
codes. In Figure 3, one small hole appears when ε = ε3
and lasts to ε = ε5 and finally disappear at ε = ε6, while
another bigger hole lasts from ε = ε4 to ε = ε8. The
two hole-based objects with the birth-vanish (or birth-death)
period are the two red bars in the barcodes plot (bottom left of
Figure 3), i.e., the two barcodes represent the 1-dimensional
persistent homologies. Meanwhile, the dark bars represent
the lifetime periods of the 0-dimensional homologies. Thus,
we use the birth time of bα and vanish (death) time of dα to
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FIGURE 3. The point cloud modeling using simplicial complexes for topological feature extraction: (top) the topological space illustrations using
different radius parameters, with the corresponding simplicial complexes; (bottom left) the barcodes for the topological objects, red bars for holes
while darks bars for connected components; (bottom middle) the persistence diagram corresponds to the barcodes of topological holes; (bottom
right) the persistence landscapes illustration, which is favorable for statistical analysis.

track the homology of α for topological space representation.
Mathematically, the barcodes of the corresponding topologi-
cal is a set of {(b1, d1), (b2, d2), . . . , (bm, dm)}.
In summary, the topological space characteristics are

described by points sampled from some Rn with neighbors.
With which a graph built for neighbor relations study. Using
the graph vertices and edges, we use the geometrical objects
of simplexes and simplicial complexes as the basic building
blocks to describe theway how to glue a space (a triangulation
of a topological space).

There are different ways to build the complex to approx-
imate the topological space, such as Vietoris-Rips complex
[46], [47], Graph-induced complex [48], and Sparsified Cěch
complex [49]. In this work, we use the Vietoris-Rips com-
plex in which sometimes was called Rips complex for its
simplicity, a fast construction algorithm of the Rips complex
using the point cloud can be referred from [50]. Since the
embedding process is two-dimensional, so only the points,
edges, triangles are applied. The formal definition of a sim-
plicial complex, filtration, and mathematical description of
the process can be referred from the appendix contents and
formerly mentioned works of literature.

D. PERSISTENCE LANDSCAPE FEATURE GENERATION
1) PERSISTENCE DIAGRAM
The persistence diagrams provide a concise description of
the topological changes over the data point cloud [38]. From

the above process, we get the barcodes from the point cloud
with a set of {(b1, d1), (b2, d2), . . . , (bm, dm)}. Now we make
a simple transformation with the barcodes by setting the birth
time as the horizontal axis while the vanishing time as the
vertical axis (bottom middle of Figure 3 ). Then the barcodes
of the topological space are converted into the points on the
persistence diagram. We mainly focus on the information of
1-dimensional homology, which corresponds to the red bars
in the barcodes plot and the red points in the persistence
diagram, as Figure 3 illustrates.

Persistence diagrams represent different topological spaces
from the point cloud. By distinguishing the diagrams’ dis-
similarities, we can tell the differences to classify the point
clouds from different neuro-degenerative gait fluctuations
time series. Typical methods of using persistence diagrams
for classification areWasserstein distances-based, Bottleneck
distances-based, or topological kernels [34]. In this study,
we use the persistence landscape as the topological feature,
based on the Wasserstein distance.

2) PERSISTENCE LANDSCAPE
An intuition of persistence landscapes is a rotation of
the persistence diagram plot (Figure 3 bottom right).
Mathematically, the persistence diagram Pk encoded from
the k-dimensional homology α information in all scales.
As last section described, the homology α was born at bα
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and vanish at dα which make a pair (bα, dα) and pair set
{(b1, d1), (b2, d2), . . . (bm, dm)}. We use zα ∈ R to denote
each pair and consider such pairs as a point.

The Wasserstein distance of the persistence diagram space
as:

Wp(P1k ,P
2
k ) = infφ[

∑
q∈P1k

||x − φ(x)||p∞]
1
p (3)

The equation is termed as the p-th Wasserstein distance,
when p = ∞ the metric is known as Bottleneck distance.
Persistence landscapes are based on the definition of
the Wasserstein metric, which is suitable for statistical
analysis [51].

