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ABSTRACT Most current survey papers classify community detection methods into broad categories and
do not draw clear boundaries between the specific techniques employed by these methods. We survey
in this paper all fine-grained community detection categories, the clustering methods that fall under
these categories, and the techniques employed by these methods for optimizing each objective function.
We provide methodology-based taxonomies that classify static and dynamic community detection methods
into hierarchically nested, fine-grained, and specific classes. We classify the methods into the objective
function they optimize. Each objective function class is classified into clustering categories. Each category is
further classified into clustering methods. Methods are further classified into sub-methods and so on. Thus,
the lowest subclass in a hierarchy is a fine-grained and specific method. For each method, we survey the
different techniques in literature employed by the method. We empirically and experimentally compare and
rank the different methods that fall under each clustering category. We also empirically and experimentally
compare and rank the different categories that optimize a same objective function. In summary, the block-
based, top-down divisive-based, random walk-based, and matrix eigenvector-based methods achieved good
results. Finally, we provide fitness metrics for each objective function.

INDEX TERMS Clustering, community detection, objective function.

I. INTRODUCTION
Community detection is an essential objective in graph min-
ing. A community can be defined as a group of similar
and densely connected vertices that are sparsely connected
with the remaining vertices in the network. Each community
has a certain structure that reflects the degree of interac-
tion between its members. Such structure is analyzed for
gaining insight into the degree of dynamicity between the
members. In a social structure setting, the social network is
clustered to reflect social unities such as families, colleagues,
villages, and social groups. In biomedical setting, densely
connected vertices in metabolic networks are examined for
determining functionally related units [122], [124], [125].
In information forensic setting, densely connected vertices
in criminal networks are examined for determining criminal
organizations [126]. In information systems setting, densely
connected vertices are examined for purposes such as busi-
ness potentials [127].
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Communities can have different domains, properties,
structures, hierarchical organizations, and layers, which led
to numerous perspectives and community detection meth-
ods to be proposed. This, in turn, resulted in unclear
boundaries and overlaps between these methods, which
has necessitated community detection surveys to pro-
vide not only comprehensive, but also fine-grained and
specific categorizations of the methods. Unfortunately,
most current survey papers classify clustering methods
into broad categories and do not draw clear boundaries
between the specific techniques employed by these meth-
ods [56]. Most of them categorize algorithms into broad
two classes [18], [44], [54], three classes [20], [142], four
classes [91], or five classes [92], [93], [94], [137]. Most of
these papers perform the categorizations in the independence
of the following: (1) the objective functions, which the meth-
ods seek to optimize, and (2) the broad clustering categories,
under which the methods fall.

Many survey papers categorized community detec-
tion methods based on the types of their algorithms.
Harenberg et al. [54] categorized algorithms into two classes:
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detect disjoint communities and detect overlapping commu-
nities. The authors provided an empirical review of the algo-
rithms in the two classes. Papadopoulos et al. [94] categorized
algorithms into five methodological classes: divisive-based,
vertex-based, model-based, optimization-based, and cohesive
subgraph-based. Porter et al. [92] categorized algorithms into
five classes: modularity optimization-based, centrality-based,
local search-based, spectral partitioning-based, and physics-
based. Yang et al. [142] categorized algorithms into three
classes: heuristic-based, optimization-based, and similarity-
based. Santo [113] categorized algorithms into eight classes:
statistical inference-based, divisive-based, dynamic-based,
modularity-based, multi resolution-based, spectral-based,
overlapping-based, and k-means-based. Pons [93] cate-
gorized algorithms into five classes: random walk-based,
agglomerative-based, separative-based, classical-based, and
miscellaneous approaches.

Significance: Most current survey papers clas-
sify community detection methods into broad
categories and do not draw clear boundaries
between the specific techniques employed by these
methods [56]. This may lead to the following
problems: (1) the misclassification of unrelated
methods/techniques into a same clustering cate-
gory, and (2) the exhibition of metrics that mea-
sure the quality of methods optimizing a same
objective function to different qualitative behaviors
(these behavior variations can vanish, if the met-
rics are applied to methods that fall under a same
fine-grained class/category). To overcome these
limitations, we introduce amethodology-based tax-
onomy that classifies static and dynamic commu-
nity detection methods into hierarchically nested,
fine-grained, and specific classes. This is the first
paper, to the best of our knowledge, that classi-
fies community detection methods based on the
following: (1) the objective functions they attempt
to optimize, and (2) the clustering categories,
whose underlying techniques are employed by
these methods.

Other survey papers categorized clustering methods for
specific type of networks and communities. Giannini [44]
was the first to categorize community detection algorithms
for Semantic Web data. Xie et al. [137] compared the
accuracy of fourteen state-of-the-art methods for detect-
ing overlapping communities. Orman et al. [91] com-
pared eight disjoint community detection algorithms using
the topological properties of the communities detected.
Crampes and Plantié [20] categorized algorithms according
to the types of output and input data. Coscia et al. [18]
classified community detection algorithms according to
the definition of the adopted community. Malliaros and
Vazirgiannis [79] categorized community detection algo-
rithms using a methodology-based taxonomy. To over-
come the above limitations, we introduce in this paper a

comprehensive survey on static and dynamic community
detection categories, the clustering methods that fall under
these categories, and the techniques that fall under the meth-
ods. We classify methods into hierarchically nested, fine-
grained, and specific classes, as follows:

1) Classifying classes into the following four objective
functions: maximizing internal density, maximizing
structural similarity, maximizing dynamic similarity,
and maximizing partitions separability.

