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ABSTRACT Urban multi-energy systems (UMESs) are integrated energy systems (IESs) which can
alleviate the current energy crisis, improve energy utilization and realize multi-energy complementarity
of modern. Various subsystems involved in the coupling of UMESs, including power grids, gas pipeline
networks, cold/heat networks, transportation networks, and energy cyber-physical system, exhibit coupling
characteristics such asmulti-energy sourcemodeling, complex uncertainty factormodeling,mutual influence
of information and physical coupling. At present, the modeling and reliability assessments of UMESs are
the most urgent tasks. In this paper, the latest research results on the reliability modeling and evaluation
of UMESs are analyzed by considering their coupling components. In addition, the reliability modeling
methods and the evaluation indexes ofUMESs, including power-gas systems, power-thermal systems, power-
traffic systems, and energy cyber-physical systems, are presented in this paper, with specificUMESmodeling
methods divided into model-driven modeling and data-driven modeling. Finally, future challenges for the
reliability modeling and evaluation of UMESs are proposed, such as the dispatch strategy of the coupling
components needs to be developed and continuously optimized to improve the reliability of UMESs, and the
resilience of UMESs under the extreme scenarios needs to be further studied.

INDEX TERMS Urban multi-energy system, reliability indexes, reliability modeling, coupling components,
resilience.

I. INTRODUCTION
The impacts of the global energy crisis and environmental
deterioration are forcing humanity to use various forms of
energy to take development in a diversified and low-carbon
direction [1]. Integrated energy systems (IESs) have emerged
as a response, and major countries around the world have
issued corresponding energy policies for the development of
IESs [2]. The national smart grid strategy proposed by the
United States calls for building a comprehensive energy net-
work with high efficiency, low investment, safety, reliability,
intelligence and flexibility. According to the energy internet
construction target proposed by China, an energy internet
industry system will be built by 2025. European countries
have conducted a wide range of research on IESs; for exam-
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ple, the UK Engineering and Physics Research Institute has
funded a large number of research projects in this area involv-
ing renewable energy access, synergy among different energy
sources, the interaction of energy and transportation systems
and infrastructure, the improvement of building energy effi-
ciency, etc.

A UMES can connect a plurality of heterogeneous energy
subsystems through different coupling elements that integrate
power, natural gas, cooling and heating, internet information
and transportation systems according to different applica-
tion scenarios to promote the production, transmission, dis-
tribution, conversion, storage and consumption of all kinds
of energy. Due to the complementary and coupling charac-
teristics of different types of energy in a space-time form,
the randomness and volatility of renewable energy can be
compensated for by IESs, thus promoting the utilization of
renewable energy. In addition, by reasonable planning, taking
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the power system as a core and coupling the power grid
with gas, cooling and heating, and traffic and information
systems, the risk caused by an outage of a single energy
supply system can be reduced. Because of rapid economic
and societal development, people have increasingly higher
requirements for the reliability of their energy supply, so the
reliability research of IESs is very important. However, when
different energy systems are coupled, the reliability evalua-
tion methods of traditional single-energy supply systems will
change. In [3], it was noted that in two or more coupling
systems, the coupling characteristics of coupling elements
and the whole system should be considered when designing
the reliability of set systems. Coupling elements will lead
to cascading failures and may even cause the complete iso-
lation of two independent networks. The more distributed
components are attached, the more prone the system will be
to failure. Effectively modeling and evaluating the reliability
of IESs is an urgent problem to be solved [4].

Taking the reliability research of individual power systems
and individual natural gas systems as examples, the reliability
modeling and evaluation of single energy supply systems
have been extensively studied [5] and constantly updated in
pace with technological developments. In a reliability study
of independent power systems, three probabilistic transient
stability indexeswere proposed in [6] to study the influence of
dynamic emergencies on power system reliability to evaluate
the robustness of the system and calculate its reliability index.
In [7], the cold load pickup condition was considered and a
reliability assessment method was studied in a distribution
network. In [8], the energy management strategy of a micro-
grid outage was considered and its influence on the reliability
of the microgrid was studied. In research on the reliability of
an individual natural gas system, [9] introduced maximum
flow reliability in graph theory and a unit importance degree
based on the threshold level in an analysis of the reliability
of a tree-shaped gas transmission pipe network, obtaining
a system reliability index. In [10], a natural gas pipeline
network and a three-tier reliability evaluation index system
was proposed that included a reliability class, maintenance
class and robustness class. In [11], the corrosion of a natural
gas pipeline was assessed using the limit state function and
a burst of internal pressure to evaluate the time-dependent
probability of a fault; a heuristic search algorithmwas applied
to advance a method for evaluating the reliability of a natural
gas transmission system.

In terms of the reliability modeling and evaluation of
UMESs, a large number of scholars have conducted research
from multiple perspectives in recent years, most of which
were concentrated on single coupling systems with specific
application scenarios. In [12], an optimal load reduction prob-
lem in an IES was assessed, including power and natural
gas subsystems, and an event enumeration method and a
reduced-order method of high-order accidental events were
used to evaluate the reliability, which reduced the computing
time. In [13], a power-gas-heat load reduction optimization
model using wind and electricity with a power-gas-heat cou-

pling system was considered to establish reliability indexes
of power-gas-heat deficiency expectations, abandoned wind
expectations and a capacity utilization ratio of a power to gas
(P2G) device from the perspective of both system and equip-
ment. Based on the result, a reliability evaluation method of
a power-gas interconnection system with P2G was proposed.
In [14], a power-heat system was considered using the ther-
mal inertia of a thermal system and the multi-energy mutual
economic characteristics of coupling elements. By taking into
account the complementary benefits, a reliability evaluation
method of a power-heat system considering the operation
strategy of the coupling elements was obtained. In [15],
the coupling characteristics of power a system and an infor-
mation system were assessed by analyzing the influence of
the fault mode of the power information system on the power
physical system, decoupling the information network from
the physical network. In [16], a power information-physical
coupling system in a state space with different dependence
relation equipment was sampled by a non-sequential Monte
Carlo simulation method, and the reliability of the power
information and the physical coupling system was analyzed.
In [17], a reliability simulation of an energy information-
physical coupling system was carried out based on a software
defined network (SDN). In [18], the impact of vehicle to
grid (V2G) information interactions of power line commu-
nications on the reliability of a traffic network was analyzed
for a V2G coupling. In [19], a hierarchical optimization
method was adopted to optimize the location and capacity
of distributed power generation and electric vehicle charging
stations, which improved the reliability of the distribution
network, including electric vehicle charging stations. In [20],
a power-vehicle grid system adopted a distribution feeder
reconstruction (DFR) strategy and a symbiotic organism
search (SOS) to improve the overall reliability of a vehicle-
power grid system.

Generally, the range of a UMES is large, and the subsys-
tems involved in coupling and interconnection cover many
aspects. In terms of energy circulation, integrated energy
subsystems can include power flow, natural gas, heating and
cooling, traffic, information flow, etc., all of which involve
multi-disciplinary knowledge. With the further development
of UMESs, subsystems will interconnect in the future, and
multiple energy subsystems will participate in this coupling
and interconnection. In terms of studying the reliability of
UMESs, although research on IESs has becomemore popular
in recent years, it has not been well verified, and many schol-
ars continue to conduct research in this area. Although multi-
energy flow systems promote the consumption and utilization
of various energy sources, the constraints associated with
internal energy networks (e.g., power, heat and natural gas)
and operational uncertainties (e.g., in energy demand) are
often ignored due to the nonlinearity and modeling com-
plexity of a multi-energy flow system [21]; in addition,
the operational strategy of coupling elements also has a large
impact on the overall reliability assessment of multi-energy
flow systems [22]. While multi-energy flow subsystems can
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provide complementary benefits, assessing the potential for
collaborative optimization between systems and the impact
of constraints on overall reliability remains a challenge. In
addition, how to enhance the resilience of UMESs presents
future challenges.

This paper assesses the overall research and the lat-
est results of UMESs terms of reliability, including
coupling components, reliability modeling methods, and
corresponding evaluation indexes of UMESs, with specific
UMES modeling methods divided into model-driven mod-
eling and data-driven modeling. It provides a reference for
future research on reliability modeling methods of UMESs,
facilitates the establishment of reliability evaluation indexes
of UMESs in the future. Finally, it puts forward that the relia-
bility research of UMESs can be studied in depth on dispatch
strategy of the coupling components, and the interactions
between multi-systems needs to be further studied, and the
resilience of UMESs under the extreme scenarios is also a
new challenge for future research.

The rest of this paper is organized as follows: section
II describes UMES definitions and coupling models; the
reliability modeling method of a UMES is summarized in
section III; section IV describes a common framework for a
reliability index evaluation of a UMES; section V discusses
the challenges in UMES reliability research; and section
VI summarizes the conclusions and prospects for futurework.
The paper’s main study structure as shown in FIGURE 1.