For each birth-death point (bα, dα) ∈ Pk , a piecewise linear
function:

f (bα, dα) =


x − bα, if x ∈

(
bα,

bα + dα
2

]
−x + dα, if x ∈

(
bα + dα

2
, dα

)
0, if x /∈ (bα, dα)

. (4)

with which a sequence of functions λ can be given by:

λk (x) = k − max{f(bα,dα)(x)|(bα, dα) ∈ Pk} (5)

where the k-max denotes the k th largest value of a function.
The persistence landscape lies in a vector space. It is easy

to combine with tools from statistics and machine learning
[51]–[53]. The persistence landscapes are designed features
based on the barcodes, which represent the gait fluctuations
for our neurodegenerative analysis task. We use the persis-
tence landscape as the features for the classification task.

E. PATTERN RECOGNITION
In the previous sections, we extract the barcode information
for topological feature generation. We use the persistence
landscapes as the features for distinguishing different dis-
eases. In this work, we adopt the random forests as the clas-
sifier for the neurodegenerative diseases classification task.

A random forest classifier is often used as one nonparamet-
ric method to build an ensemble model of decision trees from
random subsets of features from the training set. Random for-
est models have shown excellent performance in classifica-
tion problems, mainly when the feature set contains irrelevant
features or noise. In the applications, when the number of
features is much more than the number of instances, random
forests-based models show good classification ability. In this
work, the topological features based on barcodes of abstract
objects are not significantly related. Meanwhile, the size of
the feature set is much larger than the number of instances in
each task. So, we choose the random forest classifier as the
classifier for the pattern recognition tasks.

Random forests classifier is an ensemble learning method
where a large number of decision trees are exploited [54].
The decision trees separate the data samples to reduce the
entropy of the dataset. In this work, the analysis tasks are

binary classification problems, i.e., the output of the classifier
Y = {0, 1} based on the probabilities. Given the vector-based
topological features X, the classifier with rule mn gives the
corresponding probability of error [55]:

L(mn) = P[mn(X 6=)] −→
n→∞

L∗ (6)

where L∗ is the error of Bayes classifier:

m∗(x)=

{
1 if P[Y = 1|X = x] > P[Y = 0|X = x]
0 otherwise.

(7)

The RF classifier output is obtained via a majority voting
using classification trees using the involved decision trees.
The Gini impurity parameter is used for the optimization of
random forest classifier parameter training and testing [55].
The optimal rules of the forests built with the decision tree’s
set are achieved with the optimization process.

III. MATERIAL AND EXPERIMENTS
A. DATASET DESCRIPTION AND PRE-PROCESSING
In this study, we adopt the Gait Dynamics in Neuro-
Degenerative Disease Dataset [12] from the Physionet
database [56] as the validation dataset. The dataset was
proposed for understanding the pathophysiology of neurode-
generative diseases. The dataset includes 16 healthy control
(HC) subjects, 15 patients with Parkinson’s disease (PD),
20 Huntington’s disease HD, and 13 subjects with amy-
otrophic lateral sclerosis (ALS).

The HC group consists of subjects with age range 20–74,
the ALS group consists of subjects with age range 36–70,
the HD group consists of subjects with age range 29–71,
and the PD group consists of subjects with age
range 44–80. All the subjects were instructed to walk at their
average pace along a 77-meter long hallway for 5 min. The
raw data of the database were pressure signals obtained using
force-sensitive resistors. The stride-to-stride measurements
of footfall contact times have been derived from the sig-
nals from the force-sensitive resistors, which includes time
series of left-foot-stride intervals, right-foot-stride intervals,
left-foot-swing intervals, right-foot-swing intervals, left-foot-
stance intervals, right-foot-stance intervals, and double sup-
port intervals. Also, the left/right swing interval percentages
of stride, left/right stance interval percentages of stride, and
double support interval percentages of stride are included.

In this study, we consider the six gait interval time
series: left-stride-interval time series, right-stride-interval
time series, left-swing-interval time series, right-swing-
interval time series, left-stance-interval time series and right-
stance-interval time series (Figure 1 illustrates a single
walking cycle with stride, stance, and swing). In order to
minimize startup effects, the first 20s were excluded. With
a median filter, outliers brought by turnarounds at the end of
the hallway were replaced with the median value described in
[16], [57]. Data normalization may improve pattern recogni-
tion and reduce computational time [58], for each time series
a Z-score normalization was implemented before further
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processing [59]. Illustrations for each group in the dataset
are shown in Figure 4.