2) Classifying each objective function into the following
clustering categories: vertex centric, network centric,
group centric, and hierarchy centric (for static clus-
tering), and auxiliary update and direct update (for
dynamic clustering).

3) Classifying each clustering category into methods.
4) Classifying a method into sub-methods, and so on.

Thus, the lowest subclass in a hierarchy is a fine-grained
and specific clustering method: the classifications resulted
in 31 fine-grained methods. For each method, we surveyed
the different techniques in literature employed by the method.
We empirically and experimentally compared and ranked the
methods that fall under each clustering category. We also
empirically and experimentally compared and ranked the
different categories that optimize a same objective func-
tion. The contributions of this paper are summarized as
follows:

1) Providing the following methodology-based taxon-
omy, which hierarchically classifies static and dynamic
clustering methods into fine-grained classes: objec-
tive functions Þ clustering categories Þ clustering
methods Þ clustering sub-methods Þ . . .Þ clustering
sub-methods.

2) Surveying the different static and dynamic clustering
methods that fall under each clustering category and
objective function in the provided taxonomy.

3) Discussing the techniques employed by 31 fine-grained
methods for detecting clusters.

4) Empirically and experimentally comparing and ranking
the different methods that fall under each category.

5) Empirically and experimentally comparing and ranking
the categories that optimize an objective function.

6) Providing the fitness metrics for objective functions.

The paper is organized as follows. In Sections II-V,
we review and describe the static and dynamic clustering
methods that maximize the structural similarity, static and
dynamic clustering methods that maximize the internal den-
sity, static clustering methods that maximize the partition
separability, and static methods that maximize the dynamic
similarity, respectively. In Section VI, we provide the fitness
metrics for clustering objective functions. In Sections VII and
VIII, we evaluate the static community detection methods
empirically and experimentally, respectively. In Section IX,
we evaluate the dynamic community detection methods
empirically and experimentally. We provide our conclusions
in Section X.
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FIGURE 1. A methodology-based taxonomy, which hierarchically
classifies the static and dynamic community detection methods that
optimize the structural similarity objective function into clustering
categories, clustering methods, and clustering sub-methods.

II. STATIC AND DYNAMIC CLUSTERING METHODS THAT
MAXIMIZE THE STRUCTURAL SIMILARITY
We review and discuss in this section the static and dynamic
clustering categories and methods that optimize the struc-
tural similarity objective function. Fig. 1 presents our
methodology-based taxonomy, which hierarchically classi-
fies the static and dynamic community detectionmethods that
optimize the structural similarity objective function.

A. STATIC CLUSTERING CATEGORIES AND METHODS
1) NETWORK CENTRIC CLUSTERING CATEGORY
a: METHODS THAT APPLY BLOCK-BASED SUB-GRAPH
SIMILARITY HEURISTIC SEARCH
These methods partition vertices into subgroups called
blocks. They assume that all vertices of a block are stochas-
tically equivalent and have the same probabilities of interac-
tion with each other [3], [85]. They provide a generalization
model of the blockmodel [36] by allowing for data variability
for detecting community structures. These methods aim at
overcoming the limitation of the blockmodel of ignoring the
variation in vertex degree. Towards this, they estimate the
degrees of interaction between each vertex and other vertices.
Peixoto [99] proposed a stochastic block model that detects
community structure by shifting groups of nodes simulta-
neously instead of individual nodes. The model employs an
adjusted version of the Markov Chain Monte Carlo (MCMC)

scheme to simultaneously move multiple nodes at each step.
The movements are performed by rearranging, splitting, and
merging groups of nodes. The proposed scheme samples
partitions from a posterior distribution to improve the mixing
time of the MCMC in empirical situations.

Karrer and Newman [66] proposed a heuristic algo-
rithm that is a degree-corrected version of the blockmodel.
Results showed that the proposed algorithm demonstrated an
improved community detection in complex networks. Xu and
Hero [138] proposed an extension of the stochastic block
model. It is a statistical model for dynamic and time evolving
networks. It can be used for posteriori blockmodeling or
a priori. Chen and Saad [16] proposed a method inspired
by matrix blocking, which is the process of reordering the
columns and rows of a matrix in such a way that the blocks
alongside the diagonal represent dense subgraphs.

b: METHODS THAT APPLY CLIQUE-BASED SUB-GRAPH
SIMILARITY HEURISTIC SEARCH
These methods build communities from cliques. A clique is
a fully connected subset of k vertices. If two cliques share
k − 1 vertices, they are adjacent to each other. The meth-
ods construct a community from a union of cliques that are
reachable from one another. A clique can reach another one
through a series of adjacent cliques. The Clique Percolation
Methods (CPM) fall under this category. Qian et al. [103] pro-
posed a model that detects overlapping community structure
by maximizing the similarities between clique connections.
Themodel initializes the structure of a network and quantifies
the connection similarity of a community using the concept of
maximum clique. The concept is based on the sharing of the
connections and nodes between different communities. Based
on these sharing, closely connected communities are merged
to identify the overlapping communities.

Qian et al. [104] proposed a method for detecting com-
munity structure from a heterogeneous network by employ-
ing the maximum bipartite clique technique. The network is
clustered into maximal groups. The most influential largest
two groups are used as initial communities. These initial
communities are then expanded based on their similarities
with neighboring nodes. The neighboring nodes of each ini-
tial community are compared with other nodes to determine
whether they are related. Nodes are divided accordingly.
Yuan et al. [143] proposed a method for detecting commu-
nity structure by treating a k-clique percolation community
as a union of maximal cliques. Given a set of query nodes,
the method identifies a k-clique percolation community that:
(1) has the maximum k value, and (2) contains the query
nodes. A clique percolation community that satisfies the two
conditions is considered the densest.

