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ABSTRACT Categorization of PV faults is an essential task for improving the efficiency and reliability of
a photovoltaic (PV) system. Output characteristics of a solar (PV) system can be severely affected under
various fault conditions including short circuit, module mismatch, open circuit, and multiple faults under
shading conditions. Such PV faults can potentially be analyzed through the PV characteristic curve analysis
using a multilayer neural network with a scaled conjugate gradient algorithm (SCG). This paper presents
an extensive investigation for categorization, i.e., classification of the above-mentioned PV faults using the
SCG algorithm. The major contribution of the presented research work is the categorization of PV faults
in sixteen different classes considering polycrystalline and thin-film PV technologies with two different
configurations, including SP and TCT. The fault classification is achieved with high accuracy of 99.6% and
a fast-computational time of 0.08 sec. The results are validated through the plot of the Confusion Matrix
and Region of Convergence (ROC) with their performance evaluation in MATLAB. The achieved accuracy
and fast computational time prove the effectiveness of the multilayer neural network-based approach for
classification of the PV faults to increase power output, efficiency, and lifespan of PV systems.

INDEX TERMS PV faults, PV technologies, PV characteristics, neural networks.

I. INTRODUCTION
Amassive body of research has been focused on the advance-
ment of solar photovoltaic (PV) technology with an aim to
improve the latter’s efficiency and high variability due to its
non-linear nature and high reliance on external atmospheric
conditions [1]. The high sensitivity of PV systems to extreme
weather conditions such as thunderstorms, rain, and humidity,
high ambient temperatures, and non-uniform shading can
severely impact the output characteristics of PV arrays, which
are connected in various configurations for harnessing of
maximum power output [2]. Various interconnections of PV
modules can develop severe internal faults like an open and
short circuit, and hotspot heating under uncertain environ-
mental conditions, which can lead towards blackout of the
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entire PV system [3]. Therefore, early detection and timely
diagnosis of faults are necessary to prevent extraordinary
power losses and reliable operation of PV arrays.

In this regard, the classification of PV faults has been
reported in the literature for the proper diagnosis of faults
and to increase the life span of a PV power system. Different
fault detection techniques for recognition of PV arrays faults
have been reported in the literature works like time domain
reflectometry [3] and earth capacitance measurement [4].
Online fault diagnostic technique through infrared imaging
has been used for fault identification in [5] that differentiates
faulty PV modules from normal module through change in
apparent temperature. Authors in [6], [8], and [9] attempted
to figure out the location and type of fault by collection
of data through installation of current and voltage sensors
on small PV arrays, but those techniques do not effec-
tively detect the faults in large PV systems. Time Domain
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Reflectometry (TDR) is an effective technique for PV
fault diagnosis in a series-connected PV farms. However,
it requires precision instrument for analysis of signals to
diagnose the fault accurately and can only be applied to
series-connected PV modules as presented in [6].

As mostly PV arrays are connected in various series-
parallel configurations to extract the required amount of
power, techniques presented in the above-cited works cannot
diagnose faults in series-parallel configurations of PV arrays.
Many investigations by various authors have been conducted
to analyze environmental impact like severe shading on vari-
ous series-parallel topologies [7]–[10]. It is known that the
impact of fault can vary upon the form of interconnection
and type of PV technology. The impact of different PV
arrays’ faults on different configurations include as given in
[11]–[16]: Honey Comb (HC), Total Cross Tied (TCT), and
Bridge Linked (BL) have been investigated with consider-
ation of thin-film and monocrystalline PV arrays. Authors
in [16] restrict the investigated impact of open circuit, short
circuit, and shading fault on a reasonably small 6 × 6 PV
array. Power loss minimization has been achieved in [11]
with thin-film PV technology under various faulty scenarios
with power-voltage (P-V) curve analysis only. From the given
literature, it is found that there is room to investigate different
PV faults’ impact on different PV materials with the larger
interconnected PV arrays through analysis of both P-V and
I-V curves. It is pertinent to mention that the I-V curve is
considered more crucial for the recognition and classification
of PV faults in a PV system.

In fact, faults in an interconnected PV array are challenging
to diagnose due to their unpredictability and non-linearity.
Artificial neural networks (ANN) can, fortunately, charac-
terize the relationship between input states and expected
output with complex structure, connecting weights, bias, and
thresholds. The probabilistic neural network (PNN) has been
used in [12], which classifies different PV faults with 85%
precision. Accuracy of the computed results is necessary
for the proper diagnosis and categorization of such faults.
It is believed that fault classification through artificial neural
networks (ANN) can be a good solution in terms of accuracy,
fast computation, and ease [13]. In [14], a neural network
model was designed to envisage the output power of PVmod-
ules. The neural network (NN) was used for categorization
of different PV faults in [15], but none of the studies have
categorized and classified diverse faults of TCT, BL and SP
interconnected PV arrays in different PV materials [15] with
high precision and accuracy through ANN as summarized
in Table 1. In particular, classification of multiple faults in
thin-film and crystalline PV technologies remain unveiled in
the literature.