FIGURE 4. The example illustrations for the gait fluctuations of stride
interval for each group.

B. EXPERIMENTS SETUP
We perform three binary classification tasks with the dataset,
i.e., HC v.s ALS, HC v.s HD, and HC v.s PD. For each clas-
sification task, we use the time series of L-Stride, R-Stride,
L-stance, R-Stance, L-Swing, and R-Swing separately. We
call the binary classification with one of the six tracks of
dynamics time series a trail, in which only two groups each
with one gait fluctuations time series are considered. For
example, in the trail of HC v.s ALS using L-Stride data, only
the left stride time series from the HC group andALS group is
considered, which includes 29 L-Stride time series (16 from
the HC group, while the rest are from the ALS group). Since
the trails are small sample classification tasks, a better choice
for the binary classification is leave-one-out cross-validation,
i.e., each time using one sample as the testing sample while
the rest samples are used as training samples. We train the
classifiers with the topological features set generated from
each time series via the TMA framework.

C. PERFORMANCE ASSESSMENT
For binary classification, the confusion matrices are calcu-
lated as illustrated in Table 1, where TP stands for true
positive; TN stands for true negative; FN stands for false
negative; FP stands for false positive. A confusion matrix
contains information about actual labels and predicted labels
by the classification system.

TABLE 1. The confusion matrix illustration.

From the confusion matrix, we can get the accuracy, sen-
sitivity and specificity parameters as follows respectively:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(8)

Sensitivity =
TP

TP+ FN
(9)

Specificity =
TN

FP+ TN
(10)

Moreover, for the comparison with other related works,
we also consider the area under the receiver operating char-
acteristic curve (AUC), which is from the confusion matrix
information, where an AUC score of 1 means a perfect test,
and an AUC score of 0.5 represents a random guess. A higher
AUC score means the model is better for the classification
task.

IV. EXPERIMENTAL RESULTS
In this section, we describe the classification results of the
proposed framework, and the intermediate results, including
the illustrations of point clouds, barcodes plots with compari-
son, persistence diagrams. Finally, we illustrate the results of
the classification tasks and corresponding explanation.

A. PRE-PROCESSING AND TIME DELAY EMBEDDING
The gait fluctuations are converted into point clouds for
topological feature extraction. Firstly, we perform the outlier
detection to remove the extreme values lead by the turn-back
during the walking experiment. After the outlier detection,
then the time series were normalized with the settings in
Section III.A. Then the same dimension parameter d = 2
and time delay lag set {4, 5, 6, 7, 8} were used for time-delay
embedding.

Since the length of each data sample varies due to the
different walking speed of the subjects, the achieved point
clouds have different scales. Meanwhile, we use a subsam-
pling strategy to reduce the point cloud scale to lower the
computational cost without changing the topological proper-
ties of the point cloud [60]. We use the scale parameter of
50 to represent the point cloud, i.e., all the embedded point
clouds are sub-sampled into a 50-point scale (see Figure 5).

FIGURE 5. The illustration of pre-processing: (top left) raw gait
fluctuations time series with outliers; (top right) outlier-processed time
series; (bottom left) the point cloud from the time series after
normalization; (bottom right) subsampled point cloud.

B. TOPOLOGICAL SIGNATURES
1) BARCODES
The information of the topological objects represents the
topological spaces for the point clouds. Each barcode
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FIGURE 6. Barcode for point clouds from left-stance-interval gait fluctuations: 1st column for HC; 2nd column for ALS, 3rd column for HD, 4th column
for PD.

describes the process of increasing the topological space’s
radius for a specific homology. In Figure 6, we illustrate
the barcodes comparison from each group based on the
gait fluctuations time series (we illustrate more results from
the stance-, stride- and swing-based gait fluctuation time
series of each foot in the supplement materials). Here we
consider four subjects’ barcodes for left-stance-interval gait
fluctuations (τ = 7 for time-delay embedding before bar-
codes extraction) from the HC, ALS, HD, and PD groups,
respectively.

For each barcode plot in Figure 6, the dark bars are illus-
trations for the 0-dimensional homologies, i.e., the connected
object; the red bars are illustrations for the 1-dimensional
homologies namely the holes in the topological spaces. The
horizon axis is the time parameter that reveals the duration
of each topological object. The left end of the bar is the birth
time, while the right end is the vanish (death) time. From the
illustrations, we can tell that in the HC group (first row of
Figure 6) the birth time and the vanish time are both earlier
compare to other groups (2nd row for ALS group, 3rd row
for HD group, and 4th row for PD group). The significant

differences are the foundations for the topological feature
extraction process.