II. DEFINITION AND COUPLING MODEL OF A
MULTI-ENERGY FLOW SYSTEM
A. DEFINITION OF AN URBAN MULTI-ENERGY FLOW
SYSTEM
An urban multi-energy system is also called an urban inte-
grated energy system (UIES), in reference to the IES in
which the main energy elements are distributed in a city.
Unlike an island-type integrated energy system, a UMES
has larger energy coupling intersections. Power, heating, air-
conditioning, transportation, natural gas and communica-
tion requirements are ubiquitous in a city, and their energy
sources are converted and connected by various coupling
devices. UMESs exhibit three characteristics: multi-energy
flow couplings, multi-time scales and multi-management
agents. There are several coupling relationships in UMESs,
listed as follows:

1) POWER-GAS COUPLING SYSTEM
A power-gas coupling system includes a power conversion
process and a gas conversion process. The power-gas pro-
cess passes through a power-gas device to decompose water
and produce combustible gas. The power used in power-gas
process passes can be generated by wind, hydro, solar and
other renewable energy sources, and according to the needs of
the system, the combustible gas can be hydrogen or methane.
This involves two kinds of power-gas processes. The first is
a power conversion to hydrogen, which decomposes water

into oxygen and hydrogen through an electrolytic reaction,
and the second is a power conversion to methane, which elec-
trolyzes hydrogenwith carbon dioxide to producemethane on
the basis of producing hydrogen [23]; the chemical expres-
sion is as follows:

2H2O → 2H2 + O2 (1)

CO2 + 4H2 → CH4 + 2H2O (2)

Since methane is converted using hydrogen, the efficiency
is lower than power conversion to hydrogen; however, hydro-
gen cannot be injected into a natural gas pipeline on a large
scale because it will lead to hydrogen embrittlement and pen-
etration of the pipeline. Methane can be directly injected into
a natural gas pipeline as the gas source to participate in the
operation of the gas network [24]. The power-gas equipment
provides a load for the power system that can be used as a
standby power supply for peak regulation and can reduce con-
gested backup power, as the natural gas system is a gas source
that can be converted into natural gas for transmission. The
gas-to-power process is realized through a gas turbine; the
gas turbine is supplied with gas from the natural gas network
as gas-to-power equipment, which supplies the load of the
gas network as well as the power supply of the power grid.
At present, the two hydrogen production methods of steam
methane reforming (SMR) and electrolysis can be combined
with the operation optimization of an electric power and
natural gas system to form a flexible energy use mechanism
[25].

In a power-gas system, P2G technology has obvious advan-
tages in capacity [26], which can realize long-term and large-
capacity power storage, and because natural gas infrastruc-
ture is more economical than power infrastructure, natural
gas pipelines can realize long-distance transportation when
the power network is insufficient. Reference [27] studied
the power system and natural gas system from the point
of view of a power-gas integrated energy system (PGIES).
As an extension and integration of optimal power flow (OPF)
and optimal gas flow (OGF), optimal energy flow (OEF) is
regarded as the cornerstone of a PGIES, which is seen as
the basis for further study of the operation and analysis of
PGIESs for random conditions and strain states.

2) COMBINED COOLING, HEATING AND POWER (CCHP)
COUPLING SYSTEM
In a traditional energy system, a single source such as natural
gas or electricity cannot give full play to the complementary
advantages and synergistic benefits of energy, resulting in
energy waste. CCHP is a cooling-heating-power triple supply
system that realizes the energy conversion of power, gas,
cooling and heating on the basis of the power-gas system
[28]. The system includes a power grid, a heating network,
a natural gas network and a cooling network. Different energy
networks are connected by energy hubs that contain different
energy conversion equipment. According to their conversion
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FIGURE 1. The structure of the study.

requirements, energy conversion equipment can be divided
into four categories.

(1)

1) power-heating conversion equipment such as electric
boilers and air conditioners;

2) power-heating-gas conversion equipment such as gas
turbines and waste heat boilers;

3) power-cooling conversion equipment such as electric
refrigerators;

4) heating-cooling conversion equipment such as absorp-
tion chillers.

Additionally, energy collection and distribution are real-
ized by power busses, natural gas pipelines, heat distribution
pipelines and cooling pipelines, so the energy flows are bal-
anced at all times. In addition, using electric storage (ES), gas
storage (GS), heating storage (HS) and cooling storage (CS)
equipment can realize the real-time utilization and storage of
energy.

Due to the diversity of energy forms, it is necessary to
consider the structure of different networks and how to realize
the reasonable retrieval and optimization of various ener-
gies. Reference [29] pointed out that power, heating, refrig-
eration and natural gas supply systems were an important
part of Russian infrastructure in thane actual context. The
general framework and conceptual elements of IESs were
put forward. The integrated control of power and thermal
networks involves the combination of operating conditions
of electrical and thermal networks integrated in intelligent
energy supply systems that can be mathematically described.
In addition, the results of two exemplary case studies were

also explained. The first case represents the study of super
grid-level emergencies in the energy system layer when a
pipeline accident occurs in a natural gas transport network.
The second case uses a city as an example to study the inter-
dependence between power and heating microgrids during an
emergency. Reference [30] integrated refrigeration, heating
and power systems into a single community energy system
by aggregating various distributed energy sources, and a day-
to-day dispatch strategy of the community energy system
based on integrated energy and ancillary service markets was
proposed to provide a method for the rational dispatch of
multiple energy sources. However, research on the modeling
of each energy network is still incomplete at present, and
methods of energy source dispatching that consider economic
and environmental impacts need further study.

3) POWER-GAS-TRAFFIC NETWORK COUPLING
RELATIONSHIP
New-energy vehicles driven by electricity or hydrogen have
great advantages and application prospects in addressing the
greenhouse effect caused by urban carbon dioxide emissions
and changing energy structures [31]. Electric vehicles (EVs)
and plug-in hybrid electric vehicles (PHEVs) are used as the
power system load to access the power system through a
city’s charging network—the connection between the vehi-
cle, the power grid and the mobile electricity storage device
through which energy is sold to the grid operator. The bidi-
rectional flow of the electric power is realized under the V2G
mode [19]. Hydrogen energy vehicles can realize the coupling
of a vehicle-to-gas network through urban filling stations. At
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the same time, the transportation paths of traffic networks,
mobile power storage devices and mobile gas source travel
modes depend on the road capacity of urban traffic networks,
the power supply capacity of urban distribution networks and
the gas supply capacity of gas networks, which affect and
restrict each other and strengthen the coupling relationships
between traffic, power or gas networks [32]. In V2G mode,
the spatial transfer of EVs will cause charging load uncer-
tainties in a power system. Most of the current research can
be divided into two fields of study: one considers the behav-
ioral characteristics of EVs, studies the orderly charging and
optimal control of EVs and realizes the optimal operation of
power grids [18], [33]; The second considers the characteris-
tics of traffic networks and studies the specific locations and
planned capacities of charging stations [19], [34].

4) ENERGY CYBER-PHYSICAL SYSTEM (ECPS)
At present, there is no uniform and clear definition of the
of energy cyber-physical system (ECPS), but it mainly refers
to the highly integrated system of the physical level and the
information level. In the UMESs, the physical level mainly
refers to various energy or transport subsystems, including
power systems, natural gas systems, cooling/heating systems,
traffic systems. In the ECPS, the physical environment and
information processing have deeper interaction, the physical
equipment will embed computing, communication ability,
and through the processing of information will react to the
physical environment, and finally form a networked physical
equipment system.

All in all, the whole ECPS system is a real-time perception
and dynamic control of large Multidimensional complex sys-
tems based on the physical environment, which utilizes the
organic fusion and deep cooperation of computing, commu-
nication and control means.

The introduction of the energy internet has provided new
directions for the interconnection, interworking and com-
plementarity of a variety of energy sources (such as natu-
ral gas, heat, power, oil, etc.) [35]. Electric energy, as the
power source for communication infrastructure, has a direct
coupling relationship; the communication network connects
the energy router [35] of a local area network to the power
network via information and communications technology,
automatic control technology, and power electronics tech-
nology to achieve physical level power coupling. Internet,
big data, cloud computing and other cutting-edge informa-
tion and communication technologies achieve communica-
tion coupling at the information level. The realization of
an information network circumvents the traditional ‘‘power
production-power consumption’’ system and integrates the
power system with other energy systems to realize the coor-
dinated optimization and control of multi-energy systems.

At present, the construction of information networks is
still in the stage of information physical fusion where the
integration of information communication infrastructure and
energy and power infrastructure construction is manifested
in the development stage of an energy internet based on

physical information fusion. Related research, such as [36],
takes into account the coupling relationship between different
energy systems, energy networks and information networks,
as well as the impact of multiple uncertainties on IESs. It was
proposed in [37] that the information and physical integration
mechanisms of a wind energy conversion system and the
safety optimization of EV charging can be realized by using
blockchain in intelligent communities. The coupling of the
complex physical elements and communication networks can
make a system more vulnerable, and [38] pointed out that the
safety optimization of EV charging can be realized by using
blockchain in intelligent communities.

FIGURE 2 illustrates a UMES that integrates a power
network, natural gas network, heating network, cooling net-
work, traffic network and information network to realize
real-time management and monitoring of the utilization and
distribution of multiple energy flows through an information
network. The energy hub realizes the conversion between
different energy sources and closely couples each system.

B. UMES COUPLING COMPONENT MODEL
To outline the latest UMES research results, the coupling ele-
ments in different coupling scenarios are arranged in TABLE
1, and the models of each coupling component are summa-
rized, including power-gas systems, power-thermal-gas sys-
tems, power-traffic systems and power-communication sys-
tems.

1) P2G COUPLING COMPONENT MODEL
The input and output vectors of P2G and coupling coeffi-
cients were used to describe the energy conversion process in
[24], and a power-gas P2G coupling mathematical model was
established. The conversion coefficient is determined by P2G
internal converter efficiency, connection modes and dispatch
coefficients. The coupling model can be described as follows:

L︷ ︸︸ ︷GSNGGH2
LP2G

 =
C︷ ︸︸ ︷GSNGGH2

CP2G

×PP2G (3)

where L is the energy output vector of the P2G hub; PP2G is
the input power, and thematrixC is the conversion coefficient
matrix between the power input and different energy outputs.
According to the model, the internal P2G operational mode
can be represented flexibly.