To bridge the aforementioned research gap, the presented
research work investigates various topologies, including SP,
TCT, and BL, and gives its detailed analysis through I-V
and P-V characteristics curve. Two different PV technolo-
gies, including thin-film and polycrystalline PV, have been
considered for this analysis. An extensive input data set of

5 × 1248 has been developed and collected by computa-
tion and analysis of change in the output of the considered
interconnected PV arrays. The performance of PV arrays is
analyzed with classification and recognition of the PV faults
through the backpropagation algorithm of neural networks.
The adapted procedure recognizes all the faults with high
accuracy and categorizes the faults with respect to different
PV materials. The contributions of this research work are as
follows:
1. Different types of faults in PV arrays are analyzed on a

thin-film and crystalline 9× 7 PV array to investigate the
faults’ impact on the characteristics curve of a PV system.
The combined impact of faults is also analyzed on TCT,
BL, and SP interconnection of the PV array.

2. All faults are categorized and classified through a mul-
tilayer neural network with high accuracy of 99.6%
and a faster computation time of 0.08 sec than that of
the literature works [12]. This research has also clas-
sified all simulated faults in PV array with differen-
tiation of different PV materials, including thin-film
and crystalline technology, which is not reported in the
literature.

3. PV faults are categorized into two different PV configu-
rations, including SP and TCT, through neural networks
with high accuracy of 99.6%, which is not achieved in
the previous research works. Thermal imaging for feature
extraction is used in [17] with NN as a classifier for fault
detection in PV modules, which achieved 92.8 % overall
accuracy as a fault classifier. A comparison of NN classi-
fier with conventional classifiers like K-nearest neighbor
(KNN), and support vector machine (SVM) is also made
in [17]. Classifiers like SVM and KNN achieved an accu-
racy of 80.3% and 56.8% respectively, while NN classifier
performed better as a fault classifier and achieved an over-
all accuracy of 92.8% in classification of faults in the PV
module. Accurate detection of shading fault in PV systems
is performed through principal component analysis (PCA)
with achieved average accuracy of 97% in [18]. Convolu-
tional NN based approach is used in [19] for extraction
of features from scalograms and to perform classifica-
tion of faults with 73.5% accuracy without considering
different PV materials. PV faults were categorized with
99% accuracy without consideration of PV material and
configuration of PV array in [16]. Classification of open
and short circuit faults in a PV array through PNN is
achieved in [20] with an accuracy of nearly 98%. Diag-
nosis of various faults has been conducted through vari-
ous methods, including I-V measurements with machine
learning techniques and multiclass exponential loss func-
tion (SAMME-CART) in references [21]–[24]. Over 95%
average accuracy is achieved in classification of each fault.
None of the previous research works has classified PV
module mismatch, open and short circuit, multiple faults
under shading conditions in different PV materials and
configurations with 99.6% accuracy and fast computa-
tional time [26]–[32].
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TABLE 1. Literature survey and identification of gaps.

4. An extensive input data set of 5 × 1248 is collected
through analysis and computation of parameters of thin-
film and polycrystalline PV arrays. Five input parameters
are considered with each input having 1248 samples for
the classification of faults throughNN algorithmwith high
accuracy of 99.6%.

5. The results are validated through plotting the best vali-
dation performance, confusion matrix, and region of con-
vergence (ROC) analysis for the classification of faults in
dissimilar PV technologies, i.e., thin-film and crystalline.
The rest of the article is organized as follows: mathematical

modeling of the developed system is explained in Section-II.

VOLUME 8, 2020 102237



A. Ul-Haq et al.: Modeling and Fault Categorization in Thin-Film and Crystalline PV Arrays

SCG algorithm is explained in Section-III. Obtained results
and computations are detailed in Section-IV. The conclusion
is given in Section-V.

II. SYSTEM MODELING
Two different PV arrays are considered for the classification
of faults, including p-n hetero-junction (thin-film; amorphous
silicon) and p-n homo-junction. The five-parameter model
is selected over the seven-parameter model due to higher
accuracy for fault analysis in crystalline PV array, as depicted
in Figure 1 in which a single PV cell is coupled in parallel to
one diode as a current (IL) source [11].

FIGURE 1. Five parameter equivalent PV Model.