2) TOPOLOGICAL FEATURES
The persistent diagrams are another topological signature
based on the barcodes of the point clouds. The red trian-
gles and dark points illustrate the barcodes of 1-dimensional
homologies and 0-dimensional homologies in Figure 7,
respectively. The horizontal axis of the persistent diagram
graph is the birth time while the vertical for the vanish (death)
time. From the persistence diagram, we can see that in differ-
ent groups (rows), the distributions for the birth-vanish coor-
dinates are similar in intra-group and significantly different
in inter-group comparisons. Also, we provide more results
for the comparisons using different gait fluctuations time
series, which share the same conclusion visually. Persistence
landscapes are built with the persistence diagrams based on
bα and dα . Examples of persistence landscapes are illustrated
in Figure 8. Visually we cannot directly tell the differences
since the values are accumulation values. Details of persis-
tence landscape computation can be accessed from [52].
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FIGURE 7. The corresponding persistence diagrams of the barcodes plot for Figure 6: 1st column for HC; 2nd column for ALS, 3rd column for HD,
4th column for PD.

C. PATTERN CLASSIFICATION
We evaluate the TMA framework with the topological fea-
tures applying leave-one-out cross-validation. For compari-
son using different gait fluctuation time series, we keep the
classifier parameters fixed, the tree estimator number is set
as 1200, and themaximumdepth value is 5. The results for the
binary classification of HC vs. ALS, HC vs. HD, and HC vs.
PD using random forests classifier with different time-delay
parameters are illustrated in Table 2. We overstrike the best
score for each classification task. The best AUC scores are
0.9135, 0.9906, and 0.9667 for HC vs. ALS, HC vs. HD, and
HC vs. PD classification, respectively.

1) HC V.S ALS
From the 3rd column to 6th column in Table 2, the results
for the HC v.s ALS classification task are illustrated. The
best achieved model represented by the AUC scores for
each time series are 0.9135, 0.7885, 0.8293, 0.8317, 0.8558,
and 0.8654 for left-foot-swing (τ = 4), right-foot-swing
(τ = 7), left-foot-stride(τ = 6), right-foot-stride(τ = 6),

left-foot-stance(τ = 5), and right-foot-stance (τ = 6) respec-
tively. The corresponding average accuracies are 79.31%,
82.76%, 75.86%, 79.31%, 79.31%, and 75.86% for the
totally 29 subjects (16 HC subjects, and 13 ALS subjects).
The sensitivities are 76.92%, 69.23%, 76.92%, 61.54%,
76.92%, and 61.54%, which means there are 10, 9, 10, 8,
10, and 8 subjects recognized from the total 13 ALS subjects
with the left-foot-swing (τ = 4), right-foot-swing (τ = 7),
left-foot-stride(τ = 6), right-foot-stride(τ = 6), left-foot-
stance(τ = 5), and right-foot-stance (τ = 6) information.

The overall best AUC score is 0.9135 when using the
left-foot-swing time series, and embedded with a time lag
τ = 4. The corresponding confusion matrix of the best case
is illustrated in Table 3.

2) HC V.S HD
From the 7th column to 10th column in Table 2, the results
for the HC v.s HD analysis are illustrated. The best model
represented by the AUC scores for each time series are
0.9125, 0.9188, 0.9906, 0.9625, 0.9281, and 0.9875 for
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TABLE 2. Achieved Results of TMA framework: each row corresponds the results for different gait flutuation time series with different embedding time
lag.

FIGURE 8. The illustrations for persistence landscapes of the barcodes
and persistence diagrams (one HC example and a single HD example
illustrated).

left-foot-swing (τ = 4), right-foot-swing (τ = 8), left-
foot-stride(τ = 8), right-foot-stride(τ = 8), left-foot-stance
(τ = 5), and right-foot-stance (τ = 5) respectively.

TABLE 3. Confusion matrix for the best case of HC v.s ALS.