Palla et al. [97] proposed a tool based on CPM for detecting
overlapping communities and identifying the general char-
acteristics of networks in society and nature. The authors
assumed that a group of k cliques that shares at least k − 1
vertices with one another constitutes a community. Edges
represent the intensities of the overlap of cliques in a network.
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To detect overlapping communities, the tool first identifies all
k cliques in a network. Then, it identifies a clique-clique over-
lapmatrix. Farkas et al. [37] proposed amethod for weighting
k-clique communities called Weighted Clique Percolation
Method. The authors defined a term called k-clique severity
as the average of k∗(k−1)/2 linkweights. They defined also a
term calledDirected Clique PercolationMethod to refer to the
directed k-clique communities that have direct link between
each two vertices in a k-clique. Kumpula et al. [65] proposed
a clique-based method, where each subset of k vertices is
processed individually. First, the method identifies all k − 2
cliques that share the adjacency of two endpoints. Second,
it identifies the connected parts in the k − 1 cliques. Each
vertex represents a k-clique and the other represents a k − 1
clique.

c: METHODS APPLY LATENT SPACE LOCAL ASSOCIATION
SEARCH
These methods assume that densely connected vertices
are likely to occupy latent positions close to each
other [52], [114]. That is, the interactions among ver-
tices depend on their positions in the latent space. Posi-
tions are identified using a maximum likelihood estimation.
Sankararaman and Baccelli [116] proposed a community
detection method in spatial random graphs, which is a
planted-partition version of the random connection model.
Each node is associated with two labels, which are valued
community label and valued location label. Depending on
the Euclidean distance between nodes and their community
labels, edges and labels are selected randomly and indepen-
dently. Thus, the accuracy of a detected community structure
relies on the random graph’s observation and the location of
the spatial labels on nodes.

Sarkar and Moore [114] proposed a framework that
can turn a static relationship model into a dynamic one
that accounts for moving friends in and out a community.
The framework can associate each vertex with a point in
p-dimensional Euclidean latent space. Handcock et al. [52]
argued that the Euclidean distance between two individuals in
the latent social space reflects the probability of a tie between
them. The authors considered the approximate conditional
Bayes factors for identifying the number of communities in
a network. Reichardt and Bornholdt [106] proposed a Potts
model consisting of spins placed on a lattice. The lattice is a
two-dimensional rectangular Euclidean. It can be generalized
to other dimensions or lattices. Each vertex is in one of the
spin states.

2) VERTEX CENTRIC CLUSTERING CATEGORY
a: METHODS THAT APPLY VERTEX LABEL PROPAGATION
BASED ON STOCHASTIC PROCESS
These methods perform clustering after propagating the com-
munity labels of a selected subset of vertices to other vertices.
Most of these methods select some vertices and assigns their
community label to their neighbors. Jiang et al. [60] proposed

a method for detecting community structure based on Label
Propagation Algorithm (LPA). The method clusters together
highly influential users that have similar interests. This leads
to minimizing the negative impact of the inclusion of users
who may have less similar interests. The method is composed
of two modules, one for scoring users’ interests and the other
for clustering users based on these scores. In each iteration of
the label updates, selecting the majority of the adjacent nodes
are held by the updated label. This is done by selecting the
majority of its adjacent nodes.

Bhatt et al. [13] proposed a label propagation-based
method for detecting the structure of a community based
on the context describing it. The method predicts the com-
mon context that summarize a potential community’s nodes.
First, each node is labeled with contextual information that
describes multiple domain-specific concepts. The proposed
algorithm optimizes the following two tasks iteratively: (1)
optimizing the assignment of a community’s label without
changing the community’s context, (2) optimizing the assign-
ment of a community’s context without changing the commu-
nity’s labels constant. The first task is achieved by proposing
a contextual similarity measure for measuring the similarities
between nodes. The second task is achieved by balancing
informativeness and purity.

Mehrabi et al. [81] proposed a label propagation-based
method for detecting the structure of a community. The
method attempts to mitigates the problem of sparsely con-
nected nodes in a network by assigning loosely connected
nodes to their appropriate communities. This leads to assign-
ing insignificantly labeled users to their appropriate signif-
icant communities. The method employs an unsupervised
learning mechanism for detecting communities using mod-
ularity and network attributes.

Li et al. [74] proposed a label propagation-based method
that applies motif mining to identify the higher order structure
of a network for detecting the structure of the network’s
communities. Themethod detects trianglemotifs in a network
to identify the structural characteristics in the network. The
following are the sequential processing steps taken by the
method: (1) identifying the motif of interest, (2) constructing
a hypergraph to encode the higher order connections, (3)
designing a re-weighted network, and (4) applying a vot-
ing strategy to update the labels of nodes. Chin and Rat-
navelu [27] proposed a label propagation-based method that
updates unassigned nodes synchronously and assigned nodes
asynchronously. The method employs a similarity score mea-
sure during the propagation process to identify the initial
communities and to break ties. A community that reaches a
specific strength threshold is exempted from the merging and
procedure. This process is repeated iteratively until labels’
convergence is achieved.