The shunt resistance and series resistance are characterized
by Rsh. and Rs, respectively. n is an ideality factor. The value
of Isc signifies short circuit current. TR represents working
temperature, while TSTC is the temperature at standard test-
ing condition, i.e., 25◦C. The coefficient of Isc and Voc are
articulated as ki and kv, respectively. The irradiance at STC
is denoted by GSTC . Nsr and Npa are total number of series
cells and parallel PV cells, respectively. The semiconductor’s
energy bandgap is signified by Ego. The output current of PV
module is represented by Ioutput, as found in Eq. (1).
Thermal voltage, open-circuit voltage, and short-circuit

current are characterized by Vt , Voc and Isc, respectively as
given in Eqs. (2) & (3) [33, 34]. ISTC and VSTC are current
and voltage at STC, while GR is the irradiance.
Homojunction cells follow superposition theorem. Authors

in [23] adopted an analytical model of heterojunction solar
array, which computes current and voltage parameters of a
PV cell, denoted by J and V , respectively. The a-Si cells use
a triple layer p-i-n form of structure having thick p-n layer
and i-layer of nearly 1 micrometers thickness. The voltage-
dependent charge collection is the most dominant charge
collection mechanism. An analytical expression is obtained
for voltage-dependent photocurrent in [23] to describe current
J voltage V characteristics in thin-film cell. Total current
density is denoted as follows in Eq. (4). Jd and JL represent
forward diode current and photocurrent density, respectively.
The total photocurrent density JL(λ,V ) represent the sum of
current density for the carriers drifting towards the bottom
contact Jb(λ,V ) and the current drifting towards the top
contact Jt (λ,V ) as given in Eq. (5) and Eq. (6). Where1 is a
normalized absorption depth, τb and τt are normalized carrier
for drifting towards bottom and carrier drifting towards the
top contact, respectively. Total photo-generated density is
found by integrating overall incident photon’s wavelength of
spectrum as follows in Eq. (7). Modeling of different PV

materials is explained for describing the diverse behavior
of PV materials under fault conditions due to their different
material composition.

Ioutput = Npa × ([Isc + ki(TR − TSTC )]GSTC )− Npa × Io

×

exp
 V

Nsr
+

Ioutput×Rs
Npa

n× Vt

− 1


−
V × Npa

Nsr
+ Ioutput × Rs

Rsh

 (1)
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ISTC
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)
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(6)

JL(V ) =

∞∫
0

jL (λ,V )dλ (7)

A. DEVELOPED FAULTS IN PV ARRAY
All developed faults are analyzed in three configurations,
including BL, SP, and TCT. The SP is widely used intercon-
nection of PV arrays. The BL interconnection is also a type of
SP interconnection with more internal interconnections than
SP in a design like bridge formation, and TCT in which PV
modules are joint together, as shown in Figure 2.

A Simulink model of a 9 × 7 PV array under electrical
faults is developed to study the performance of faulted PV
array, as shown in Figure 3. Four different fault scenarios are
analyzed in this study, includingmodule mismatch (F1), short
circuit (F2), open circuit (F3), and combined impact of faults
in case of multiple faults scenario (F4).

Module mismatch fault (F1): Module mismatch fault is
analyzed in this case, which is developed by the provision of
non-uniform irradiance to designed 9×7 PV array, as revealed
in Figure 4. Temperature of PV components due to heating
and non-uniform irradiance is also analyzed through applying
35◦C (more than STC 25◦C) to first, second parallel string,
and 38◦C to fourth, fifth, sixth and seventh parallel PV string,
respectively. A 9 × 7 PV array is considered a non-square
matrix due to unequal number of rows ‘m’, and column ‘n’.

Where element ‘11’ denotes row ‘1’ with column ‘1’, i.e.,
PV module ‘1’ in column ‘1’ or first parallel string. The ‘31’
refers to third PV module in first parallel string.
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FIGURE 2. (a) SP, (b) TCT, (c) BL topology.

FIGURE 3. Fault analysis in developed PV model.

Sudden decrease in current and voltage is encountered
due to non-uniform shading, which indicates a severe impact
of low irradiance and high temperature on PV array. The
change in values of current and voltage reduces the power
significantly. The thin-film PV technology has less severe

impact on the performance of the system due to decrease in
current loss.

Short circuit fault with bypass diode failure (F2): This
fault case is observed by introducing short circuit fault
betweenmodules in the PV string. Bypass diode failure is also
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FIGURE 4. Non-uniform shading pattern for 9 × 7 PV array.

analyzed by developing short circuit fault with diode con-
nection. The peak voltage and peak current reduce the power
output significantly after occurrence of short circuit fault in
the PV array. The usage of thin-film PV can optimize the
system’s performance, but power loss still occurs in the both
PV arrays. The occurrence of short circuit fault indicates sig-
nificant change in current, voltage, and power of PV system.
Open Circuit (F3): This fault appears due to loose connec-

tion of modules leading to module disconnection, which is
analyzed in terms of decrease in current, voltage, and power
of PV array.
Multiple Faults (F4): All developed faults are analyzed

under shading for investigation of the combined effect of PV
faults upon the adopted interconnected PV arrays. Sudden
decrease in current and voltage are indicated due to occur-
rence of faults under low irradiance and high-temperature
conditions. The details in change of PV parameters after
occurrence of each fault are detailed in the section of results.
The samples of the affected PV parameters like current, volt-
age, power, irradiance, and temperature are also collected for
classification of PV faults.

