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ABSTRACT The effect of the atmosphere on the propagating energy during the remote sensing imaging
simulation is one of the most critical factors affecting the quality of image. The classical methods retrieving
atmospheric optical parameters (AOP) have shortcomings in GPU-based imaging simulation application.
This paper proposed a method based on deep neural networks (DNN) and principal component analy-
sis (PCA) to compute AOP. Firstly, MODTRAN is employed to obtain large numbers of AOP as original
spectrum set in different weather and observation geometry conditions. Then the dimension of original
spectrum is reduced by PCA. Next, a DNN is constructed and trained using compressed spectral signatures.
Finally, estimated AOP are obtained through inverse PCA by decompressing the output of DNN. The results
show that original AOP and estimated AOP have a high spectral similarity which relative error is less than
2%. Compared with the classical methods, DNN can be used to accurately and fast compute AOP with any
kind of conditions in remote sensing imaging applications, without consuming large of graphic memory.

INDEX TERMS Atmospheric optical parameters, imaging simulation, deep neural networks, principal
component analysis, atmospheric downward radiation.

I. INTRODUCTION
Remote sensing imaging simulation based on a 3D scene
(RSIS-3D) uses computer simulation technology to simu-
late the imaging process of remote sensor, it can accurately
analyze factors and mechanism that affecting the quality of
image in the process of imaging. RSIS-3D owns significant
application value in sensor design, remote sensing data pro-
cessing, image quality evaluation and target characteristic
research [1]–[5].

Compared with classical image synthesis methods [6], [7],
RSIS-3D addresses complex 3D scene and requires a large
amount of calculation. GPU based ray tracing method is
employed to compute the at-sensor radiation of remote
sensor parallel [8]. Several kinds of parameters of atmo-
sphere will be involved in calculating of the at-sensor radi-
ation, which are termed as atmospheric optical parameter
(AOP), including transmittance, sky diffuse, path radiation
and aerosol optical thickness. These parameters are one
of the key factors affecting the quality of remote sensing
imaging simulation. Besides, these parameters are also very
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important for many other remote sensing applications, e.g.
atmospheric correction, satellite instrument calibration, earth
surface investigation.

The best way to obtain accurate AOP is using observa-
tion instruments to measure the atmosphere synchronously.
Hu measured solar radiation through atmosphere by CE318
sun-photometer, at the same time as MODIS imaging to
investigate the atmospheric aerosol optical properties over
Lake Taihu [9]. Yet this method is lack of flexibility, and
it is very time-consuming and high cost. The most widely
used method is to employ radiation transmission software,
e.g. MODTRAN, to compute AOP according to weather
condition and observation conditions. The Digital Imaging
and Remote Sensing Image Generation (DIRSIG) used the
MODTRAN radiation propagation model to calculate exo-
atmospheric irradiance, emitted and scattered radiances and
path transmission predictions, supporting the generation of
real-time infrared scene [10]. This mothed works well in
many other remote sensing applications [11]–[13], how-
ever it is unsuitable for RSIS-3D as the radiation trans-
mission software is not compatible for GPU platform. The
look-up table (LUT) method is another commonly used
way to provide AOP for some remote sensing applications.
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Darvishzadeh et al. [14] generated several LUTs in different
size to inverter the canopy’s chlorophyll content and studied
the effect of the LUT size on the retrieval accuracy by using
analysis of variance. But LUT-based method is also restricted
by the limitation of the sampling resolution of LUT and
interpolation method [15], [16]. it will reduce computation
efficiency of RSIS-3D as its large amount of graphics mem-
ory cost.

The above three typical methods have their own advan-
tages and shortcomings for RSIS-3D on different views,
as descripted in the table below.