The Speaker-listener Label Propagation Algorithm (SLPA)
proposed by Raghavan et al. [108] is an extension of the
Label Propagation Algorithm (LPA) proposed by Xie and
Szymanski [135]. In this algorithm, each vertex is initially
considered as a separate community. Then, another vertex is
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selected as a listener. A label is propagated to each neighbor
(speaker) of the listener. Propagated labels are selected ran-
domly with probabilities proportional to their frequencies in
the memories of the speakers sent them. A listener selects the
most common labels it received, whose probability distribu-
tions are greater than a given threshold. These common labels
form a community. Tasgin et al. [123] proposed a method
that selects some vertices and assigns their community label
to their neighbors. It detects communities from the labels
of a small number of seed vertices. Gong et al. [43] advo-
cated using similar methodology and recommended applying
it to 20% of the vertices. Blum and Mitchell [11] intro-
duced a model that augments training dataset by labels
that are incompletely related to the dataset. Sindhwani and
Niyogi [112] proposed an extension of regularization algo-
rithms that require unlabeled training datasets to be available
in multiple views.

b: METHODS THAT CONSIDER VERTICES COMMUNITY
VARIANCE
These methods are based on the assumption that if the com-
munity variance of some vertex u and a set S of vertices is
small, u and S should belong to the same community. Žalik
and Žalik [145] proposed a method for detecting commu-
nity structure using node attraction in local processing and
learning. The degree of a community’s variance is determined
based on the degrees of association between each neighboring
nodes in the community. The degree of belonging of a node
to a community is determined by the degrees of some of
the community’s nodes that are attracted to this node. This,
in turn, increases the modularity of communities.

Let N be the set of neighboring vertices to a vertex u.
The community variance proposed by Tasgin et al. [123]
is the ratio of: (1) the number of communities that include
both u and a vertex that belongs to N , and (2) the number
of neighbors of u. Shang et al. [111] employed simulated
annealing method as a local search for community variance,
as follows. Let Q(C1) be the modularity of a cluster C1 that
contains a subset S1 of vertices with the highest modularity.
Let Q(C2) be the modularity of a cluster C2 that contains the
subset of vertices with the highest modularity less than S1.
Let r ∈ [0, 1] be a randomly generated parameter. If the
community variance. CV = Q(C1) − Q(C2) > r , S1 will
be assigned to C1. The method proposed by Gong et al. [43]
performs local searches iteratively. At each iteration, if a
vertex v that belongs to a cluster Cx achieves the best fitness
value with a cluster Cx 6= Cx , v is deleted from Cx and
assigned to Cx .

3) GROUP CENTRIC CLUSTERING CATEGORY
Most of the methods that fall under this category employ
locality sensitive hashing clustering techniques. They employ
the hashing-based techniques to approximate the nearest
neighbors to given vertices. They cluster together the sets of
vertices whose neighborhoods are overlapped. Macropol and
Singh [78] proposed a probabilistic clustering method called

TopGC that identifies connected clusters in a network using
a hashing-based technique called MinHash. The technique
estimates the similarity between two sets. Two sets are con-
sidered similar, if their neighborhoods are overlapping. These
sets are clustered together. The strength of a cluster resulted
from the merging of sets is assessed by measuring the ratio
of: (1) the sum of the weights of edges in the cluster, and
(2) the number of edges multiplied by the original cluster
size.

B. DYNAMIC CLUSTERING CATEGORIES AND METHODS
1) USING AUXILIARY UPDATE CLUSTERING CATEGORY
a: BLOCK-BASED CLUSTERING METHODS
Xubo et al. [139] proposed a block-based method for detect-
ing community structure from temporal networks, whose
data can change or evolve over time. The method employs
a reduction strategy using sampling. Then, it rearranges the
original temporal network. First, an auxiliary representation
of the original network is extracted by sampling nodes.
Then, each detected pattern is modeled into a different
community. Each durable temporal state is regarded as a
community.

Lin et al. [76] proposed a stochastic block model called
FaceNet for detecting community structure and a probabilis-
tic model for capturing the evolutions of communities in
dynamic networks. In this model, the structure of a commu-
nity at a specific timestamp t is identified by the combination
of: (1) the prior distribution of historic community structures,
and (2) the observed data at t . The probabilistic model assigns
soft community memberships to the nodes. Angel et al. [5]
proposed a method that maintains a dense block subgraphs
caused by quantifying the maximum change resulted from
updating edges weights. The method can compute dense
subgraphs incrementally by keeping a small number of sparse
subgraphs. It employs a dense subgraph index that decreases
the consumption of memory.

b: CLIQUE-BASED CLUSTERING METHODS
Duan et al. [31] proposed a clique-based method that regards
social networks’ dynamics as a change stream. The method
employs an incremental k-clique clustering algorithm. The
algorithm adopts an auxiliary updating procedure based on
local depth first search forest. Cazabet et al. [25] proposed
a dynamic clique-based method for detecting community
structure. Themethod adds new edges to an auxiliary network
at a given time step. The minimal community is considered to
be a predefined clique pattern with 3, 4, or more nodes. Every
time a new edge is included in the network, the formation of
a minimal community is checked. Palla et al. [95] proposed
a dynamic percolation clique-based method for detecting
overlapping communities that evolve over time. This leads to
identifying the relationships that characterize the evolution
of overlapping communities. The authors concluded that a
community can have a better adaptability, if a large number of
its members are able to change its composition dynamically.
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2) USING DIRECT UPDATE CLUSTERING CATEGORY
a: INCREMENTAL-BASED CLUSTERING METHODS
Liu et al. [75] proposed an incremental bottom-up method
for detecting communities from dynamic graphs. The method
adopts a methodology from Link Prediction and Informa-
tion theory for quantifying a changed node’s influence,
which helps in identifying the portion of the graph that
needs to be recalculated. The proposed algorithm is based
on link entropy. Bogdanov et al. [15] proposed an incre-
mental sub-interval aggregation methodology for computing
and uncovering the highest-scoring temporal subgraph from
evolving andweighted edge networks. A temporal subgraph’s
score is the summation of the weights of edges. The method
adopts a filtering methodology for pruning sub-intervals.
The search procedure follows an aggregation bottom-up
scheme.