2) POWER-THERMAL COUPLING COMPONENT MODEL [41]

QMT (t) =
PMT (t)(1− ηMT (t)− ηL)

ηMT (t)
(4)

Qhe−MT (t) = QMT−he(t)× ηhe = QMT (t)× Che × ηhe (5)

VGT =

∑
PMT1t

ηMT (t)× FLH−ng
(6)

where PMT (t) and QMT (t) are the generation power and the
flue gas residual heat of amicro-gas turbine in period t; ηMT (t)
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FIGURE 2. UMES coupling.

is the efficiency of a micro-gas turbine in period t; ηhe is the
waste heat recovery efficiency of a waste heat boiler; Che is
the heating coefficient of a heat exchanger; ηL is the heat
loss coefficient of exhaust smoke from a micro-gas turbine;
Qhe−MT (t) is the amount of heat that can be supplied by
the residual heat from the flue gas of a micro-gas turbine;
QMT−he(t) is the amount of waste heat from the flue gas
of a micro-gas turbine entering a waste heat boiler; VGT is
the amount of natural gas consumed by a gas turbine while
running; 1t is the running time of a gas turbine; and FLH−ng
is the low calorific value of natural gas.

3) CCHP COUPLING COMPONENT MODEL
A CCHP system is typically composed of a gas turbine,
an absorption chiller, a waste heat boiler, an electric refrig-
erator and an auxiliary boiler. The gas turbine is powered
by natural gas and produces electric energy as well as waste
heat. The released waste heat is cooled by the absorption
chiller and can also be produced by the waste heat boiler.
The electric refrigerator is cooled by electricity consumption,
and the auxiliary boiler produces heat by consuming natural
gas [46]. Therefore, CCHP couples a power grid and a gas
network to achieve an integrated energy supply.

a.

1) The gas consumption of a gas turbine and energy gen-
eration data are fitted to obtain a quadratic function

relationship between them, as follows:

wpgui,t = a1(P
pgu
i,t )

2
+ b1P

pgu
i,t + c1I

pgu
i,t (7)

where wpgui,t and Ppgui,t are the gas consumption and
generated energy for the gas turbines, respectively; Ipgui,t
is the operating state of gas turbine, where Ipgui,t = 1
means that the gas turbine is turned on and Ipgui,t = 0
means that the gas turbine is turn off; and a1, b1 and
c1 are the quadratic function coefficients obtained for
fitting the gas consumption of the gas turbine and the
power generation data.

2) The cooling capacity of the absorption chiller and the
generated energy of the gas turbine meet the cubic
function, as follows:

Uac
i,t = a2(P

pgu
i,t )

3
+b2(P

pgu
i,t )

2
+c2P

pgu
i,t + d2I

pgu
i,t (8)

where Uac
i,t is the cooling capacity of the absorption

chiller at time t; a2, b2, c2 and d2 are the coefficients of
cubic function obtained by fitting the cooling capacity
of the absorption chiller and the energy generation data
of the gas turbine.

3) The heat generated by the waste heat boiler and the
energy generated by the gas turbine meet the quadratic
function, as follows:

Hboiler
i,t = a3(P

pgu
i,t )

2
+ b3P

pgu
i,t + c3I

pgu
i,t (9)
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TABLE 1. Coupling component models.

where Hboiler
i,t is the heat produced by the waste heat

boiler at time t; a3, b3 and c3 are the coefficients of
cubic function obtained by fitting the heat of the waste
heat boiler and the energy generated by the gas turbine.

4) The electric refrigerators and auxiliary boilers:

U cc
i,t = δcc,iP

cc
i,t (10)

Haux
i,t = ηaux,iw

aux
i,t (11)

where U cc
i,t and P

cc
i,t are the cooling capacity and power

consumption of electric refrigeration, respectively; δcc,i
is the efficiency of electric refrigerators;Haux

i,t andwauxi,t
are the heat and gas consumption of the auxiliary boiler,
respectively; and ηaux,i is the thermal efficiency of the
auxiliary boiler.

4) COUPLING COMPONENT OF ENERGY CYBER-PHYSICAL
SYSTEM
Energy cyber-physical system is a typical cyber-physical
system (CPS) [52], and its coupling is mainly composed
of a large number of switching devices in which a sensor
can provide the power system with a real-time operational
state of its power equipment or the state of its surrounding
environment, such as voltage measurement units, current
measurement units, etc. In addition, this state can be con-
verted into the desired form of physical information output to
allow the communication system to transmit physical infor-
mation to the corresponding controller of the communication
network. The reference signal of the actuator in the corre-

sponding power equipment is obtained through the relevant
controlling or optimization algorithm in the controller, and
the running state of the equipment is ultimately changed
to realize the interconnection of the power-communication
system. A typical system includes a supervisory control and
data acquisition (SCADA) system, a wide-area protection
(WAP) system, an automatic voltage control (AVC) system,
an automatic generation control (AGC) system, etc.

5) POWER-GAS-TRAFFIC COUPLING COMPONENT MODEL
The key coupling components between a traffic network
and a power-gas system are charging stations and gas fill-
ing stations. According to the aggregation effect of energy
demands of a traffic network, there is an increasing relation-
ship between energy demand and vehicle flow [53]. There-
fore, if an EV is charged during idle time, the EV is charged
normally, and the loads of GV charging stations are approxi-
mately expressed by a linear relationship:

Pd,TN ,UNi,t+12 =

∑
l∈C(i)

ad,TNi xl,t (12)

Pd,TN ,Ni =

∑
l∈C(i)

ad,TNi xl (13)

gd,TNm =

∑
l∈G(m)

bd,TNi xl (14)

wherePd,TN ,UNi is the charging amount when the EV is idle at
the i station; Pd,TN ,Ni is the charging amount when the EV is
at normal rest at the i station; ad,TNi is the charging efficiency

VOLUME 8, 2020 98893



J. He et al.: Reliability Modeling and Evaluation of UMESs: A Review of the State of the Art and Future Challenges

coefficient of the i charging station; and C(i) is the collection
of charging substations of the i charging station.
The gas station stores liquefied natural gas (LNG), so it

is also necessary to carry out pressurization and liquefaction
after natural gas is supplied by the pipeline. The loss of
natural gas generated by the pressure at a node m is gTNm,loss:

gTNm,loss = aTNm,lossH
2
m + b

TN
m,lossHm + c

TN
m,loss (15)

where aTNm,loss, b
TN
m,loss and c

TN
m,loss are the loss coefficients, and

Hm is the pressure parameter of the pressurizer at node m
that can be adjusted. It has a maximum and minimum limit,
as follows:

Hm,min ≤ Hm ≤ Hm,max (16)

In summary, the influence of traffic network coupling on
the load of a power-gas network is as follows:

pdi = pd0i + P
d,TN ,UN
i,t + Pd,TN ,Ni (17)

gdm = gd0m + g
d,TN
m + gTNm,loss (18)

where pd0i and pd0m are original the power load and gas load,
respectively [47]–[49].

III. UMES RELIABILITY MODELING METHOD
A. UMES CLASSIFICATION OF RELIABILITY MODELING
METHODS
In the reliability modeling of UMESs with multiple kinds
of coupled energy subsystems, the current research carried
out by scholars can be categorized as either model-driven
modeling and data-driven modeling.

1) Model-Driven Modeling: the interaction between
systems is analyzed and accurate mathematical models is
established to calculate system reliability. The Monte Carlo
simulation method is often used in the reliability evaluation
model, and random sampling is generated; the multi-energy
flow analysis of each system state, to solve the optimal energy
flow problem; the model-driven reliability modeling method
needs to solve plenty of system state energy flow calculation
and optimization problems, resulting in long and low effi-
ciency of reliability evaluation.

2) Data-Driven Modeling: By analyzing a large amount
of energy data to acquire knowledge automatically or semi-
automatically, knowledge here is defined as a quantitative
description of the relationship between data. Using methods
such as machine learning, mining the relationship between
reliability parameters and their influencing factors, or through
other statistical means of data, summing up the classification
and induction of scene sets after reliability failure, so as to
evaluate the reliability of the system. The data-driven model-
ing replaces the model-driven modeling method that requires
the establishment of accurate mathematical models.