The characteristic parameters of a PV array-like irradi-
ance, temperature, short circuit current, open circuit volt-
age, and peak power are analyzed under the different fault
scenarios, and a novel data set of 5 × 1248 is developed
after analyzing and computing 1248 samples of 5 inputs.
The proposed method can classify faults in sixteen different
classes through categorization of faults after applying SCG
algorithm of multilayer neural network. In order to classify
the faults accurately, we need to select feature quantities that
can characterize and recognize the fault signal accurately. The
input data set of 5 × 1248 correspond to 5 PV parameters
(features of fault signal to perform fault categorization). Each
PV parameter has 1248 samples that characterize the different
classes of faults. A 16 × 1248 target data set correspond
to 1248 associated class vectors defining which of sixteen
classes each input is assigned to. Flow chart of the adopted
method is depicted in Figure 5. The multilayer NN uses

SCG as a training algorithm for the categorization of faults,
which updates the weight vectors after comparing output
with target data set of 16 × 1248. It computes the mini-
mum global error, which is used for accurate classification of
faults through computation of confusion matrix. The cross-
entropy (CE) is computed to check the performance. The
algorithm successfully classifies the faults in TCT and SP
type of interconnected PV arrays with categorization in thin-
film and crystalline PV array, as shown in Figure 6.

III. SCG ALGORITHM OF NEURAL NETWORK
Fast-supervised learning algorithm of scaled conjugate gra-
dient (SCG) for PV fault classification is used in this mul-
tilayer algorithm which adjusts the weights in the steepest
descent direction (negative of the gradient) and avoids the
line search per learning iteration in order to scale the step size.
A backpropagationmethod is used in this studywith SCG as a
training algorithm. Three layers, including hidden layer, input
and output layers, constitute the structure of this network. The
input layer propagates the data forward to the output layer
known as forward propagation. A total of five inputs, each
having 1248 samples propagate to hidden layer of 10 neuron
layers to update weights and biases at each iteration. Total
five inputs, including temperature, irradiance, open-circuit
voltage short circuit current,, and temperature, are used in
the input layer. Minimum squared error (MSE) is computed
from the output through the developed network. The error is
calculated based on difference between predicted and actual
outcomes. The derivative of error is computed w.r.t each
weight in the network to back propagate the error and update
the model after minimizing the error. The same process is
repeated multiple times to learn ideal weights. The network
also includes hidden layer of ten neurons and output layer
representing sixteen outputs, which are classifying the faults.
Each layer has the tangent sign as the activation function
known as sigmoid function. The sigmoid function is used for
classification of faults, which constraints the output between
1 and 0. The error is computed by comparing estimated
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FIGURE 5. Flow diagram of the developed scheme.

output to the real output, and then biases and weights are
updated accordingly. The values close to 0 are desirable for
estimating correct output. The cross-entropy is a loss function
for classification problems. The process can be repeated for
specific iterations until global minimum error is achieved.

This SCG algorithm is shown in Figure 7. Let w̃ be the
weight vector and global error function Ẽ . Ẽ might be an
appropriate error function which can be calculated with one
forward pass and the gradient Ẽ ′ with one forward and one
backward pass. where ‘p′ is the number of patterns during
training, and Ep is the error. The term s̃n = E

′′

(w̃k) p̃k is esti-
mated with a non-symmetric approximation as in Eq. (4) [18].

s̃k = En(w̃k )p̃k≈
E ′(w̃k+σk p̃k )−E ′(w̃k )

σk
, 0<σk � 1

(8)

The approximation inclines to the true value of E ′′ (w̃k) p̃k .
The complexity in computation is O(3N2) and O(N)5, and all
this is combined with Conjugate gradient (CG) approach to
get fast computation and more accuracy [18].

The CG approach is combined with model trust region
approach termed as Levenberg-Marquardt algorithm for this
algorithm. The Sk indicates second-order information. It is
computed as follows in Eq. (5).

s̃k =
E ′(w̃k + σk p̃k )− E ′(w̃k )

σk
+ λk p̃k (9)

If sigmoid function δk ≤ 0 in given iteration, then the raise
in λk is determined by Eq. (6). The raise in λk occurs and s̃k
is estimated again as ¯̃sk .

δk = p̃Tk ˜̄sk = δk + (λ̄k − λk )p̃Tk > 0→ λ > λk −
δk

|p̃k |
2

(10)

This Eq.(6) implies that if λk is more then −
(

δk
|p̃k |2

)
, then

δk > 0.The value of λ̄k depends upon Eq.(7) to get an optimal
solution.