Hopcroft et al. [55] proposed an agglomerative clustering
method for detecting community structure from temporal
linked social networks, whose data can change or evolve
over time. The structure of the network data is uncovered
by averaging the accidental clusters that take place after each
run. The structure of a community is estimated by prior distri-
bution and the observed networked data. Falkowski et al. [39]
proposed a density-based agglomerative incremental method
for detecting dense subgroups. The method employs a dis-
tance functions for measuring the distance between each two
interacting nodes. It also employs a function that updates
incremental clustering. The algorithm deals with dynamic
datasets using a density-based clustering function. The func-
tion applies density-based clustering to graph structures.
Gorke et al. [47] proposed a cut-based agglomerative incre-
mental method for maintaining the clustering of a chang-
ing graph dynamically. The method permits atomic changes
in graphs and maintains consecutive temporal smoothness.
It keeps updating minimum-cut trees and maintaining the
clustering of the graph.

b: DECOMPOSITION-BASED CLUSTERING METHODS
Rossetti and Rdyn [110] proposed a decomposition-based
clustering method for detecting communities from dynamic
graphs. At any given date d , the time steps in the past
are considered when detecting communities. The method
best suits the online clustering of networks. Aynaud and
Guillaume [6] proposed a decomposition-based method for
tracking communities between each two successive snap-
shots of a network’s evolution. The method keeps remov-
ing random nodes individually and keeps only the largest
connected subnetwork. Falkowski et al. [40] proposed a
method for detecting and analyzing evolving online com-
munities. The method employs statistical and visualiza-
tion techniques for analyzing evolutions in communities
with membership structure. For identifying densely con-
nected subgroups, the method employs a hierarchical-based
clustering algorithm based on edge betweenness divisive
procedure.

FIGURE 2. A methodology-based taxonomy, which hierarchically
classifies the static and dynamic community detection methods that
optimize the internal density objective function into clustering categories,
clustering methods, and clustering sub-methods.

III. STATIC AND DYNAMIC CLUSTERING METHODS
THAT MAXIMIZE THE INTERNAL DENSITY
We review and discuss in this section the static and dynamic
clustering categories and methods that optimize the internal
density objective function. Fig. 2 presents our methodology-
based taxonomy, which hierarchically classifies the static
and dynamic community detection methods that optimize the
internal density objective function.

A. STATIC CLUSTERING CATEGORIES AND METHODS
1) HIERARCHY CENTRIC CLUSTERING CATEGORY
The methods that fall under this clustering category build
a hierarchical structure of detected partitions based on the
topology of the entire network. They assume that if some
vertices behave in the same role during interaction, the social
status of the individuals represented by these vertices is likely
to be similar. They analyze the interaction patterns of vertices
to infer their influences and roles.

a: TOP-DOWN DIVISIVE METHODS
These methods focus on decomposing a network until a tide
partition is attained. Towards this, some of these methods
keep removing edges that have high betweenness scores [45].
The betweenness score of an edge is the number of short-
est paths that pass through the edge. Ni et al. [89] pro-
posed a top-down divisive method for detecting community
structure that regards a network’s communities as a geo-
metric decomposition. The method employs the underly-
ing principles of the discrete Ricci flow. By determined
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heavily traveled edges through Ricci flow process iter-
atively, the method is able to detect communities. The
method proposed by Caldarelli et al. [22] keeps removing
the inter-community edges with large betweenness scores
until several sets of community structures are detected.
Then, it aggregates these sets into a final list of detected
communities.

The method proposed by Girvan and Newman [45] was
also based on removing inter-community edges. The method
computes several measures of edge centrality to estimate the
importance of edges based on their control of the follow of
information in the network. The following are the sequen-
tial processing steps taken by the method: (1) computing
the centralities of edges, (2) removing the edges with large
centralities, (3) re-calculating the centralities of the remaining
edges, and (4) repeating steps 2-4. Most of the above meth-
ods employ modularity measures to evaluate the quality and
strength of their detected communities [19], [86], [87].

b: BOTTOM-UP AGGLOMERATIVE METHODS
These methods measure the similarities between vertex pairs.
They add edges to communities based on the similarities
between the vertices at their endpoints. Initially, the search
starts from some hierarchy (e.g., a vertex), which is consid-
ered as a separate community [17]. These communities are
kept being merged (i.e., expanded) until some objective func-
tion achieves a local maximum. Zhang et al. [146] proposed
a bottom-up agglomerative method based on the concept
of true-link for detecting community structure. The method
transforms the original network’s true-link network into link
space graph. Then, the method uses signaling processing to
identify the link communities. The method merges each two
similar sub-communities into point communities during the
mapping of link communities.