B. MODEL-DRIVEN METHOD FOR UMES RELIABILITY
MODELING
The model-driven method of reliability modeling primarily
uses statemodeling and state assessments for each subsystem,

which also includes an analytical evaluation of the interac-
tion between the system and a system based on a theoret-
ical mathematical model. Finally, the reliability probability
degree and the risk probability degree of the system are
calculated according to the reliability risk index between the
systems.
Energy flow models in different energy networks are con-

sidered in the state analysis of reliability modeling. In the
linking of state evaluations, it is necessary to analyze the
multi-energy flow of each system state, and the optimal
energy flow modeling and solution of multi-energy coupling
is the core of system state assessment. To address the optimal
load curtailment (OLC) in a CHP system, [12] solved the opti-
mal scheduling and the optimal power flow problems of an
energy hub by using a hierarchical decoupling optimization
framework that made the calculations more accurate and effi-
cient. An evaluation algorithm was proposed for the impact-
increment-based state enumeration (IISE)method that further
improves the calculation efficiency under the influence of
the higher order state by transforming the effect of the
higher order contingency state into a corresponding lower
order contingency state. A comprehensive reliability assess-
ment framework for integrated energy cyber physical systems
using the Monte Carlo simulation method to generate the
system state was proposed in [22], and an energy flow model
in the different energy networks was considered in state
analysis, for example, by considering the real-time electricity
balance of a power grid and the flow balance of a natural gas
transmission network. For risk assessment, a power-thermal
power flow calculation model was established, and a corre-
sponding power flow calculation algorithm was proposed in
[58] according to the characteristics of pipeline flow loss and
heat generation via condensation in a heat network. Then,
the key index system of IES risk assessment was put forward
based on the different needs of operational and user sides of a
regional IES, and the calculation process of total operational
risk for the IES was designed on the basis of power-thermal
power flow calculations.
A UMES coupling model is the key component of relia-

bility modeling and evaluation. Reference [59] proposed a
generic framework for multi-energy system modeling that
includes multiple-energy carriers such as electricity, heat,
gas, etc. In addition, the cores of the energy hub were defined
as a transition matrix, which can describe the interactions
of multiple energy sources among production, trading and
consumption, as well as a failure rate matrix representing
the risk of the system, which is based on mathematical
expressions of energy hub and repair rate matrices using
a state-space method for a risk assessment system. Refer-
ence [36] pointed out the necessity of carrying out reliabil-
ity analyses and research on comprehensive energy systems
under the background of cyber-physical systems by analyz-
ing the influencing factors of multiple uncertainties and the
coupling relationship between systems and proposed a relia-
bility assessment framework for an integrated energy cyber-
physical system based on the analysis of a reliability model of
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TABLE 2. Classification of UMES reliability modeling methods.
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TABLE 2. (Continued.) Classification of UMES reliability modeling methods.

energy physical elements and an equivalent reliability model
of demand-side energy consumption.

The time-varying characteristics of the system-state prob-
ability and the uncertainty modeling of energy supply and
demand are the intrinsic needs of operational reliability eval-
uation and the characteristics that distinguish it from con-
ventional reliability evaluations. Under the consideration of
the probability of energy supply failures, the first-order reli-
ability method (FORM) was used in [54] to estimate the
failure probability of an IES and consider the problems of
insufficient gas supply, limited grid capacity, and the random
behaviors, dependencies and limitations of various energy
sources. The failure probabilities and absorption limits of a
power grid were solved by the HLRF theory. Different from
the Monte Carlo method, the probability of failure can help
evaluate the reliability of the system and ultimately improve
reliability by modifying the relevant schemes. Reference [56]
considered the limits of wind power generation and the cor-
relation between thermal load and natural gas supply faults
in an IES. The second-order reliability estimation method
(SORM) was adopted to address the nonlinearity caused by
network constraints, and 3.5 s was required to obtain a failure
probability. Compared with the first-order reliability method
(FORM), the proposed method improves accuracy by at least
10 times.

To address the insufficient consideration of system aban-
donment and operating characteristics of P2G units in current
state analysis models of multi-energy flow systems, [13] pro-
posed an energy flow model based on a P2G unit, a gas unit
and an optimization model of power/gas/heat load reduction
considering wind power abandonment. A reliability evalua-
tion method of a power-gas interconnection system contain-
ing a P2G unit was put forward to address the reliability
index.

To fully considered the impact of external environmental
changes and weather factors on multi-energy flow systems,
[55] proposed an optimum quantile method based on the
Wasserstein distance metric to generate a scenario set in an
IES, which took into account energy correlations based on
weather conditions. Compared to continuous variables based
on sampling techniques, such as Monte Carlo simulations,
the use of discrete variables sets this study apart from other
studies. An analytic method for the power supply reliability
evaluation of a power-gas coupled system was proposed in
[57], which focused on the power supply reliability of a

power-gas coupled system. A Belgian 20-node natural gas
system and an IEEE-RBTS Bus-6 system were used to ana-
lyze the calculation examples. The proposed model and algo-
rithmwere verified through simulations, and the impact of the
coupling system on the reliability of the power supply system
was analyzed in detail by comparing calculation results in
different scenarios.

C. DATA-DRIVEN METHODS FOR UMES RELIABILITY
MODELING
AUMES is a multi-physical field coupling system in which a
power system is at the center, and gas, thermal, cooling, traffic
and information systems can be coupled [67]. The primary
problem of UMES reliability modeling is that it is difficult to
establish an accurate mathematical model. However, artificial
intelligence technology based on big data has incomparable
advantages in terms of energy prediction (including intermit-
tent power forecasting and energy load forecasting of renew-
able energy), fault diagnosis, and operational optimization
and control [68]. At present, preliminary research results have
been obtained in the reliability modeling of multi-energy flow
systems by using data-driven methods and making full use of
energy big data.

Considering the influence of reliability caused by uncer-
tainties in energy supply and demand, a data-driven model
was established in [60] based on wind power, load, gas con-
sumption and in-station gas supply data in an IES to estimate
the failure probability of a gas supply in a reliability analysis
of a natural gas supply system. The proposed data-driven IES
model was simple and took advantage of the uncertainty and
the relationship between the limit state function based on
plentiful real data to guarantee the accuracy of the proposed
method through three case analyses of the traditional method
based on a physical model that included the Iman and Stein
method, a first-order reliability method and a hybrid Monte
Carlo algorithm. By calculating the available transmission
capacity (ATC) under an uncertain energy supply, [69] estab-
lished a probability available transfer capacity (PATC) model
of an IES considering static security constraints and uncer-
tainties. Because of the error among the traditional complex
modeling, the actual engineering and the physical model can
only obtain a numerical solution of the function gradient and
Hessian matrix, the proposed data-driven model was more
practical. The central moment method was first applied to
a fault probability estimation of a gas supply in [61]; the
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difference between the proposed method and the traditional
calculation of failure probability, which is based on an actual
probability distribution, is that the proposedmethod, based on
the statistical data of heat load and gas supply, calculated the
central moment to estimate the gas supply. Compared with
traditional methods, including the Iman and Stein method,
the first-order reliability method, the hybrid algorithm based
on Latin hypercube sampling, the Cholesky decomposition,
the Nataf transformation and the maximum entropy method,
the proposed method was faster and more authentic, provid-
ing a practical solution for the fault probability estimation of
a gas supply.

Heating and refrigeration in a UMES are affected by cli-
mate, as interruptions of heating or refrigeration in extreme
weather can cause damage to urban buildings and infrastruc-
ture, such as the freezing of water pipes. Reference [62] pro-
posed a new urban scale model that integrated City Fast Fluid
Dynamics (CityFFD) and a City Building Energy Model
(CityBEM) by considering the survivability of buildings sub-
jected to local climate factors in cities. Taking more than
1500 buildings on an island near Montreal, Canada, as an
example, a simulation study of the 1971 Montreal blizzard
was carried out to investigate the ability to withstand three
days of blackouts caused by the storm and further advance a
building reconstruction strategy.

To address the multi-energy flow reliability assessment of
a CCHP system in an energy distribution network and the
interaction of electrical, gas, cooling and heating systems,
[63] evaluated the performance of buildings by assessing
energy flexibility, as buildings typically only use a single
form of energy for power transfer capability, energy transfer
efficiency, economic benefit and comfort, and proposed a
method that used the energy storage function of buildings
to realize a flexible dispatch of multi-energy flows. [66]
proposed a k-1 algorithm based on smart agent commu-
nication, which can autonomously realize a reconstructed
system, and a system state evaluation process was carried
out together with a reconstruction process to improve the
reliability evaluation efficiency. To focus on the influence of
current thermal system research regarding the thermal inertia
of a thermal subsystem [14] set up a basic strategy of system
operations according to the differences of energy grade when
modeling a metastable model. A multiple time scale Monte
Carlo simulation method was applied to realize a dynamic
simulation while considering the time sequence correlation of
each device [64]. [65] analyzed the influence of the reliability
of multi-energy flow systems in detail, which were caused
by photovoltaic power supply and CHP unit permeability,
combined them with the Monte Carlo simulation method
and provided a scheme for practical future planning. The
detailed parameters of electric, heat and gas networks were
used to model the three networks in an integrated way in
[42] using a MATLAB-excel VBA tool, and the network
energy flow was demonstrated with a Sankey diagram, thus
providing a basis for reliability assessment and planning
research.

An analysis indicated that the reliability modeling of a
multi-energy flow system based on a data-driven method
offered a preliminary development that can excavate energy-
related big data and solve the problems of existing energy
fields by using machine learning, which has become the
focus in present academic circles [70]; however, this approach
still faces many scientific challenges and technical problems
[68] such as fault diagnosis and abnormal energy-use behav-
ior detection in energy application scenarios, and the data
obtained during a specific period of time still belongs to a
small sample set, which does not qualify for big data criteria.
In addition, there are upper accuracy limits, overfitting and
underfitting risks in data-driven methods [71].

IV. UMES RELIABILITY EVALUATION INDEX
Reliability theory is based on the concept of chains, and the
strength of any chain is represented by its weakest link [72].
The reliability of a UMES is represented by the reliability of
each subsystem and the coupled elements. Therefore, the reli-
ability of a coupled subsystem must be evaluated in detail.
The reliability indexes of independent energy subsystems
and the power-gas, power-traffic and power-communication
coupled systems are summarized as follows.

A. RELIABILITY INDEX OF INDEPENDENT SUBSYSTEMS
1) RELIABILITY INDEX OF URBAN DISTRIBUTION NETWORK
SYSTEMS
The reliability of a distribution system refers to the measure-
ment of the entire distribution system from the power supply
point to the user, as well as the ability of equipment to meet
the power and electricity requirements of users according to
acceptable standards and expected quantities, including the
adequacy and security of the system [73].