λ̄k = 2
(
λk −

δk

|p̃k |
2

)
(11)

δ̄k = δk +
(
λk − λ̄k

)
|p̃k |

2 (12)

αk =
µk

δk
=

µk

p̃Tk s̃k + λk |p̃k |
2 (13)

A comparison parameter (CP) is introduced to raise and
lower the value of scale parameter (SC), i.e., λk for good
approximation, even with a positive definite Hessian matrix.
The values of λk directly increases the step size in such a way
that the bigger value of λk makes the step size smaller. The
step size 1k is found to be in Eq. (10).

CP = 1k =
2δk

[
E(wk )− E(w̃k + αk p̃k )

]
µ2
k

(14)

The1k is a comparison parameter (CP) whose value is close
to 1. If CP is less than 0.25, then scale parameter (SC) is found
in Eq. (11).

SC = λk =
λk + (δk (1−1k))

|p̃k |
2 (15)

If the steepest direction is not equal to zero, then set k = k + 1
and update weight vectors otherwise terminate and return the
w̃k+1 as desired and required minimum weight. This scale
parameter should be greater than zero for a successful reduc-
tion in error. SCG algorithm does not involve user-dependent
parameters as described in algorithm, which is significant
advantage in comparison to line-search based algorithms. The
samples are divided randomly in which 70% samples are used
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FIGURE 6. Illustration of the developed neural network for classification of PV faults w.r.t PV material.

for training, 15% used for testing, and 15% for validation in
training phase of this algorithm. Mean square error (MSE)
is used for judgment of performance of algorithm as found
in Eq. (12).

MSE =
1
n

n∑
i=1

(Ye − Ym)2 (16)

where Ye is estimated, and Ym is measured values of faults
over PV array by the model, respectively.

A. CLASSIFICATION OF FAULTS
The layout of developed neural network is shown in Figure 8.
The layout consists of 5 input each having 1248 samples,
which propagate to hidden layer of 10 neuron layers to update
biases and weights at each iteration. The sigmoid function
is used for classification of faults, which constraints the out-
put between 1 and 0. The error is computed by comparing

estimated output to the real output, and then biases and
weights are updated. The values close to 0 are desirable for
estimating correct output. The cross-entropy is a loss function
for classification problems. The process can be repeated for
specific iterations until global minimum error is achieved.

The data set of 5×1248 is collected through characteristic
curve analysis and computation of PV parameters after fault
occurrence using MATLAB, as shown in Table 2. The 70%
of the described data set is used for training, while rest of
the 30% data is equally divided for testing and validation of
results. These inputs are taken through 5 × 1248 input data
set. The output layer consists of 16 outputs that classify data
in sixteen different classes of faults. The input parameters of
data set are shown in Table 2. All collected input data set
5 × 1248 and target data set of 16 x1248 are then used for
categorization of faults in sixteen different classes through
training algorithm of SCG.
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FIGURE 7. SCG algorithm of neural network for fault classification.

FIGURE 8. Layout of the developed neural network for PV system.

The developed fault scenarios are classified through apply-
ing neural network backstage propagation algorithm after
analysis of characteristic curve as described above. The
obtained graphical results are presented in the next section.

IV. RESULTS AND DISCUSSION
All the developed faults are analyzed through I-V curve anal-
ysis in this section. A 9×7 PV array is modeled in MATLAB

with a PV module of 150 W each. The technical specifica-
tions of the two different PV module, including crystalline
module of Ningbosolar electric power and thin-film (a-Si)
module of Xunlight, are used for collection of data set as
given in Table 3. A total of 9.1 kW power peak is generated
in case of no fault operation of the developed 9× 7 PV array.
Module Mismatch Fault (F1): The calculated values under

this fault are contained in Table 4. Characteristic curve of PV
array under fault free operation is shown in Figure 9. Severe
partial shading of PV array develops module mismatch fault,
as shown in Figure 10. Three interconnections, including
TCT, BL, and SP, are compared in terms of characteristic
curve. Sudden peak appears in characteristic curve due to
unexpected decrease of current. An abrupt reduction in the
value of current due to shading indicates a high impact of
irradiance on PV array. The change in values of current and
voltage reduce power from 9.20 kW to 5.80 kW in total
cross-tied, 5.10 kW in bridge-link (BL), and 4.95 kW in
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TABLE 2. Considered parameters for input data set.

TABLE 3. Parameters of the studied PV modules.

TABLE 4. Computations of PV model for module mismatch fault (F1).

series-parallel (SP) with multiple peaks in the PV curve,
as depicted in Figure 10 and Figure 11. The thin-film PV tech-
nology improves the performance in severe shading condi-
tions by decreasing sudden current loss. The power increases
from 5.80kW to 6.03 kW in TCT configuration, 5.10kW to
5.80 kW in BL interconnection, and 4.95 kW to 5.70 kW in
SP arrangement, respectively.