The corresponding average accuracies are 86.11%,
83.33%, 91.67%, 88.89%, 86.11%, and 91.67% for the
totally 29 subjects (16 HC subjects, and 20 HD subjects). The
sensitivities are 75%, 75%, 95%, 95%, 90%, and 90%, which
means there are 15, 15, 19, 19, 18, and 18 subjects recog-
nized from the total 20 HD subjects with the left-foot-swing
(τ = 4), right-foot-swing (τ = 8), left-foot-stride (τ = 8),
right-foot-stride (τ = 8), left-foot-stance(τ = 5), and right-
foot-stance (τ = 5) information.
The overall best AUC score is 0.9906 when using the left-

foot-stride time series, and embedded with a time lag τ = 8.
The corresponding confusion matrix of the best case is illus-
trated in Table 4.

TABLE 4. Confusion matrix for the best case of HC v.s HD.
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3) HC V.S PD
From the 11th column to 14th column in Table 2, the results
for the binary classification for HC and PD are illustrated.
The best model represented by the AUC scores for each
time series are 0.8938, 0.9625, 0.9542, 0.8792, 0.9125, and
0.9667 for left-foot-swing (τ = 4), right-foot-swing (τ = 7),
left-foot-stride(τ = 8), right-foot-stride(τ = 5), left-foot-
stance(τ = 4), and right-foot-stance (τ = 8) respectively.
The corresponding average accuracies are 83.87%, 93.55%,
83.87%, 80.65%, 77.42%, and 87.10% for the totally 29 sub-
jects (16 HC subjects, and 15 HD subjects). The sensitivities
are 73.33%, 93.33%, 80.00%, 80.00%, 80.00%, and 86.67%,
which means there are 11, 14, 12, 12, 12, and 13 subjects
recognized from the total 15 HD subjects with the left-foot-
swing (τ = 4), right-foot-swing (τ = 7), left-foot-stride
(τ = 8), right-foot-stride (τ = 5), left-foot-stance (τ = 4),
and right-foot-stance (τ = 8) information. The best AUC
score for the classification of HC and PD is 0.9667, with
corresponding specificity = 87.50%,sensitivity = 86.67%
and accuracy = 87.10%.

The overall best AUC score for HC v.s PD is 0.9667 when
using the right-foot-stride time series, and embedded with a
time lag τ = 8. The corresponding confusion matrix of the
best case is illustrated in Table 5.

TABLE 5. Confusion matrix for the best case of HC v.s PD.

D. EXPERIMENTAL ENVIRONMENTS
A computer with 2.6 GHz 6-Core Intel Core i7 CPU
using 32GB memory is used for the experiments. The
whole process of the topological feature generation for
the whole dataset costs less than 3 minutes. The cost for
one round training-and-testing is about 30 seconds for this
2-dimensional point cloud-based analytical framework.

The adopted software packages are listed below:
1) Time delay embedding: the R package ‘‘nonlinearT-

series’’;
2) The point cloud sampling: the Matlab package

‘‘JavaPlex’’;
3) Barcodes, persistence diagram, and persistence land-

scape features: the R package ‘‘TDA’’;
4) Random forests classifier: the Python package ‘‘scikit-

learn’’.

V. DISCUSSION
A. TIME DELAY EMBEDDING
The topological features are based on the data point cloud
generated by the reconstruction of the state space. The state
spaces illustrate one approximation of the real system, from
which the data are sampled. State-space reconstruction has
been used as one foundation of nonlinear time-series analysis.

In this study, we try to explore the features from the recon-
structed state-space using the TDA technique, and then later
use it in the classification task. However, the determination of
the parameters can still be challenging for the task. Here we
set two approximations and ignore the theoretical analysis for
the embedding dimension d and the time delay lag parame-
ter τ . We simply use d = 2 as the embedding dimension
for the ease of TDA technique computation. As in [40] states
that a larger dimension may not bring better performance
for the classification task. We separately considered the time
series to observe the subjects’ motion system with different
time-delay lags τ . As a result, the experimental outcomes are
different. A detailed discussion of the determination of d and
τ was proposed in [45].

B. RELATED WORK AND COMPARISONS
In this work, we adopt a TMA framework for gait fluctuations
analysis for each foot’s swing, stride, and stance informa-
tion. As the experimental results above show, the neurode-
generative disease classification tasks are well handled. The
performance evaluation is comparable to the previous related
works using the same dataset. In this section, we include the
pieces of literaturewhich adopt different techniques in feature
extraction rather than feature selection or optimization [61].
The TDA techniques provide alternative insights compared
to the previous techniques; simultaneously, the features show
an excellent ability to distinguish different neurodegenerative
diseases from the healthy control subjects.