Conventional reliability evaluation is mainly used in sys-
tem planning and design to measure the reliability level of the
system under long-term operating conditions, and the time
interval is often months or even years. The main indexes
are the load point index and the system index, depending
on the hierarchy. The system index is usually divided into
an energy index and probability index. Specifically, the load
point index includes the average failure rate of the load point,
the average annual power outage time of the load point and
the average power outage duration of each fault. The system
index includes the average power outage frequency and aver-
age power outage duration of the system, the average power
outage frequency and average outage duration of the users,
the average power supply availability index, the system total
power shortage index and the system average power shortage
index [74]. The reliability of the system can be effectively
evaluated by the combined probability reliability index [75].

A conventional reliability assessment should not only
reflect the load loss of the system but also reflect the load
margin of the system, which can reflect the line overload,
node voltage overrun and other operating constraints as well
as the voltage safety margin, power flow safety margin, etc.
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One must be able to comprehensively describe the overall
reliability of the system and reveal the reliability of key
elements, key nodes, key areas and key links to reflect short-
term reliability and evaluate long-term reliability [76].

System reliability can be measured from three angles [77]:
the reliability of structural elements, the connection reliabil-
ity between node pairs, and system performance reliability,
which means ensuring that the infrastructure equipment is
not loaded or keeping a minimum water head (pressure) to
meet maintenance requirements. For this reason, a power
system must establish a relatively perfect four-dimensional
index system, including a state dimension, degree dimension,
hierarchical dimension and time dimension [76].

The state dimension index describes the overall operational
reliability of the system; the distribution network operational
state can be divided into a health state, critical state and risk
state.

The degree dimension index is a quantification of opera-
tional reliability that is used to reflect the operating safety
margin of a system or area under a critical state or the con-
sequence severity under a risk state. It is divided into three
sections: a safety zone, an over-limit zone and a load-cutting
zone, and each section corresponds to a margin index, over-
limit index and load-cutting index.

The hierarchical dimension index includes four levels: a
system layer, area layer, node layer and component layer.
The component layer index includes the power flow safety
probability andmargin, the overload probability and expected
value, the load cutting probability and the expected value
caused by the overload. The node layer includes the voltage
safety probability and margin, the voltage overrun probabil-
ity and expected value, and sub-indexes of all load-cutting
indexes. The system layer and area layer include all sub-
indicators of degree dimensions. The time dimension index
reflects the reliability of different evaluation time limits,
including the minute level, hour level, sky grade, monthly
grade, grade, etc. The corresponding time dimension index
can be obtained by calculating the index based on different
prediction times.

2) RELIABILITY INDEX OF NATURAL GAS PIPELINE
NETWORKS
The reliability of a natural gas network depends on three main
factors:

1) Structural reliability of the main supply pipeline in the
network. Thus, a probability certainty and structural
integrity assessment of a pipeline failure are highly
relevant.

2) The reliability of a pump (gas compressor) station,
valves and other equipment and the structure of the
main supply pipe of the network. Failure of these com-
ponents may result in heat loss, loss of natural gas
supply, and insufficient pressure or flow in the pipeline.

3) The reliability of the source of supply. During a hot
water or gas failure, the rest of the network should

also perform its functions, even if the supply of these
resources can be interrupted for all users in the network.

4) A fault data analysis is performed, the reliability eval-
uation criteria are defined, and the criteria describing
the fault characteristics of the main components are
selected to define the reliability index, including failure
rate (not considered affected by the failure); average
maintenance time (not affected by failure); System
Average Interrupt Duration Index (SAIDI); System
Average Interrupt Frequency Index (SAIFI).

3) RELIABILITY INDEX OF HEATING AND COOLING
NETWORKS
[78] pointed out that equipment or component failures will
lead to the failure of a subsystem or the whole system, so the
reliability index of a heating/cooling network is defined from
the component level, including the failure rate λ, repair rate
µ, reliability R and availability A. The failure rate λ is the
fault frequency of a component or system over a period of
time. The repair rate µ is the recovery frequency of a fault
component or system.

When the failure rate and repair rate are constant, the reli-
ability function of the component or system can be expressed
as follows:

R(t) = e−λ (19)

Availability is defined as the probability that a compo-
nent or system can run over a period of time:

A =
µ

λ+ µ
(20)

[79] pointed out that probability of the above state was
related to the structure of the heating network, and the failure
rate was related to the repair rate of the components, which
reflects the structural properties of the heating networks.
However, this assessment cannot reveal the heating capacity
under a fault condition and the influence of the fault on the
indoor conditions of consumers. Therefore, the functional
reliability index of a heating network is put forward to evalu-
ate heating quality in a comprehensive manner.

Taking into account the inadequate heating capacity caused
by a failure, the failure-free working index (Rf) is defined as
the ratio of the actual thermal power to the ordered thermal
power:

Rf =
E(Q)
Q′

(21)

where Q is the actual thermal power during heating, Q′ is the
ordered thermal power, and E(Q) is expected value of actual
heating.

Considering that some components fail, relevant users will
not be able to obtain enough heat from the network, which
will affect the internal state of a building, especially the
indoor temperature. tink is defined as the indoor temperature
under variable external conditions to assess the impact of
failures on consumers.
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• When there is no backup heat network,

tink = tok + (t ′in − tok )e
−
τr/χ (22)

where tok is the outdoor temperature during the heating
season, τr is the fault correction time, χ is the thermal
storage capacity, and t ′in is the calculated indoor temper-
ature.

• When there is a backup heat network,

tink = tok+(t ′in − t
′
o)e
−
τr/χ + βk (t ′in−tok )(1−e

−
τr/χ )

(23)

where t ′o is the calculation of the outdoor temperature,
and βk is heat gain ratio in the case of failure.

A synthesis of the above indexes not only reflects the
structural attributes of the system but also reflects the heating
capacity and the influence of failure on the indoor conditions
of consumers.

4) RELIABILITY INDEX OF TRAFFIC NETWORKS
The reliability of a traffic network can be defined as the ability
of transportation operational states to meet the prescribed
functional degree under established conditions and within
a given time, and the corresponding probability measure is
the reliability of the road network [80]. Traffic congestion
and road failures will reduce the reliability of the traffic
network and make transport and travel difficult. Most relia-
bility assessments of traffic networks are analyzed from three
aspects: traffic network topology, traffic network capacity
and travel time, which have corresponding definitions of
connectivity such as a terminal reliability index, road network
capacity reliability index, travel time reliability index [81],
etc.

Specifically, considering the cascade failure caused by
accidental failures or sudden disasters in traffic network
nodes (such as bus stations, railway stations, ports), [82]
defined network efficiency as a reliability measure of the
cascading failure of transportation networks and described
the effect of cascading failure on the overall connectivity of
an urban agglomeration transportation network. The formula
is as follows:

E =
1

n (n− 1)

∑
i,j∈�(i 6=j)

1
dij
� (24)

where dij is the distance between nodes, n is the number of
nodes in the network, and � represents the collection of all
nodes in the network.

For the reliability of travel time, [83] defined a travel time
reliability model of a traffic network based on risk as ta.

ta = t0

[
1+ α

(
Qa
Ca

)β]
(25)

where ta is the travel time of section a at time t , t0 is the
travel time of section a under the condition of free flow,Qa is
the traffic volume of motor vehicles at time t of the section,

Ca is the actual capacity of the section a at time t , and α, β
are parameters with recommended assignments of 0.15 and
4, respectively.

The probability of reliable travel is defined for the travel
time, and the connectivity reliability of a traffic network is
defined by the product of probability in [80]. Reference [84]
considered the traffic flow and the speed of the vehicle and
defined a comprehensive connectivity index y of the section
as

y = vq = kv2 =


kv2f

(
e
−ek/

kj
)2

, k ≤ km

k
v2f
e2

(
ln kj

k

)2
, k > km

(26)

where q is the traffic volume of this section, v is the average
speed, vf is the free flow velocity, k is the average vehicle
density, km is the density corresponding to the maximum flow
rate, and kj is the jamming density.
At present, the emergence of new energy vehicles such as

EVs has greatly increased the uncertainty risk of traffic net-
works, filling stations, charging stations, etc. As new consid-
erations affect the reliability of traffic networks, the reliability
index needs further improvements.

5) RELIABILITY INDEX OF COMMUNICATIONS NETWORKS
The reliability of a communications network must consider
the connectivity and transmission capacity of communica-
tions networks to predict effectively the failure of each node
in a communications network and the influence of link fail-
ures on network performance.

[85] introduced the concept of a normalized capacity
weighted reliability index and examined networks as a whole
from a macro perspective. The reliability index is defined as
follows:

• A weighted reliability index PIij of normalized capacity
between two nodes.

PIij =
∑

sij(z)∈Sij

αij(Sij(z))× PSij (z) (27)

αij(Sij(z)) =


1,Cij(Sij(z)) ≥ Cij(1)
Cij(Sij(z))
Cij(1)

,Cij(Sij(z)) < Cij(1)

 (28)

where Sij is a set of topological states of disjointed
networks between nodes i and j;Sij(z) is a disjointed
network state in the set; αij(Sij(z)) is the normalized
capacity weighting factor when the network state is Sij(z)
when the connection routing condition exists between
the nodes i and j; PSij (z) is the probability of Sij(z)
occurrence; Cij(Sij(z)) is the maximum capacity that can
theoretically be utilized between nodes i and j under
the condition that the topological state of the disjointed
network is Sij(z); and Cij(1) is the maximum expected
capacity between nodes i and j.
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• A weighted total reliability index PI of normalized
capacity of the whole network.