It is worthwhile to note that the thin-film performs bet-
ter than polycrystalline with improved power peak. This
fault analysis shows that irradiance, temperature are the

parameters which have significant impact on power output
of PV system

The TCT perform better than other interconnections BL
and SP topology in module mismatch fault (F1) and aided in
optimizing performance of PV array.
Short Circuit Fault With Bypass Diode Failure (F2): The

peak voltage and peak current reduce the power output sig-
nificantly from 9 kW to 7.2 kW in SP, 6.6 kW in BL and
6.08 kW in TCT configuration as revealed in Figure 12 after
occurrence of short circuit fault in PV array. The thin-film
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FIGURE 9. Characteristic curve of PV array under the fault free scenario.

FIGURE 10. Characteristic curve for module mismatch fault (F1) (polycrystalline).

FIGURE 11. Characteristic curve for module mismatch fault ‘F1’ (TF).

PV array achieves better than poly-crystalline PV array by
reducing power loss and increasing power from 7.2 kW to
7.6 kW in SP, 6.6 kW to 7.1 kW in BL interconnections, and
6.08 kW to 6.25 kW in TCT configuration as demonstrated
in Figure 13. The computed values of PV model under ‘F2’

are given in Table 5. The utilization of thin-film can improve
the power loss minimization and optimize the system’s per-
formance, but still, power loss occurs in both PV arrays.

The SP arrangement accomplishes better than the other
interconnections under ‘F2’ scenario and indicates that
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FIGURE 12. Characteristic curve for short circuit fault (F2) (Polycrystalline).

FIGURE 13. Characteristic curve for short circuit fault (F2) (TF).

TABLE 5. Computations of the PV model during short circuit fault (F2).

selection of suitable interconnection can impact the perfor-
mance of PV system.

Enhanced peak power is attained in SP configuration than
that of TCT and BL interconnections with the use of of thin-
film (a-Si) PV technology, as evident from Figure 13.

Open Circuit Fault (F3): As depicted in Figure 14 and
Figure 15, TCT interconnection outperforms the other inter-
connections with minimization of power loss and signifi-
cant current loss. In with polycrystalline PV, maximum peak
power increases from 8 kW of SP to 8.69 kW in TCT and
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FIGURE 14. Characteristic curve for open circuit fault (F3) (Polycrystalline).

FIGURE 15. Characteristic curve for open circuit fault (F3) (TF).

TABLE 6. Computations of PV model for open circuit fault (F3).

8.1 kW of BL. Computed values of PV model under (F3) are
given in Table 6. It is seen that thin-film does better than poly-
crystalline under this fault situation, as shown in the curve
analysis.
Impact of Multiple Faults (F4): It is conducted for analysis

of performance of all adopted interconnection with thin-film
and crystalline material. The power reduced from 8 kW to

5.0 kW in SP, 4.85 kW in BL, and 5.0kW in TCT inter-
connections with polycrystalline PV array, as illustrated in
Figure 16 and Figure 17. Computed values of the PV system
under multiple fault scenario are given in Table 7.

The produced power decreased from 8kW to 5.21kW in
SP interconnection, 5.4 kW in BL, and 5.3 kW in TCT with
thin-film PV technology, as revealed in Figure 16.
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FIGURE 16. Characteristic curve for multiple fault (F4) (polycrystalline).

FIGURE 17. Characteristic curve for multiple fault (F4) (TF).

TABLE 7. Computations of PV model under multiple faults (F4).

The thin-film PV array performs better than polycrys-
talline in all developed fault cases. A data set of 5× 1170
is generated through computing and analyzing parameters of
developed PVmodel. All considered faults are then classified
and categorized through DNN in next section.

A. RESULTS FOR CLASSIFICATION OF PV FAULTS
The input data consisting of PV parameters is trained over
101 iterations with NN. The results are evaluated in terms of
cross-entropy (CE), which specifies that the minimum global
error (MGE) is accomplished. The data set is trained through
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FIGURE 18. Graph showing best performance validation at epoch 95.

SCG algorithm, and performance is measured through plot-
ting confusion matrix, ROC plot analysis, and validation of
performance through plotting cross-entropy (CE) with num-
ber of epochs. The best validation performance is indicated by
plotting cross-entropy (CE) of training, testing, and validation
data on Y-axis with number of iterations on X-axis, as shown
in Figure 18. The performance is computed for each epoch,
and best performance is chosen at a point when all coincide
at same point. At that point in time, the training should
be stopped, and no further iterations should be proceeded.
It means that no further training is required, and if done,
it may mispredict the results. The greatest validation presen-
tation is 0.0001392 at epoch 95, as depicted in Figure 18.
This graph shows the value of achieved cross-entropy (CE)
for each iteration. The less value of CE indicates proper
classification and less error in classification of faults, which
is achieved by this NN classification. The X-axis and Y-axis
indicate the number of iterations, i.e., 101 epochs and CE for
each iteration, respectively. The phenomenon of overfitting is
also indicated in the graph due to difference in the value of
cross-entropy for training and testing data at epoch 101.