Previous studies have indicated that the gait rhythm fluctu-
ations for the subjects are representative for characterizing the
neurodegenerative disease. Plenty of gait fluctuation-based
features was proposed for the disease classification task.
In [16], [62], based on a nonparametric Parzen-Window
method, estimate the probability density functions of stride
interval, swing interval, and stance interval had been estab-
lished. From which the gait rhythm standard deviation, and
a signal turns count (STC) parameter was derived as a dom-
inant feature. In [63], the radial basis function (RBF) neural
networks were adopted to extract the prior knowledge of gait
fluctuations, then used as the estimators for different kinds
of neurodegenerative disease, i.e., the deterministic learning
(DL). Reference [15] adopted the differences in stride length,
cadence, stance time, and double support time from the gait
signals, namely the spatial-temporal gait features, with which
the classifiers were adopted for classification. Reference [2]
considered the relations between both feet in the dataset,
the features of phase synchronization index and conditional
entropy (PSCE) were applied to the five types of time series
pairs of gait rhythms (stride time, swing time, stance time,
percentage of swing time and percentage of stance time).
Ren et al. [17] has investigated the properties of frequency
range distributions of gait rhythms, after which an empirical
mode decomposition (EMD) was implemented for decom-
posing the time series of gait rhythms into intrinsic mode
functions, then Kendall’s coefficient of concordance and the
ratio for energy change for different IMFs were calculated as
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the feature for classification, which shows excellent perfor-
mance. An adaptive neuro-fuzzy inference system (ANFIS)
was presented for identification of the gait of patients with
the neurodegenerative disease, in which the neural network
adaptive capabilities and the fuzzy logic qualitative approach
were combined as a classification model using the swing,
stride, and stance information [64]. Reference [65] adopted
the recordings of compound force signal and used a 6-level
Discrete Wavelet Transform (DWT) with different wavelets
as features to deal with ALS detection tasks, [66] also adopt
Wavelet transformation as the feature extractor for classi-
fication tasks. The multi-fractal detrended cross-correlation
Analysis (MFDXA) methodology was adopted in the total
force under the left foot and right foot [67]. Reference [68]
introduced a hidden Markov model (HMM) with the
Gaussian mixtures method to model the gait dynamics to
classify the healthy control group and Parkinson’s disease
group [69].

Based on the right-foot-stride gait fluctuations, by trans-
forming time series into images, the texture features were
extracted by texture analysis, novel insights were brought into
the disease patterns distinguishing task [19].

In this work, we try to analyze the gait fluctuations patterns
from geometrical & topological viewpoint by adopting the
proposed TMA framework. Similar to [19] the image-based
texture analysis, we can summarize the proposed method
to a point cloud-based analysis. This novel insight brought
powerful representation tools for neurodegenerative disease
analysis.

TABLE 6. Comparisons of AUC and LOO-CV Results for classification of
HC and ALS groups.

TABLE 7. Comparisons of AUC and LOO-CV Results for classification of
HC and HD groups.

TABLE 8. Comparisons of AUC and LOO-CV Results for classification of
HC and PD groups.

Table 6, 7, and 8 illustrate the HC v.s ALS, HC v.s HD, and
HC v.s PD classification tasks separately with comparison to
some of the mentioned tasks. We only list the best records
we achieved in this work using a random forest classifier.
The results show the excellent distinguishing ability of the
TMA framework. The abbreviations in Table 6, 7, and 8
are: random forests (RF) classifier, simple logistic regres-
sion (SLR) classifier, naive Bayesian (NB) classifier, support
vector machine (SVM) classifier, and multiple layer percep-
tron (MLP) classifier. We denote the proposed method results
as TMA together with the adopted gait fluctuation time series.