Atmosphere acts different optical features under different
meteorological conditions and observational geometries. The
transmission of light in the atmosphere can be seen as a
complex black box system and can be expressed as a compos-
ite function which mapping meteorological conditions and
observational geometries to AOP spectral signature. DNN is
able to approximate any continuous composite function map-
ping one finite dimensional space to another finite dimen-
sional space with arbitrary precision if the DNN satisfies the
following two conditions: 1) the output layer of the DNN
adopts a linear activation function, 2) having at least one
hidden layer and the hidden layer has a ‘‘compressed’’ prop-
erty. This is so called the universal approximation theorem of
DNN, which indicates that DNN can be used to represent any
composite function [17], [18]. Therefore, DNN can be used
to imitate the complex black box system of atmosphere and
precisely calculate AOP.

In this study we propose a method that using DNN to
calculate these AOP. Depending on remote sensing imaging
model, a large number of AOP spectrum are computed by
MODTRAN under different weather conditions and obser-
vation geometries. Consideration the high dimensions of the
spectral signature, PCA is employed to reduction the dimen-
sion of spectrum and the compressed spectrum are treated as
training and test sample of constructed DNN, and the non-
linear relationships between weather conditions, observation
geometries and AOP are described by the well-trained DNN.

II. METHODOLOGY
A. ATMOSPHERIC OPTICAL PARAMETERS USED IN
RSIS-3D
A part of radiation emitted from solar is scattered back to
space and the other goes through the atmosphere and reach
at the earth, and reflected by earth surface and goes through
the atmosphere again, which carrying on the characteristic
information of atmosphere and surface, then been captured
by satellite sensor [8]. The received energy of remote sensor
operating in visible and near infrared bands L (λ) is:

L(λ) = PSFλ((E0
s (λ) ∗ τdown ∗ BRDF(θs, θv, ϕ, λ)

+

2π∫
ϕ=0

π/2∫
θ=0

Ldown(θ, ϕ, λ)
BRDF(θ, θv, ϕ, λ)

π
dθdϕ)∗ τup

+Lpath(θv, ϕv, λ)) (1)

where PSFλ (x) is point spread function which are used
to characterize the spatial modulation effect of atmo-
sphere, λ means there variables are wavelength depen-
dent, BRDF (θi, θo, ϕ) is bidirectional reflectance distribu-
tion function of earth surface and the other variables are called
atmospheric optical parameters, they are:

1. E0
s (λ): the spectral irradiance of solar radiation out-

side the atmosphere, is mainly affected by the distance
between the solar and the earth which depends on the
date of observation.

2. τdown (λ) : The spectral transmittance of the atmosphere
along the incident direction of sun light from top of
atmosphere to earth surface, is mainly affected by atmo-
spheric mode, aerosol mode, visibility, target altitude
and solar zenith angle.

3. Ldown (θ, ϕ, λ) : The downward spectral radiance from
a sampling direction with zenith θ and azimuth ϕ in the
2π space above the target surface, also called sky light,
is mainly affected by observation date, atmospheric
mode, aerosol mode, visibility, target altitude, solar
zenith angle, incident zenith θ and relative azimuth ϕ
between solar and sampling direction.

4. τup (θV , ϕV , λ) and Lpath (θV , ϕV , λ): The upward spec-
tral transmittance and path radiation from earth surface
to satellite sensor, are mainly affected by atmospheric
mode, aerosol mode, visibility, target altitude, and satel-
lite observation zenith angle. In addition, path radiation
also affected by observation date, the solar zenith and
relative azimuth between the sunlight and line of sight
of remote sensor.

5. τmol (λ) and τaer (λ): The optical thickness of atmo-
spheric molecules of very layering of atmosphere in
a stratified atmospheric model, are mainly affected by
atmospheric mode, aerosol mode and visibility, which
are used to characterize the spatial modulation effect of
atmosphere in PSFλ (x)

In RSIS-3D, these AOP are the most critical factors during
the calculation of at-sensor radiation as the complex compo-
nents and instabilities of atmosphere. To accurately and fast
acquire atmospheric radiation transmittance feature is the key
to ensure the accuracy of at-sensor radiation.