Training states are shown in Figure 19 in which first plot
shows less value of gradient ‘0.37929e-05’ at epoch 101,
which indicates the network is learning up to a great extent
due to reasonable adjustment of the weights and biases. The
proper adjustment in weights and bias make the network
more reliable and increase the chances of accurate classifi-
cation. The validation plot shows the six validation checks at
epoch 101. This plot shows the points where failure across
certain limit is an endpoint for training, indicating the start
of overfitting of data. Failure of values after epoch 50 can
be seen where overfitting of data is also started, as shown
in Figure 19. The plots show the variation of gradient error,
which is 0.37929e-05 at epoch 101, and number of validation
checks are six at epoch 101.

The confusion matrix indicates successful classification
of sixteen different fault classes, including with accuracy of
99.6%, as shown in Figure 20. The confusionmatrix indicates
successful classification of sixteen different classes of faults
including 1) module mismatch in polycrystalline with SP,
2) short circuit in polycrystalline with SP, 3) open circuit
in polycrystalline with SP, 4) multiple faults in polycrys-
talline with SP, 5) module mismatch in thin-film with SP,
6) short circuit in thin-film with SP, 7) open circuit in thin-
filmwith SP, 8) multiple faults in thin-filmwith SP, 9) module
mismatch in polycrystalline with TCT, 10) short circuit in
polycrystalline with TCT, 11) open circuit in polycrystalline
with TCT, 12) multiple faults in polycrystalline with TCT,
13) module mismatch in thin-film with TCT, 14) short circuit
in thin-film with TCT, 15) open circuit in thin-film with
TCT, 16) multiple faults in thin-film with TCT, with accuracy
of 99.6%. Diagonal element of matrix represents the correctly
predicted samples. The classification of faults in sixteen dif-
ferent classes is shown in Table 8.

The training data is used for determining the weights and
thresholds of the PV models given input and targets data set.
The validation data set is a non-training set whereas testing
data is a set of data that indicates the unbiased performance
estimates. Separate confusion matrix is plotted for all three
data sets, as shown in Figure 20, which describe the per-
formance of classification model. It permits the conception
of training algorithm’s performance through identification of
confusion between different classes. Information about over-
fitting of data can also be extracted by using confusionmatrix.
Significant difference in the results of training and testing
data can indicate overfitting of data, as indicated in Figure 20
and Figure 22. Nearly 96.6% accuracy is achieved in predict-
ing class 1 fault for training data, as shown in Figure 20,
while 75% accuracy is achieved in predicting class 1 for
testing data, as shown in Figure 22. All the remaining classes
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FIGURE 19. Plot showing training state.

FIGURE 20. Training Confusion matrix for 16 classes of fault indicating CF1-CF16.

are successfully predicted for both training and testing data,
as shown in Figure 20-22.

The rows correspond to the predicted fault class, i.e., output
fault class, while column corresponds to target fault class. The
diagonal cells denote the correctly classified classes, while
off-diagonal values are incorrectly classified or confused
classes.
1) True positive (TP): accurately foreseen faulty classes
2) True negative (TN): accurately foreseen non-faulty

classes
3) False positive (FP): Incorrectly predicted fault classes,

which means they do not belong to that class.

4) False negative (FN): Incorrect prediction of non-faulty
class, whichmeans that they belong to that fault class but
misclassified. The error histogram indicates very less
error in classification of faults, as shown in Figure 22.
The histogram shows very less error in classification of
faults, i.e., 0.007901 in testing, validation, and training
samples.

Confusion matrix is used for describing and evaluating
the performance of classifier on the test data while the ROC
graph summarizes the confusion matrices generated for each
threshold without having actual calculation of them. In other
words, Receiver Operator Characteristic Curve can assist in
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TABLE 8. Classification of PV faults in different classes.

FIGURE 21. Validation confusion matrix for 16 classes of fault indicating CF1-CF16.

determining the value of best threshold. Confusionmatrix and
ROC are selected for assessing the classification capabilities
of the trained NN classifier in this study. A confusion matrix
gives a complete picture about performance of classifier
and allows computation of various classification metrics,
which is the main reason for selecting confusion matrix with

ROC to assess the performance of proposed neural network
training algorithm. Confusion matrix is best performance
evaluation of multiclass problems. The results of region
of convergence (ROC) are given in Figure 23. The ROC
uses two parameters including false and true positive rate
sensitivities with various thresholds for showing performance
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FIGURE 22. Classification of sixteen different fault classes via test confusion matrix and all confusion matrix.