PI =
n∑

i,j=1
(i 6=j)

βij×PIij (29)

βij =
Cij(1)
n∑

i,j=1
(i 6=j)

Cij(1)
i (30)

Suppose a network has n nodes and is numbered contin-
uously from 1 to n, where βij is the weight coefficient of
the capacity between nodes i and j in the entire network.

The reliability index definition above describes the influ-
ence on the reliability index between each node and the total
reliability index of the whole network when the availability
probability and capacity change at each node and each link in
detail.

B. RELIABILITY INDEX OF POWER-GAS COUPLING
SYSTEMS
The reliability index of a power-gas coupled energy flow
system with P2G devices can be divided into a system level
and an equipment level.

1) SYSTEM LEVEL RELIABILITY INDEX
The values of expected electric demand not supplied
(EEDNS), expected gas demand not supplied (EGDNS),
expected gas demand not supplied (EHDNS) and expected
wind power abandoned (EWPA) are used to reflect the supply
level of the power load, gas load, and heating load and the
severity of abandoned wind in the system; the expressions are
as follows:

EEDNS =
∑
x∈G1

P(x)Ce(x) (31)

EGDNS =
∑
x∈G2

P(x)Cg(x) (32)

EHDNS =
∑
x∈G3

P(x)Ch(x) (33)

EWPA =
∑
x∈G4

P(x)1Pw(x) (34)

whereP(x) is the probability of system state x, andG1,G2,G3
andG4 are the state sets of power load, gas load, heating load
reduction and wind abandonment phenomenon, respectively.
Ce(x), Cg(x), Ch(x) and1Pw(x) are the power load, gas load,
heating load reduction and abandoned air volume of system
state x, respectively.

Ce(x) =
Nd∑
i=1

Ce,i (35)

Cg(x) =
Ng∑
m=1

Cg,m (36)

Ch(x) =
Nb∑
k=1

Ch,k (37)

1PW (x) =
Nw∑
i=1

1PW ,i (38)

2) EQUIPMENT LEVEL RELIABILITY INDEX OF P2G DEVICE
The P2G utilization probability (PUP) is used to reflect the
possibility of opening the P2G device and the probability of
the wind abandoning phenomenon occurring in the system.
The expression is as follows:

PUPk =
∑
x∈G5,k

P(x) (39)

where PUPk and G5,k are the utilization probability of P2G
device k and the set of states in the open state, respectively.

The P2G capacity utilization (PCU) is used to reflect the
utilization of P2G device capacity. The expression is as fol-
lows:

PCUk =
∑
x∈G5,k

P(x)(
PP2G,k
CP2G,k

) (40)

where PCUk and CP2G,k are the capacity utilization ratio and
device capacity of P2G device k, respectively.

The contribution of P2G to EEDNS/EGDNS/EHDNS
(CPED/CPGD/CPHD) and the contribution of P2G to EWPA
(CPEW) are used to reflect the contribution of P2G devices
in per unit capacity to the reliability index of the system.
These contributions are equal to the ratio of the change
of the EEDNS/EGDNS/EHDNS/EWPA and the capacity of
P2G devices before and after the access of P2G devices; the
expressions are as follows:

CPEDk = (EEDNS0 − EEDNS1)/CP2G,k (41)

CPGDk = (EGDNS0 − EGDNS1)/CP2G,k (42)

CPHDk = (EHDNS0 − EHDNS1)/CP2G,k (43)

CPEWk = (EWPA0 − EWPA1)/CP2G,k (44)

where CPEDk ,CPGDk ,CPHDk and CPEWk are CPED/
CPGD/CPHD/CPEW for the P2G device k, respectively. The
subscripts 0 and 1 of each system level index represent the
P2G device k before and after access, respectively.

In a specific case, [86] developed a robust dispatching
model that considered an unexpected scenario of a natural
gas pipeline and an N-1 power transmission. A new topology
simplification method was proposed to calculate the relia-
bility index of a natural gas system in [39], and the relia-
bility of the distribution system was evaluated based on the
shortest path method. In particular, a reliability model of the
coupling device was established to quantify the interdepen-
dence between the distribution system and the gas distribution
system. The reliability of the two subsystems was evaluated
by considering the difference in the operating characteristics
of the two subsystems. To solve the uncertainty of energy
services provided by wind power output and a P2G plan,
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an effective probability method was proposed to obtain the
reliability models of these energy sources in [47]. When
considering the fluctuations of energy demands in a multiple-
state analysis model, the load distribution map model and the
probability model of energy hub resources can become con-
voluted. The possible operational strategy of an energy hub
can also be considered when calculating different reliability
indexes.

C. RELIABILITY INDEX OF POWER-THERMAL-COOLING
COUPLING SYSTEMS
Regarding the importance of key system components,
the problem of energy supply interruptions caused by com-
ponent failure was considered in [64]. The ‘‘valve level’’
[1] concept of a component was introduced to quantify the
influence of a component failure on the energy supply in an
IES.

The reliability index of a power-heating-cooling system is
thus defined. T (ei) (valve level of energy conversion equip-
ment) and Iprob(ei) (importance of equipment ei) reflect the
reliability level of a system. The definition is as follows:

T (ei) =
ψcmax(ei)
ψcmax

(45)

ψcmax = LE + LH + LC (46)

whereψcmax is the maximum energy supply when the system
is running without failure, LE is the maximum power supply,
LH is the maximum heat supply, LC is the maximum cool
supply, and ψcmax(ei) is the maximum power supply for the
system after the failure of device ei.

Iprob(ei) =
1− T (ei)

M∑
i=1

(1− T (ei))

(47)

where M is a collection of all energy conversion devices.
The indexes above characterize the influence of the power-

gas-heating system coupling elements on the system and
the importance of the corresponding components, which can
provide a reference for the identification of weak links in a
system and guide the formulation of corresponding strength-
ening measures. According to the operational reliability def-
inition index of the system, a multi-energy flow system is
divided into a load point reliability index and a system level
reliability index, based on the hierarchy, to evaluate the reli-
ability of the system [87].

For a cogeneration system, the reliability index of the
load point includes the failure rate of the load point λ
year (times/year), the load point energy outage duration r
(hours/times) and the average annual interruption time of load
point U (hours/year). The relationship is defined as follows:

r =
U
λ

(48)

The concept of a corresponding index is introduced, and
the annual failure rates of power and heating load points are
defined as λe and λh, respectively. The durations of power

and heating interruptions at the load points are defined as re

and rh, respectively. The average annual interruption times
of power and heating load points are defined as U e and Uh,
respectively.

In a system level reliability index reference power
system, the system interruption frequency SIFIES (times/
customer/year), the system interruption duration SIDIES
(hours/customer/year), the system energy not supplied
SENSIES (MWh/customer/year) and the system service avail-
ability SSAIES (%) are defined. Based on the reliability index
of a load point, the reliability index of the system level can
be obtained, and the calculation formula is as follows:

SIFIES =

∑
i∈E
λeiN

e
i +

∑
i∈H

λhi N
h
i∑

i∈E
N e
i +

∑
i∈H

N h
i

(49)

SIDIES =

∑
i∈E

U e
i N

e
i +

∑
i∈H

Uh
i N

h
i∑

i∈E
N e
i +

∑
i∈H

N h
i

(50)

SENSIES =
∑
i∈E

Lei U
e
i +

∑
i∈H

Lhi U
h
i (51)

SSAIES = 1−

∑
i∈E

U e
i N

e
i +

∑
i∈H

Uh
i N

h
i

8760
(∑
i∈E

N e
i +

∑
i∈H

N h
i

) (52)

where E is the power load point set, H is the heating load point
set, N e

i and N h
i are the number of users at the i load point in

the power grid and heat network, respectively, and Lei , L
h
i are

the demand for power and heat at the i load point in the power
grid and heating network, respectively.

D. RELIABILITY INDEX OF POWER-TRAFFIC COUPLING
SYSTEMS
EVs represent a new source of large electric load; because
of environmental and economic concerns [88], they have
become new members of the current traffic network, and a
new coupling system of power grids and vehicle networks
has appeared. If a large number of EVs are charged during a
peak load period, this will further aggravate the load peak and
valley differences of a power grid and increase the burden on
the power system, thus affecting the power supply quality of
the power system and reducing the reliability of the coupling
system.

[89] and [90] considered the access of EVs by increasing
the capacity of substations to increase power grid reliability,
thus improving the charging behavior of EVs by reasonably
planning substation positions and subsequently improving the
reliability of the vehicle network. References [91], [92] and
[93] evaluated the reliability of the system by considering
the reliability index of power quality under the condition of
connecting to EVs.

Therefore, based on the reliability index of a power system,
the reliability of the system is evaluated and considered after
an EV is connected to the distribution network.
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The average service availability index (ASAI) and the
energy not supplied (ENS) are selected as the reliability
indexes of the system. Active power loss (PLOSS) is selected
as an economic index [94].

1) AVERAGE POWER AVAILABILITY
TheASAI directly reflects the impact of failure on production
and use. In the actual operating process of a distribution net-
work, the ASAI value cannot reach the level of 1.00, usually
peaking at 0.99, and it can characterize obvious improve-
ments [95]. Considering the characteristics of the ASAI, the
satisfaction evaluation function fA of the ASAI is constructed
as follows:

fA =

{
0 AS < A0S
aAA2S + bAAS + cA A0S ≤ AS

(53)

where AS is the ASAI value, A0S is set as the lowest ASAI
value, and aA, bA and cA are setting parameters.