Bahulkar et al. [14] proposed a bottom-up agglomerative
method for detecting community structure in criminal net-
works. The method augments a criminal network containing
purposely hidden edges. It can uncover the hidden edges in
a network and augments them to the network before detect-
ing communities. It adopts a bottom-up search for detect-
ing communities by optimizing their local modularity. The
method proposed by Riedy et al. [105] starts by selecting a
set of disjoint communities. Then, these communities are kept
being merged until a modularity objective is maximized. The
method proposed by Clauset et al. [23] starts by considering
each vertex as a separate community. Then, communities are
kept being merged based on their modularity scores until
these scores stopped to increase. The method proposed by
Clauset et al. [23] infers communities based on the topology
of the network. It optimizes the modularity function of New-
man and Girvan [87] using a greedy technique. The method
proposed by Blondel et al. [12] starts by employing a local
search to select small communities. Then, communities are
kept being aggregated until their modularity scores stopped
to increase.

c: BOTTOM-UP INTERMEDIARY SCORE MAXIMIZATION
METHODS
These methods keep iteratively adding vertices with high
intermediary scores to currently detected communities until
some objective function is optimized. Ni et al. [88] proposed
a bottom-up intermediary score maximization method for
detecting local overlapping communities. The method selects
a subset of the set of nodes that belong to more than one
community. This subset serves as seed nodes. Then, the com-
munities to which these seeds belong are detected. If the
fuzzy relation between a given node and a seed node is large
enough, the method considers the two nodes belong to a same
community. Whang et al. [134] proposed a bottom-up inter-
mediary seed expansion method for detecting overlapping
communities. Themethod identifies the best nodes to serve as
seeds and greedily expands them to form communities based
on a metric. The seeding identification strategy is based on
the multi-level weighted kernel k-means function.

The greedy heuristic method proposed by Jiang and
Singh [57] starts by selecting the vertex v with the maximum
weighted degree along with the neighbor u of v that has the
highest weighted degree among the neighbors of v. The pair
u and v is used as a seed of community. Then, the vertices
with the highest supports (i.e., intermediary scores) are kept
being iteratively added to the current community, until the
density of the community reaches a user-defined threshold.
Otherwise, the community’s edges and the vertices at the
endpoints of these edges are removed from the network. The
bottom up-based method proposed by Pascal and Latapy [98]
assigns a modularity score (i.e., intermediary score) to each
traversed vertex for the purpose of cutting the dendrogram
in the same manner as fast greedy algorithms. Then, it keeps
merging communities based on the outcome of themodularity
scores of the vertices after traversing them using random
walks.

2) VERTEX CENTRIC CLUSTERING CATEGORY
The methods of this category expect each vertex in a par-
tition to satisfy certain properties, such as adjacency and
reachability. Vertices are considered similar, if they share
the same connection pattern. This strategy resembles the
notion of regular equivalence, where two vertices are con-
sidered structurally equivalent, if they share the same neigh-
borhood. The vertex within-outside ties clustering methods
falls under this category. In these methods, each vertex in a
community is connected to more vertices inside the commu-
nity than to vertices outside the community [10]. Therefore,
removing any link inside the community is unlikely to dis-
connect it. Gong et al. [46] proposed a multi-granularity ver-
tex centric-based method for detecting community structures
in social networks. Each network is depicted using a net-
work embedding strategy, which represents each node by its
low-dimensional vector representation. If two nodes share the
same neighborhood network structures, their embedding is
considered similar.
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3) GROUP CENTRIC CLUSTERING CATEGORY
The methods of this category consider the overall connec-
tions inside a partition. They consider a partition acceptable,
if it satisfies certain properties (e.g., cohesiveness), even if
the connectivity of some of its vertices is low. Cohesive-
ness characterizes the internal structure of a partition, such
as being hard to split into two sub-partitions. The density
centric-based clustering methods falls under this category.
These methods detect communities based on the density
property of partitions. Some of the methods that fall under
this category consider a partition (Vs, Es) is γ -dense if: Es
(Vs(Vs − 1)/2) > γ , where the partition becomes a clique,
when γ = 1.

Fang-Ju [38] proposed a group centric-based clustering
method for detecting community structures in social net-
works. Nodes that are similar are clustered to a same com-
munity. The similarity between a pair of nodes is measured
based on their common neighbors. If two nodes share a large
number of common neighbors, they are assigned to a same
community. Modularity parameter is used for measuring the
strength of a community. Newman and Park [84] proposed a
method called link clustering coefficient, which assumes that
short loop links, such as squares and triangles, are likely to be
inter-community links, while long loops are across commu-
nity links. According to the method, short inter-community
loop links are likely to increase the density of the community.
The method defines the clustering coefficient of a link as the
number of squares and triangles that are part of the link. Links
with the minimum coefficient are cut off.

B. DYNAMIC CLUSTERING CATEGORIES AND METHODS
1) USING AUXILIARY UPDATE CLUSTERING CATEGORY
a: MODULARITY MAXIMIZATION METHODS
Gorke et al. [51] proposed a dynamic modularity maximiza-
tion method for detecting community structure from tempo-
ral networks, whose stream changes or evolves over time.
The method employs a global greedy procedure as follows.
It merges each pair of clusters and computes the increase
in modularity of the merged singleton. The procedure is
repeated until no further improvement can be made. Pizzuti
and Socievole [101] proposed a method for detecting com-
munities in dynamic networks by considering the concept of
modularity as a function that needs to be optimized simul-
taneously on all snapshots. The method uses a cluster-based
similarity partition algorithm. Principal clusters are detected
by applying a k-means clustering method. The value of k is
selected in such a way that the modularity of the multi-layer
network is maximized.