FIGURE 23. Results of ROC for accurate fault classification.

of classification model. All results are also given for accurate
evaluation of results, as shown in Table 9 and Table 10.
The low values of Cross entropy (CE) near zero indicate
proper classification. The Percentage error indicates

misclassified fraction of sample. The value close to 0 means
very less fraction of misclassified samples, which is desir-
able. Sensitivity and specificity are two measures of fault
prediction model. Sensitivity is denoted by True Positive
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TABLE 9. Comparison of the presented results with literature works.

Rate (TPR), which is proportion of correctly identified class.
It means a correctly classified fault among fault positive
population (Class = 1) represented as Eq. (13).

Sensitivity = TPR =
TP

TP+ FN
(17)

Specificity is a measure of True Negative Rate which denotes
the percentage of the known negatives among the fault nega-
tive population (class = 0) denoted as Eq. (14).

Specificity =
TN

TN + FP
(18)

False Positive Rate (FPR) is a proportion of identified pos-
itive (identified faults) among the population which does
not belong to that fault class. It is equal to 1-specificity.
Specificity Sensitivity, which is the True Positive Rate
amongst the diabetes-positive population. Sensitivity = True
Positives/(True Positives + False Negatives). The overall
performance can be evaluated by area under the curve in the

region of convergence (ROC) plot as shown in Figure 23.
It represents the ability of classification algorithm to dis-
tinguish 1s (positives) from 0s (negatives).the plot shows
the accurate classification as results of both specificity and
sensitivity are close to 1 indicating 99.6% accuracy of fault’s
classification.

Accuracy =
TP+ TN

TP+ FN + TN + FP
= 99.6% (19)

The ROC plot shows points in the upper left corner indicat-
ing the accurate classification of 8 fault classes with 99.6%
sensitivity and specificity. More accuracy than test ROC is
achieved in predicting class 1 fault for train ROC as shown
in Figure 23. All remaining classes are successfully predicted
for both train ROC and test ROC. The same results are
observed in the confusion matrix, which also shows overfit-
ting of data for predicting faults in both classifiers.

A comparison of the presented results with that of liter-
ature works is shown in Table 9. All faults are accurately
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TABLE 10. Computation of error and cross-entropy in samples.

FIGURE 24. Error histogram indicating error in the classification of faults.

classified in sixteen different classes with 99.6% accuracy.
None of the previous research has classified faults in dif-
ferent PV configurations and materials, which is a signifi-
cant contribution of this study. The confusion matrix clearly
shows that 99.6% accuracy of classification and 0.4% mis-
classification rate in prediction of fault classes. Different PV
materials are also differentiated in the classification faults.
Sixteen different classes of faults are differentiated based
on irradiance, temperature of individual PV modules, open
circuit voltage, short circuit current, and generated peak
power. Table 10 shows the computation of errors and cross-
entropy in separate samples of the data set. The 1248 samples
of five inputs are separated into 874 samples for training,
which achieved CE of 5.78017e-0 and error of 1.14416e-1 %,
187 samples for validation, and 187 samples for testing
which achieved 16.44026e-0 and 16.39030e-0 values of CE
respectively. Approximately 0% and 8.02e-1 % of errors are
achieved by validation and testing data, respectively. Low val-
ues of CE indicate excellent performance, which is achieved
by this training algorithm. The low value of error indicates the
reduced misclassification rate, which is desirable for proper
classification of faults.

V. CONCLUSION
In this study, various types of PV faults, including module
mismatch fault, open circuit, short circuit, and multiple faults
under partial shading, are classified in SP, and TCT inter-
connections made of polycrystalline and thin-film PV arrays
throughmultilayer neural network (MNN). To be extensive in
the research study, a large input data set of 5×1248 and target
data set of 16×1248 are developed for categorization of faults

in sixteen different classes of PV faults. The characteristic
curve of three different configurations of 9 × 7 PV array,
including SP, BL, and TCT, is analyzed for analysis of the
impact of faults on various parameters of PV array like short
and, open circuit voltage, and peak power etc. The SCG
training algorithm classified all the developed faults in thin-
film and polycrystalline PV materials with high accuracy
of 99.6% and a fast-computational time of 0.08 sec, which
is not reported in the related literature.

The results are validated through plotting best validation
performance, confusion matrix, and region of convergence
(ROC) analysis for classification of faults in different PV
technologies, which may be considered a unique attempt of
the presented research study. The ROC plot and confusion
matrix plot show the 99.6% accuracy with fast computational
time of 0.08 sec. This research work does not only help timely
diagnosis of PV faults but also categorizes them in two differ-
ent PV materials, which may lead towards the longer lifespan
and better performance of a PV system. Classification of
faults in crystalline and thin-film PV configurations with high
accuracy is performed in the proposed work. Further research
is needed to classify faults like thin cracks of crystalline and
thin-film PV modules using advanced techniques. Practical
implementation of proposed work can also be considered as
a future enhancement of the proposed work. The proposed
method can be implemented via low-cost microcontrollers for
real-time applications.
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