VI. CONCLUSION
A. CONCLUSION
In this study, a TMA framework transforming gait fluctu-
ations time series into data point clouds using time-delay
embedding, with a followed TDA technique, was used to
extract persistence landscape features for gait fluctuations
analysis toward neurodegenerative disease classification.
A comprehensive study using the proposed framework with
multiple human gait fluctuations is proposed for understand-
ing the pathological characteristics of neurodegenerative dis-
eases. The built classification systems have shown excellent
performance and great distinguishing ability in the neurode-
generative analysis. Therefore, the insights brought with the
TDA technique greatly enrich the gait analysis tools. The
proposed TMA framework shows promising ability in the
modeling for disease state analysis or even clinical prediction
studies.

B. LIMITATIONS AND FUTURE WORK
We validated the TMA framework in multiple gait fluctua-
tions that shows good distinguishability. However, the dataset
adopted is based on a limited number of experiments. Further
validations should be performed on a larger scale. Mean-
while, the optimal time delay lag in the embedding stage is
hard to determine. We can see that the overall performance
could be affected by several stages. The optimal combination
of parameters from each stage is hard to search. Thus in
the proposed experiments, we have to adopt several arbitrary
parameter settings. From the achieved results, we can tell
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that the topological features are powerful in revealing class
discrepancies. An investigation of shorter length time series
distinguishing ability is meaningful in the short-length and
sample limited-time series analysis tasks.

APPENDIX
NOTATIONS OF TOPOLOGICAL DATA ANALYSIS
A. SIMPLICIAL COMPLEX
Simplexes and simplicial complex are the basic elements to
model the abstract topological space. A topological space
can be understood as a set of points sampled from some
Rn with neighbors. The neighbor relations could be used to
study the connectivities in a graph. In algebraic topology,
the basic building blocks are simplicial complex, which is a
data structure that explains how to ‘glue’ a topological space
with simplices, i.e., points, edges, triangles, tetrahedra, and
even their higher-dimensional generalizations.

Mathematically, a k-dimensional simplex is defined by
k + 1 vertices. Simplex: Given a family of sets, any sub-
set of cardinality k + 1 is called a k-simplex. The vertices
can be considered as 0-simplices, edges for 1-simplices, and
triangular faces as 2-simplices. A simplicial complex is a
collection of simplices together with their faces. The vertex
subset defines the face of a simplex. For instance, the faces
of an edge of two vertices are the two endpoint vertices, and
the edge itself. The faces of a 2-simplex (triangle with three
vertices) include the three vertices, the three edges, and the
triangle itself. The collection with a simplex and its all faces
is called a simplicial complex as: K is a finite collection of
simplices such that

1) any face of σ ∈ K is also in K
2) for σ1, σ2 ∈ K, σ1 ∩ σ2 is a face of both σ1 and σ2

B. THE RIPS COMPLEX AND GRAPH FILTRATION
For the building process of Rips complex, here we use a
similar illustration as in [70].We consider the distance d(x, y)
for vertices x and y. For the complex theory, we consider
a ε-ball with the radius ε = 0 for the vertices set, namely
the original data point cloud. Intuitively, if we increase the
radius ε gradually when the distance between any two ver-
tices d(x, y) is less than ε, the edge appears. Then it is easy to
think that for three vertices, the ε-balls intersect mutually (not
merge), a triangle appears, while for three vertices, a tetra-
hedron emerges, and higher dimensional simplices whenever
possible. Similarly, there are much more higher-dimensional
holes when we consider a more complicated point cloud in
practical applications, check [71] for more results. For the
2-dimensional situation in this work, we already describe the
process of Figure 3.

Mathematically, consider data point cloud X =

{x1, . . . , xn} ⊂ Rn, the associate topological space using
the Rips simplicial complex construction, which could be
denoted byR(X , ε) in whichR stands for Rips. The process
in Figure 3 can be considered as the sequence:

R(X , ε0),R(X , ε1), · · ·R(X , εn) (11)

and when the ε increase, the previous Rips complex is
included in the subsequent one, i.e.

R(X , ε0) ⊆ R(X , ε1) ⊆ · · · ⊆ R(X , εn) (12)

where ε0 ≤ ε1 ≤ · · · ≤ εn. The increasing sequence of
ε value produces a filtration: given a set X , the K -simplex
{σ1, σ2, . . . , σk+1}, then we have the definition of filtration:

A filtration of a (finite) simplicial complexK is a sequence
of sub-complexes such that

1) ∅ = K 0
⊂ K 1

⊂ K 2
· · · ⊂ Km

= K
2) K i+1

= K i
∪ σ i+1 where σ i+1 is a simplex of K
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