Shang et al. [117] proposed an incremental modularity
based method for detecting communities in dynamic net-
works. First, an initial community is detected statically. Then,
incremental updating strategies are performed to detect the
dynamic communities. Changes of networks are modeled
as sequential increments of edges. Dinh et al. [32] pro-
posed a method for detecting maximized modular structure

in dynamic social networks. The method employs previous
states’ modular structures to adaptively guide the identifi-
cation of next sates’ modules. Modules that have negative
modularity are merged with their neighboring modules to
produces new modules with higher modularity. This process
is repeated until the modules that have negative modularity
are exhausted.

Gorke et al. [48] proposed a method for the heuristic
dynamization of current static algorithms to maximize mod-
ular structures from dynamic networks. The method quan-
tifies an algorithm’s degree of smoothness for transitioning
from an output to the next one by comparing its consecutive
clustering. Fortunato [42] investigated the applicability of
modularity in community detection. The authors found that
the intrinsic scale of modularity depends on the number of
network’s links. They found that the specific structure of
a network is irrelevant to the modularity’s limit of resolu-
tion. Rather, the resolution depends on pairs of communities’
degree of interconnectedness.

b: EIGENVECTOR CENTRALITY METHODS
Guan and Wu [50] proposed an algorithm that analyzes
nodes’ context information and historical interaction in social
networks. It does so to identify a node’s most suitable
next-hop node from the pool of its nodes. It assigns a score
to each node that reflects its fitness to a community. A node’s
score is represented by its eigenvector centrality. The algo-
rithm maximizes the dynamic similarity by employing the
eigenvector centrality using Bayesian derivation. It adopts the
concept of preference similarity between nodes by analyzing
their preferences in the transmission process. Nodes’ similar-
ities and neighbor information are considered when next hop
nodes are measured.

Márton et al. [82] proposed a method that controls nodes
in a multiplex network to steer it to a desired state. This
is because high-centrality nodes may have different influ-
ences on the behavior of a network. The method employs
rank aggregation techniques to identify the target nodes
that maximize the interventions of multi-objective in mul-
tiplex networks, based on inter-layer structural correla-
tions. The function of a particular layer and the nodes in
the layer are ranked separately based on their centralities.
Takaffoli et al. [128] proposed a centrality-based framework
for modeling and detecting community evolution in dynamic
social networks. First, the framework tracks and determines
similar communities over time. Then, the evolutions of com-
munities are determined using a series of transitions and
events. The framework uses a one-to-one matching procedure
to identify the similarity between communities obtained from
different snapshots. Asur et al. [7] proposed an event-based
model for characterizing the evolution of dynamic evolv-
ing interacting networks. The model can identify interest-
ing events from interacting non-overlapping snapshots. The
authors employed centrality-based behavioral patterns for
investigating the impact of influence maximization in cluster
evolution.
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c: SPECTRAL CLUSTERING METHODS
Ning et al. [90] proposed an incremental-based spectral clus-
tering approach for detecting clusters from dynamic data. The
approach extends the standard spectral clustering to handle
evolving data by employing incidence matrix to represent the
dynamic data. It does so by continuously updating the eigen-
value system and generating cluster labels. Chi et al. [28]
proposed an evolutionary spectral clustering method that
incorporates temporal smoothness for detecting commu-
nity structures from dynamic graphs. The method employs
graph-based measures to characterize cost functions that reg-
ulates temporal smoothness in the spectral clustering to infer
the corresponding optimal solutions. Kannan et al. [70] ana-
lyzed the performance of well-known spectral clustering for
dynamic data. Also, the authors proposed a new bi-criteria
metric that measures a clustering’s quality, based on proper-
ties pertaining expansion of pairwise similarity graph.

d: NONNEGATIVE MATRIX FACTORIZATION METHODS
Márquez and Weber [83] proposed a method based on non-
negative matrix factorization (NMF) for detecting overlap-
ping community structures from dynamic networks with node
attributes. First, tensor’s frontal slices are used for depicting
the adjacency matrix at each snapshot. Then, a Bayesian
approach is employed for ranking. The method employs a
combination of node attributes and link information in a
temporal network to strengthens the identification of com-
munities.

Gauvin et al. [49] proposed a method that detects com-
munity structures from temporal networks and tracks their
activities over time. The authors investigated and employed
non-negative tensor factorization and latent factor decom-
position techniques for extracting a community’s activity
structures. The method depicts a temporal network’s adja-
cency matrix as a three-way tensor. The resulting tensor is
approximated as a sum of terms interpreted as communities.

2) USING DIRECT UPDATE CLUSTERING CATEGORY
a: EVOLUTIONARY CLUSTERING METHODS
Folino and Pizzuti [41] proposed a multi-objective method
for detecting community structures in dynamic networks.
Temporal smoothness is presented as an evolutionary multi-
objective problem. The first objective is maximizing the qual-
ity of snapshots, which measures the degree of goodness of
a detected community in representing the data at the cur-
rent time. The second objective is minimizing temporal cost,
which measures the distance between a pair of clusters at
consecutive time steps.

Chakrabarti et al. [29] proposed an evolutionary clus-
tering method for clustering dynamic networks over time.
The authors extended traditional k-means algorithm to evo-
lutionary setting. Also, the authors extended a hierarchical
bottom-up agglomerative clustering algorithm to evolution-
ary setting. Xu et al. [141] proposed an evolutionary clus-
tering method for tracking community structures in dynamic

social networks over time. The method employs an adaptive
evolutionary clustering procedure. The adaptively weighted
combination of historical and current data is used to detects
communities at each time step.