2) INSUFFICIENT SYSTEM POWER SUPPLY
The ENS directly reflects the scale and range of fault influ-
ence on the whole distribution network system. If the power
supply of the system is insufficient, it is necessary to remove
unimportant loads to maintain power balance. The ENS is
also an important index used to reflect economic losses. The
ENS value in a general distribution system is approximately 5
∼ 10 times the total average active power of the system [96].
Considering the characteristics of the ENS, the satisfaction
evaluation function fE of the ENS is constructed as follows:

fE =


1 EN ≤ E1

N
E0
N − EN
E0
N − E

1
N

E1
N ≤ EN ≤ E

0
N

0 E0
N ≤ EN

(54)

where EN is the ENS value, E0
N is the ENS value in the

initial network state, and E1
N is the minimum ENS value of

the distribution system in theory.

3) ACTIVE POWER NETWORK LOSS
The economic operational level of the system is reflected
through the loss of active power networks in the system.
The important basis for judging the merits and demerits of
a reconfiguration scheme is the size of the active power net-
work loss. By constructing the satisfaction evaluation func-
tion fp of active power network loss PL , different distribution
network reconfiguration schemes can be evaluated.

fp =


1 PL ≤ Pmin

L

aLP2L + bLPL + cL Pmin
L ≤ PL ≤ P0L

0 P0L ≤ PL

(55)

where Pmin
L is the theoretical minimum network loss value of

the distribution network system, P0L is the value of PLOSS
in the initial network state, and aL , bL and cL are setting
parameters. The smaller PL is, the closer the value of the
satisfaction evaluation function is to 1.

E. RELIABILITY INDEX OF ENERGY CYBER-PHYSICAL
SYSTEM
Communications networks are widely used in power systems
and are often referred to as critical infrastructure (CI) [97];
their reliability has a great impact on the normal supply of
power. Examples include the application of supervisory con-
trols, data acquisition systems, and WIDE-AREA protection
systems.

To assess network connection reliability, [98] intro-
duced three indexes—cumulative failure probability, steady-
state availability and component probability importance—for
communication systems in wide-area protection (CSWAP) to
realize the analysis of system failures, component failures
and their effects on CSWAP to provide a quantitative analysis
basis. The specific definitions are as follows:
• The cumulative failure probability:

CFP(t) = Pr(T ≤ t), T > 0, CFP(0) = 0 (56)

where CFP(t) is the cumulative fault probability of the
system in a (0, t) time period, and T is the system failure
time.

• The steady-state availability A:

A =
MTBF

MTBF+MTTR
(57)

where MTBF is the mean time between failure, MTTR
is the mean time to repair, and A is the reliability of
CSWAP when running for a long time.

The component probability importance index Ipri (t) is used
to analyze the influence of the change of component failure
rate on the system failure rate. The component probability
importance index is introduced to identify the components
that have a significant impact on the reliability of CSWAP.
The index is defined as a partial derivative of the failure
probability of the system to the failure probability of the
component, and the formula is as follows:

Ipri (t) =
∂F(t)
∂Fi(t)

= Pr
{
gyk = 1

}
− Pr

{
gyk = 0

}
(58)

where Fi(t) is the probability of failure of element i at time
t , F(t) is the failure probability of the system at a time t ,
and g is the system structure function. Pr

{
gyk = 1

}
indicates

system unreliability due to the failure of component i, and
Pr
{
gyk = 0

}
indicates system unreliability under component

i operation.
To measure the reliability of the network from the per-

spective of connectivity, based on [99] and working from the
node, set p and q = 1 − p be the probability of successful
and unsuccessful communications between the two nodes of
a network G. When the corresponding node and connection
link are working properly, set p = 1 and the other p < 1.
Thus, p can be understood as the reliability of the node and
the link of the connecting node, and the whole end reliability
is defined as:

RALL(G, p) = pR(G ∗ e)+ qR(G− e) (59)
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where G ∗ e is a network formed by merging two nodes
connected to e in network G, and G− e is a network formed
by removing e from network G.

F. RELIABILITY INDEX OF OTHER UMESs
Other UMESs were considered in terms of renewable energy
access in [100], and the overall reliability evaluation indica-
tors are as follows:

1) RELIABLE ENERGY SUPPLY RATE OF THE SYSTEM
Taking the energy receive rate of a power load and natural gas
load as the index of reliable energy supply rate of the system,
the reliability of the energy supply of the combined system is
evaluated.

Sp = 1−
M∑
t=1

PS(t)
PL(t)

(60)

where PS(t) is the load shortage, PL(t) is the total load, andM
is the evaluation time.

2) NATURAL GAS SYSTEM ABSORPTION RATE
Renewable energy can be used to supply a natural gas load
through P2G equipment conversion. The gas load supplied
by synthetic natural gas (SNG) can be used to evaluate the
level of wind power absorption in a natural gas system.

Sgas =
M∑
t=1

QSNG(t)
QGASL(t)

(61)

where QSNG(t) is the natural gas load supplied by SNG pro-
duced by P2G, and QGASL(t) is the natural gas load.

3) RATE OF PEAK CUTTING AND VALLEY FILLING IN A GRID
Using wind power as an example, P2G equipment and batter-
ies can store and utilize wind power when wind power is in
excess at night; at this point, these two types of equipment are
considered to be power loads. At the peak of daytime power
consumption, the batteries feed the stored power energy into
the power grid to reduce the total load demand of the power
grid, and the batteries are regarded as the power supply at this
time. Therefore, the application of any kind of equipment is
beneficial to reduce the peak and valley differences in a power
grid.

Sep =

∣∣∣∣∣
M∑
t=1

Pmax
1 (t)− Pmax

2 (t)

Pmax
1 (t)

∣∣∣∣∣ (62)

where Pmax
1 (t) is the system load when P2G equipment and

batteries are not used, and Pmax
2 (t) is the system load of P2G

equipment and batteries after being placed into use.

4) EXCESS CAPACITY OF RENEWABLE ENERGY
The fluctuation of new energy power generation is large;
using wind power as an example, the wind speed at night is
generally higher; at this time, the level of wind power genera-
tion is larger, but the demand for night power load is smaller,

which can lead to abandoned wind power. By calculating the
excess capacity of renewable energy, the abandoned wind
level can be reflected.

Sex =
M∑
t=1

Ptotal(t)− Puse(t)
Puse(t)

(63)

where Ptotal(t) is the total renewable energy generation
power; Puse(t) is the renewable energy power for power load
utilization, including P2G equipment, general power load and
batteries.

V. CHALLENGES IN UMES RELIABILITY RESEARCH
Through the above research in this paper, it can be seen
that the reliability modeling and evaluation of multi-energy
flow systems focus on the modeling of the systems, but due
to the diverse couplings of the subsystems, research on the
relationships between these subsystems remains insufficient,
so it is difficult to establish an accurate system model. At the
same time, in order to realize multi-energy complementarity
of the UMES and improve the reliability, the dispatch strategy
of the coupling components should be fully considered.

In view of the above problems, this paper puts forward the
following three research challenges.

A. THE COUPLING COMPONENT DISPATCH STRATEGY OF
UMES TO BE CONSIDERED URGENTLY
Coupling component dispatch strategy is rarely applied to
IESs, which contain a variety of energy requirements such
as cooling, heating, and electricity [101]. Existing studies
have focused on coupling component dispatch strategy in
microgrids and multi-energy complementary systems with
CCHP units but have not considered the coupling compo-
nent dispatch strategy of natural gas and thermal. With the
expansion of China’s power market reforms, IES coupling
component dispatch strategy has become an inevitable trend
[102].

[103] summarized the value of coupling component dis-
patch strategy in improving the reliability of power systems
under extreme cases. Reference [104] proposed coupling
component dispatch strategy, and due to the complementary
nature of multi-energy systems, the interactive capability of
coupling component dispatch resources can be fully utilized
while maintaining the comfort level of consumers. Further,
in [105], to address the integrated community energy system
(ICES) configuration issue, the randomness of resources and
renewable generation in ICESs was analyzed in depth; a
resilience-oriented stochastic ICES configuration framework
considering energy dispatch influence was proposed, and a
generalized energy dispatch model based on energy price
fluctuation was established to improve the overall economy
and system resiliency. In terms of corresponding evalua-
tion indicators, vulnerability indicators of ICES tie lines
and converting equipment were summarized to demonstrate
occasional interruptions under normal operation and power
failures during emergencies. In [72], an optimized energy
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solution was proposed to accurately estimate the power and
heating demands of a certain area, and a CCHP system was
established to achieve reliability and economic service while
satisfying the power supply of a multi-energy system in a res-
idential environment. The study noted that reliability should
be ensured without the interruption of service, redundancy of
the system should be assessed, and installation costs should
also be taken into account. This study serves as a guide to
make the right choices in energy systems.

There is an interdependence between heating and power
supply, which limits the operational flexibility of a CHP
system, especially during cold seasons, and the coupling of
a CHP system usually leads to a large power reduction of
renewable energy because of the random heat demands. [44]
established an energy-storage-like (ESL) model based on the
dynamic temperature change and time-delay effect of the
medium in a pipeline system, which represented the heat
storage capacity of a regional heat network. The modeling of
the ESL model was not complicated because it was described
by two state variables (charging/discharging rate and storage
capacity).