Among these five class of AOP, atmospheric downward
radiation, Ldown (θ, ϕ, λ) is the most instable as it has 8 influ-
encing factors and the most complicated mechanism. There-
fore, this paper takes downward radiation as an example to
demonstrate how to construct and train a DNN to calculate
AOP.

B. SPECTRUM REDUCTION DIMENSION WITH PCA
Principal component analysis (PCA), a widely used method
for feature extraction and data analyses, can be employed
to reduce the dimension of spectral signature without losing
too much information. The goal of PCA is to condense the
original spectrum set into a feature space via linear transfor-
mation so that the new compressed spectrum signature has no
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correction between each other. The compressed spectrum sets
are in a feature space which is defined by the eigenvectors
of covariance matrix C of the original spectrum sets. The
covariance matrix C , C = E

[
(x − µ) (x − µ)T

]
, with x

as the spectral signature and µ = E (x) as the mathemati-
cal expectation of the spectrum sets, is practice calculations
replaced by an estimated Ĉ :

Ĉ =
1
n

∑n

i=1

(
xi − µ̂

) (
xi − µ̂

)T (2)

where x is a n-dimension spectral signature and µ̂ is the
estimated mean vector over n sample spectral signatures.

The eigenvectors u1, u2 . . . un and corresponding eigen-
values λ1, λ2 . . . λn, ordered in decreasing order, are calcu-
lated from covariance matrix Ĉ . The eigenvalues describe
the amount of information recovered by the corresponding
eigenvector and give the components in order of significance.
In fact, it turns out that the eigenvector with the highest
eigenvalue is the principle component of the data set [20].
The first principal component u1 containsmaximum informa-
tion as its corresponding eigenvalue λ1 is the maximum, the
second principal component u2 contains about the following
maximum information as its corresponding eigenvalue λ2 is
the 2nd-maximum, etc. Information loss decreases by a step
to the next.

The first k eigenvectors are chosen as a new spectral bases
if their contained information are great than a threshold p
defined by the user, such as 99%, and components with lesser
significance are ignored.

p =

k∑
i=1
λi

n∑
i=1
λi

(3)

The number of chosen eigenvector k is clearly smaller
than original spectrum dimension n. Even a small value of
k = 4 . . . 10 is enough for high quality reconstruction of
original spectral sets [20]. And the lossy information defined
as reconstruction error Je is:

Je = 1− p =

n∑
i=k+1

λi

n∑
i=1
λi

(4)

For compression purposes, eigenvectors ui, i = 1 . . . k,
and matrix xT ui are needed. To decompress, the estimation
of the original spectral signature is received from:

x∗ =
p∑
i=1

(
xT ui

)
ui (5)

C. DEEP NEURAL NETWORK
Deep learning methods can be described as a common
pattern: specific training and test data sets, cost functions,
optimization processes and model structures. Deep neural
network is a high-efficiency and classical model of deep

learning. This paper employees DNN as learning model to
estimate AOP.

Key points of constructing DNN as deep learning model
include preparing and preprocessing training data, determin-
ing network structure and training the network, while network
structure determined by depth and width of the network and
weight and biases of each neural, and the network train-
ing process includes determining cost function and training
algorithm.

1) TRAINING DATA AND PREPROCESSING
It is unrealistic to measure the actual downward radiation
as training samples of DNN under different visibilities and
solar zenith angles. Therefore, MODTRAN is employed to
calculate the downward radiation under different conditions,
which are training and testing samples of DNN.

In atmospheric radiation transfer model, there are 8 main
factors affecting the downward radiation of the atmosphere
above the target hemisphere space, including atmospheric
mode, aerosol mode, observation date, visibility, target alti-
tude, solar zenith angle, sampling zenith angle θ and sampling
relative azimuth ϕ. Among these parameters, atmospheric
mode and aerosol mode are discrete enumeration type and
the others are continuous.