Because of the nonlinearity and modeling complexity of
UMESs, some constraints associated with internal energy
networks and operational uncertainties are often ignored.
Reference [21] established a model that considered both con-
straints and uncertainties, which was critical for assessing
flexibility under stress conditions. Considering the uncer-
tainty of wind generators and coupling components, a robust
security region (RSE) model of a power-gas system was
established in [106]. ()() [107] defined the security region
(SR) of an IES by referencing the definition of the SR of the
power grid, including a pressure security region (PSR) and
a transmission security region (TSR). In addition, a general
nonlinear optimization energy flow model was established to
form the SR, PSR and TSR of a natural gas network in an IES,
and a framework for constructing the SR of a natural gas net-
work in a multidimensional space was proposed. More reli-
able operational plans will be required when the gas network
is integrated into the power grid because of the increased
uncertainty of the whole system. Reference [108] proposed a
three-stage robust optimization model for the flexible oper-
ation of an energy system. The model integrated a power
grid and a natural gas transmission network to minimize load
reduction from attacks. In addition, the proposed three-stage
problem was reformulated into a two-stage mixed-integer
linear program (MILP) that could be solved using a Benders
decomposition algorithm.

B. A NEW METHOD FOR ANALYZING THE INTERACTIONS
BETWEEN SYSTEMS NEEDS TO BE CONSIDERED
URGENTLY
The analytical evaluations of system-to-system interactions
and probabilistic risk evaluations between systems are also
considered studies of system reliability.

To assess the controllability of a power grid, [109] pro-
posed that the co-optimization of a generator and transmis-

sion topology can improve the controllability of the network.
In addition, a common optimization scheme for optimiz-
ing power generation unit commitment and a transmission
switching problem was proposed while ensuring the N-1 reli-
ability. The results indicated that the best topology of the
network may change every hour. When a cascading failure
triggered by a random attack was encountered, the optimal
interconnection design of the interdependent network sys-
tems was considered, and the in-layer node degree informa-
tionwas used to design interdependent structures tomaximize
their robustness against the cascading faults triggered by
random attacks. By using a system equation based on seepage
theory, the robustness of the network was correlated with its
degree sequence; [110] described the optimal design of a one-
to-one structure with complete interdependence and partial
interdependence under random attacks.

In addition, regarding probabilistic risk assessment (PRA),
the complexity of modern systems and their dynamic behav-
ior abilities continue to improve. The classic PRA technology
has difficulty in accurately analyzing these systems.

To analyze these complex systems in a comprehen-
sive and accurate manner, different characteristics need
to be used, such as functional dependencies between
components, system time behaviors, and multiple failure
modes/components/system states, which need to consider the
system behaviors and the uncertainties of fault data. However,
the classic methods cannot address these aspects.

Bayesian networks (BNs) are popular in risk assessment
applications because of their flexible structure and their abil-
ity to process analysis considering the above aspects. BNs
have the ability to performing diagnostic analysis, and Petri
nets are also used as formalized graphics and mathematical
tools. In [111], BNs and Petri nets were used to model and
analyze the dynamic behavior of systems and assess system
reliability and safety risks. In addition, PRAmethods include,
but are not limited to, fault tree analysis (FTA), failure mode
and effects analysis (FMEA), and event tree analysis (ETA).

C. THE RESILIENCE OF UMESS IN EXTREME SCENARIOS
NEEDS TO BE CONSIDERED
There have many studies on the resilience of power systems
in extreme scenarios and their corresponding recovery strate-
gies.

The daily operation of a power system is closely related to
changing weather patterns. In a data-driven approach, [112]
used real-time weather data based on weather forecast data to
realize an accurate time-space power generation prediction,
evaluate asset health, assess reliability, predict the probabilis-
tic load, and simulate the power market, eventually realizing
the load interruption recovery. To effectively estimate the
dynamic failure probability with multiple space-time param-
eters and analyze the overall reliability sensitivity of dynamic
problems, a moment estimation method for the extreme value
of the dynamic limit state function was proposed in [113].
However, the uncertainty of weather forecasts and abnormal
peak loads will lead to the misalignment of probabilistic load
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forecasting. In [114], a data-driven artificial neural network
was used to realize probabilistic normal load forecasting
and probabilistic uncertain peak load prediction. In extreme
weather, a fault-like disconnection or pole/tower failure in a
transmission network is likely to occur, which will lead to
a power outage, so it is necessary to evaluate the reliability
of the line by considering weather factors. In [115], a power
line outage rate model considering weather conditions and
conductor temperatures was established by analyzing several
data sources, including operational data, weather data, land
cover, altitude data, and asset management data. The analysis
from the line outage probability was obtained, and then the
risk assessment was carried out based on a Markov tree
search method. To assess the cascade fault of a transmis-
sion line, [116] established a recovery model, and a simula-
tion analysis was carried out with a sequential Monte Carlo
scheme in order to quantify the influence of extreme weather
events on the reliability/availability performance of a power
system transmission network. Reference [117] proposed
adding links to the underlying network structure to assess
the network robustness against cascade failures, includ-
ing a random linking strategy (RLS), a high-betweenness
linking strategy (HBS) and a low-polarization linking
strategy (LPS).

However, studies on the resilience of multi-energy flow
systems remain scarce. Reference [118] noted that cyber–
physical systems (CPS) are vulnerable to random fail-
ures or intentional attacks, and a reliability analysis model
was modeled based on network science theory. The influence
of the cascade fault effect was studied based on seepage
theory, revealing a detailed mathematical analysis of fault
propagation in CPSs. The proposed reliability analysis model
can be effectively used for attack prevention and protec-
tion purposes in CPS systems. Considering the coordina-
tion of district multi-energy systems (DMES), a hierarchical
management strategy was proposed in [119] to enhance the
resilience of integrated energy distribution systems (IEDS).
Energy storage devices and network communication facili-
ties in DMES were fully utilized to achieve flexible energy
dispatch, and the reliability and resilience of the system
were guaranteed under the three modes mentioned in the
strategy, including a normal operation mode, a preventive
operation mode and a resilient operation mode. Reference
[120] proposed the regional coordinated operation of an IES
to enhance its resilience under extreme conditions, and a
bidirectional flow model for a regional IES was established
by using power gas technology; a three-level two-stage robust
model was established to adapt to the random interruptions
caused by natural disasters in natural gas, power generation
and transmission systems. A two-level algorithm based on
a Benders decomposition and column constraint generation
algorithm was proposed to solve the robust IES problem.

Because of the situational complexity when a UMES is
attacked in extreme scenarios, a quick evaluation is difficult.
The linkage failure mechanisms of UMESs also need to be
studied in the future.

VI. CONCLUSION
UMES involves many different forms of energy, covering a
variety of energy subsystems. The coupling components and
models of energy hubs in UMESs are summarized in this
paper, including power grids, gas networks, cooling/heating
networks, traffic networks and energy cyber-physical sys-
tem. Therefore, the reliability modeling and evaluation of
UMESs are the primary tasks to promote the deep coupling
of UMESs, improve energy utilization and realize the multi-
energy complementary. Firstly, the background and signif-
icance of UMESs are introduced. Then, the coupling rela-
tionships between different energy systems were introduced,
including power-gas system, power-gas-heating/cooling sys-
tem, power/gas-traffic system and energy cyber-physical sys-
tem. The coupling components and models of energy hubs
in UMESs are summarized in this paper. The reliability
modeling method of UMES and the reliability evaluation
index of an independent energy subsystem are summarized,
and then, with the power system as the core, the reliability
evaluation indexes of a power-gas coupling system, a power-
thermal/cold coupling system, a power-traffic coupling sys-
tem and energy cyber-physical system are summarized.

The latest reliability modeling methods were divided into
model-driven methods and data-driven methods, and classifi-
cations and summaries are provided in this paper.

The advantage of model-driven modeling is that it reflects
the interrelations and influences of each subsystem, but more
complex coupling systems cannot be accurately modeled, and
there are errors compared with actual systems sometimes.
Data-driven models can make full use of energy big data
and use specific actual scene data as samples to realize more
accurate assessments of system reliability, but they cannot
reflect the correlation structure between subsystems.

The reliability evaluation index was mainly defined based
on the following aspects: 1) defining the energy index accord-
ing to the shortages of energy supply and demand in each
energy subsystem, such as an insufficient gas supply or a
shortage of heating; 2) defining a probability index, such as
the failure rate and the repair rate, for the component failure
in each energy subsystem; and 3) in a practical application
scenario, defining the environmental factors and user influ-
encing factors, such as indoor temperature, etc.

Because of the complexity of UMESs, the present study
focused on two- or three-energy coupled systems (such as
CHP, CCHP), and the study of the specific modeling and reli-
ability evaluations was insufficient. In this paper, a summary
of the work provides references and advice at the same time
for the establishment of comprehensive reliability assess-
ment models and evaluation indexes. Because the present
research is inadequate and the actual fault scenarios still lack
effective evaluation methods, future research challenges are
proposed:

1) The multi-energy complementarity is the advantage of
UMESs. The dispatch strategy of the coupling compo-
nents, and reliability of the UMESs should be devel-
oped and continuously optimized. The multi-energy
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is optimized by hierarchical and orderly steps in the
links of source-network-storage-load and to improve
the efficiency of energy utilization.

2) The variety of energy subsystems are growing, which
makes new analysis methods of the interactions
between the system and subsystems should be studied.
It needs to consider the system behaviors and the uncer-
tainties of fault data including functional dependencies
between components, system time behaviors, and mul-
tiple failure modes/components/system states.

3) The multi-energy complementarity of UMES endows
it with strong resilience. Under the extreme conditions,
making full use of and evaluating the resilience of
UMESs should be a new research challenge. It includes
establishing a set of effective evaluation indexes and
proposing recovery strategies in extreme conditions.
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