More input variables in DNN, more detail characteristics
can be learned, and more difficulty to train it as its nonlinear
increasing complexity. In this research, four most important
factors, visibility, solar zenith angle, sampling zenith angle
and sampling relative azimuth, are selected as input variables.
Target is assumed at sea level whichmeans target altitude is 0.
For different atmospheric mode, aerosol mode and date, the
same method can be employed to train networks for different
combinations.

Weather condition is mainly characterized by visibility,
which is very good when visibility is 23KM while it is poor
when visibility is 5KM. Therefore, visibility ranges from
5Km to 23Km with an interval of 1km, for a total of 19 dif-
ferent visibility are selected as input variable.

For a visible and near infrared remote sensor, it is not
suitable for earth imaging when solar zenith is greater than
60◦. Therefore, solar zenith ranges from 0◦ to 60◦ with an
interval of 5◦, for a total of 13 different solar zeniths are
selected as input variable.

Incident radiation caused by skylight can be ignored when
sampling zenith angle is close to 90◦, andMODTRANwould
crash when encountering a situation of tan 90◦. Therefore,
sampling zenith angle ranges from 0◦ to 85◦ with an interval
of 5◦, for a total of 18 different sampling zenith.
Atmospheric down-radiation is symmetrically distributed

with main plane of solar. Therefore, samples relative azimuth
ranges from 0◦ to 180◦ with an interval of 10◦, for a total
of 19 different relative azimuth.

Atmospheric down-radiation is wavelength-depended. For
visible and near infrared, wavelength ranges from 400nm
to 1000nm with an interval of 5nm. Therefore, a radiation
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spectral signature with 121 bands will obtained as output of
DNN.

As above, the four input variables can compose a total of
19× 13 × 18× 19 = 84,474 combinations, forming 84,474
different observation conditions. So an 84474∗4 matrix and
84474∗121 matrix are constructed to present input indepen-
dent variable and dependent spectral radiation, respectively.

To avoid numerical calculation errors while training DNN
preventing the saturation of neuron output caused by exces-
sive net input, and to improve training speed, the input
data and output spectrum value are normalized to [0,1],
respectively.

2) STRUCTURE OF DNN
It takes two steps to construct a DNN to calculate AOP.
Firstly, definition input layer and out layer of DNN. To cal-
culate down-radiation by DNN, the input of DNN is a 4D
vector (X = (x1, x2, x3, x4))is a vector consists of visibility,
solar zenith, sampling zenith and samples relative azimuth)
and the desired output is a 121-D vector. It is must be a
very complex DNN with such a high-dimension output and
a huge challenge for training algorithm. Wang et al. [19]
converted this complex DNN with high-dimension output
into many simple DNNs with 1-dimension output and trained
these simple DNN respectively, but some questions were
introduced during the process of training and application.
In this research, we use PCA to tackle this issue. The samples
spectral signatures are compressed by PCA to satisfy the abil-
ity of DNN and the top k principal components are selected
as basis of compressed samples. So, the output of DNN is a
k-D vector. Then inverse PCA operation (iPCA) is executed
and estimated spectral signature(121D) is obtained. Themean
square error (MSE) between estimated and original spectral
signature is employed as lost function.

Secondly, definition hidden layer depth and width and
their activation function. As of today, there is no theoretical
research to guide how to set up number of hidden layer and
number of neurons in each hidden layer, depending on the
scale and internal relation of the training data, even depending
on adopted training algorithm. Empirical method is employed
to determine these hidden layer parameters, starting from
‘‘shallow and thin’’ to ‘‘deep and fat’’ network, training DNN
and measuring its performance. If the loss function cannot
converge or gap between output and target does not meet
expected threshold, increasing the number of neurons and the
number of layers and retraining the new network. According
to the universal approximation theorem, we employed sig-
moid function as activation function of hidden layer.

The constructed DNN can be represented by:

zl = σ
(
Wl
∗ zl−1 + bl

)
(6)

where Wl and bl are weights and biases of l th layer, respec-
tively, σ (u) is sigmoid function serving as activation function
and zl is output of l th layer, the input of first layer z0 is input
variable x, and output of last layer zL is output radiation y.
The corresponding DNN can be show as follows:

FIGURE 1. Dataflow of DNN-based method to compute AOP.

FIGURE 2. The eigenvalues of covariance matrix in decreasing order.

TABLE 1. Advantages and limitations of typical AOP obtaining method.

Besides, a linear output function is employed as the acti-
vation function of output layer. And 80% of 84,474 samples
are treated as training set and the other 20% are test set.

III. RESULT AND DISCUSSION
A. SPECTRAL COMPRESSION RESULTS WITH PCA
The dimension of spectral signatures calculated by MOD-
TRAN is up to 121 bands. It is difficult to directly train DNN
with such high-dimension output data. PCA is employed
to reduce the dimension of the original spectral signatures
without too much information lossy.

Fig. 2 shows the eigenvalues of covariance matrix of orig-
inal spectral signature sets in decreasing order and Table. 1
shows the ratio of contribution of several components.
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TABLE 2. Ratio of contribution (RoC) of top four components.

FIGURE 3. Performance of different structural neural network.

The first principal component describes the greater per-
centage (96.04%), while the second component illustrate
about 3.93 of total variance. It can be found that the accumu-
lative variance of the top four components is up to 99.99%.
So, it could be concluded that the top four components could
almost express the total spectral information.

B. DNN TRAINING RESULTS
To train the constructed DNN, gradient descent (GD) com-
bined algorithm with backpropagation (BP) is employed as
training algorithm. The weights and biases of DNN are
updated according to the gradient of everymini-batch training
samples.

We set the average relative error between DNN output
(estimated spectrum) and target (original spectrum) is not
greater than 0.1% and the maximum relative error is not
greater than 2%. According to this standard, we start from a
single hidden layer with 50 neurons, and gradually increases
the number of neurons and the number of layers until the
network performance reaches the above preset target. Fig. 3
shows relative error of spectral signature at 550nm of DNN
with different structure.

The figure shows the relative error of DNN with a single
or two hidden layer(s) or different number of neurons for
atmospheric down-radiation at 550nm, respectively. It shows
that network performance with two hidden layers is signif-
icantly better than network with only one hidden layer. The
performance with one hidden layer increases with the number
of neurons increases from 50 to 120, but it decreases when
the hidden layer has 150 neurons. It shows that the more
complexity of network, the higher requirements for training
algorithm, and adopted gradient descent algorithm cannot

treat such a large network. Average error is less than 0.5%
while maximum relative error is still greater than 3% when
the single hidden layer of DNN has 120 neurons. Comparing
with a single hidden layer DNN, performance of two hidden
layers DNN improves significantly. Performance of two hid-
den layers DNN with [20 10] neurons is much better than
one hidden layer DNNwith 120 neural. Performance of DNN
satisfies the preset requirements when neurons of the double
hidden layer reach at [40 20]. The result DNN is shown as:

C. COMPUTING AOP UNDER ARBITRARY CONDITIONS
Trained DNN in previous section learn the inherent rela-
tionship between input quads (visibility, solar zenith angle,
sampling zenith angle and relative azimuth) and atmospheric
down-radiation from a large number of spectral samples,
and can be used to calculate atmospheric down-radiation
instead of MODTRAN. Other 1000 different conditions are
randomly generated within the range of 4 input variables and
their corresponding downward radiation are also calculated
through the trained DNN and compared with downward radi-
ation calculated by MODTRAN. Fig. 5 shows the downward
radiation spectrum curves calculated by two methods when
visibility is 20km, the solar zenith angle is 32◦, the sampling
zenith angle is 18◦ and the relative azimuth is 125◦. It shows
that the two spectrums, calculated by MODTRAN and DNN
respectively, are almost identical.

Spectral similarity scale is employed to measure the differ-
ence between two spectrums. Comparing with distance-based
or angle-based spectral similarity measurement method, the
spectral similarity scale method can simultaneously measure
amplitudes and shapes of two spectrums. Spectral similarity
value (SSV) representing spectral similarity scale is defined
as:

SSV =
√
d2 +

(
1− r2

)2 (7)

where d is the spectrally generalized 2-norm geometric dis-
tance, used to measure the difference in amplitude between
two spectrums; r is correlation coefficient, used to measure
the difference in shape between two spectrums, defined as:

d =

√∑ (xi − yi)2

max (xi, yi)N

r =

∑
(xi − µx)

(
yi − µy

)
(N − 1) σxσy

(8)

where N represents the dimension of the spectral vector,
µ represents average of two spectrums, σ represents stan-
dard deviation of two spectrums, x and y are the reference
spectrum and the test spectrum identification. To suppress
influence of magnitude of spectrum on similarity, the max
value of spectrums is divided to constraint d between 0-1.

SSV ranges from 0 to
√
2. The smaller the value, the

higher the similarity of the two spectrums; otherwise, the
lower the similarity. SSV has a minimum value of 0 when
two spectrums are completely coincident, and SSV has a
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FIGURE 4. Structure of trained DNN.

FIGURE 5. Generalization ability of DNN.

TABLE 3. SSVs between original and estimated spectral signatures.

maximum value
√
2 when two spectrums are perpendicular

or opposite to each other.
1000 SSVs, between original (MODTRAN’s output) and

estimated spectral signature (DNN calculated), are obtained
for different conditions. To compare DNN-based method and
LUT-basedmethod, a lookup table is also constructed by orig-
inal spectral signatures and other 1000 SSVs, between origi-
nal and LUT-based method estimated spectrum, are obtained.
Table 3 shows the statistical value of these SSVs.

The above table shows that original and DNN-based
method estimated spectrums have a high similarity, with
average SSV is 0.007, a maximum SSV is 0.330, and a
median SSV is 0.004. The minimum SSV of LUT-based
method is 0.000 because the randomly generated condition is
exact matched in LUT and not necessary to interpolate. The
result shows that DNN can be used to quickly calculate the
atmospheric down-radiation under any conditions and has a
good generalization ability.

D. USAGE OF DNN IN RSIS-3D
A well-trained DNN are represented by a composed func-
tion and its parameters (weights and biases of neural) can

rewritten in form of matrix. To calculate the at-sensor radia-
tion in RSIS-3D, this matrix is loaded into GPU and operated
with input quads and the outputs are handle by iPCA to obtain
the desired AOP during the ray-tracing process.

Compared with the conventional LUT-based method that
storing the whole AOP samples in different combination,
DNN-based method only needs to store a trained DNNwhich
only 60 neural and a 4∗121 matrix, which only cost less
than 2.4KB memory while LUT-based method will consume
more than 39MB to store these 84474 original atmospheric
downward spectral signature. DNN-based method can save a
lot of precious graphicsmemorywhen usingGPU to calculate
at-sensor radiance.

IV. CONCLUSION
Atmosphere is the most important transmission medium in
energy propagation of remote sensing imaging. AOP are
critical factors for remote sensing imaging simulation and
determine the accuracy of the simulation results. This paper
proposed a method using DNN to calculate these parameters
and demonstrated how to construct and train the DNN. For
characteristics of optical parameters are sensitive to wave-
length, multiple simple DNNs parallel methods are adopted,
which greatly reduces the network training. The training
results and generalization ability of DNN show that the rela-
tive error between atmospheric down-radiation calculated by
DNN and MODTRAN is less than 2%.
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