Kim and Han [69] proposed a particle-and-density
evolutionary clustering method for detecting temporally
smoothed clusters. A dynamic network is modelled as a
set of lots. Community is modelled as a densely con-
nected particles. The method employs optimal modularity
and cost embedding techniques for detecting communities.
Lancichinetti et al. [77] proposed a method that com-
bines dominance-based strategies with a predefined resolu-
tion parameter that acts as a reference point for identifying
both hierarchical structure and overlapping communities. The
structure of a community is based on the peaks in the fitness
histogram. The method maximizes the dynamic similarity of
a community by dynamically investigating all hierarchical
levels of a network based on the influences of its nodes.

Agrawal [8] proposed a bi-objective genetic method for
community detection. It adaptively generates reference points
and employs a non-dominated sorting approach. The method
maximizes the internal density by maximizing the in-degree
of a cluster’s nodes, which in turn increases the modularity
of clusters. Moreover, the method maximizes the dynamic
similarity by constructing a cluster of competing nodes and
dynamically ranks them based on their non-dominance status.
Konstantinidis et al. [68] proposed a multi-objective evolu-
tionary framework to search for objects/users in a mobile
social community. The frameworkmaximizes the separability
of populations by employing decomposition to identify a
diverse set of non-dominated objects in a single run. The
method employs a priori reference point tomanage a trade-off
between the following two objectives: (1) maximizing the
internal density of a population by increasing the recall rate
of user querying, and (2) minimizing the query response time
in performing a search.

b: LABEL PROPAGATION METHODS
Xie et al. [140] proposed an online distributed incremental
algorithm for detecting evolving communities over time in
dynamic networks using stabilized label propagation. During
the processing of label propagation, each node in the net-
work employs local information only. The algorithm adopts
a conditional update rule, where only the nodes involved
in changes are allowed to accept the new distribution. That
is, only nodes changed between consecutive snapshots are
updated. This includes nodes that delete and add links. More-
over, this includes nodes removed from or added to the
network.

Pang et al. [102] proposed an incremental label prop-
agation method for detecting the structures of communi-
ties extracted from networks in real time. The method
attempts to deal with changes in a network. It considers only
locally changed nodes incrementally. First, each node will be
assigned a group label number at random. It will be assigned
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FIGURE 3. A methodology-based taxonomy, which hierarchically
classifies the static community detection methods that optimize the
partition separability objective function.

the label of the majority of its neighbors. Then, the label will
be changed according to the labels of the neighbors.

IV. STATIC CLUSTERING METHODS THAT MAXIMIZE
THE PARTITION SEPARABILITY
These methods employ the underlying techniques of the net-
work centric category by ensuring that each two connected
vertices within a community are closely associated. They
consider network-based properties such as the ratio of the
number of edges connecting a vertex within and outside a
community and the position of a vertex in the latent space.
We review and discuss in this section the static clustering
methods that optimize the partition separability objective
function. Fig. 3 presents our methodology-based taxonomy,
which hierarchically classifies the static community detection
methods that optimize the partition separability objective
function.

A. METHODS THAT APPLY MATRIX-BASED EIGENVECTORS
AND FACTORIZATION SUB-GRAPH SIMILARITY SEARCH
Most of these methods consider that magnitudes represent a
good measure of the degree of belonging (i.e., strength) of
vertices to communities. Some of them use centrality index
to quantify the degree of vertices’ influences in a community.
They compute some type of centrality indexes based on the
magnitudes of the elements of the eigenvector of the matrix
under consideration. Ye et al. [144] proposed a nonnegative

matrix factorization method for detecting discrete overlap-
ping communities. The discrete community membership of
each node is determined directly without the need of post-
processing. The method employs a combination of kernel
regression and discriminative pseudo supervision strategies.
Newman [86] proposed an algorithm for identifying the com-
munity structure in a network using eigenvectors of modu-
larity matrix. The algorithm employs modularity objective
function to detect the hierarchical structure of clusters. The
algorithm divides a network into two parts, if the modularity
rises above a certain threshold. The division is done based on
leading Eigen vector in the modularity matrix.

B. METHODS THAT APPLY CUT COST
LOCAL ASSOCIATION SEARCH
These methods simplify the process of finding cuts to mini-
mize and make the cost of computing approximations more
flexible. Veldt et al. [129] proposed an approximation cluster-
ingmethod based on the objective of sparsest cut’smultiplica-
tive scaling and weighted correlation clustering. The method
combines sparsest cut and other quality functions. It selects
a node at random iteratively. It builds a cluster by greedily
aggregating nodes adjacent to the selected node. Kernighan
and Lin [62] proposed an algorithm that minimizes the differ-
ence between the number of inter-community links and intra-
community links. The algorithm swaps or moves vertices
between communities iteratively for the sake of decreasing
the evaluation function. This process terminates when the
evaluation function becomes unchanged. Andersen et al. [2]
proposed a local partitioning method that simplifies the pro-
cess of identifying cuts. Themethod employs a single approx-
imate PageRank vector instead of a sequence of random walk
vectors. This also makes the cost of computing approxima-
tions more flexible. Karypis and Kumar [64] proposed a
graph coarsening heuristic algorithm. The algorithm allows
the size of coarse graph partitioning to be small relative to
the overall size of the final partitioning, which is determined
after multilevel refinements.

C. METHODS THAT APPLY NORMALIZED COST SPECTRAL
ASSOCIATION SEARCH
Spectral methods employ quadratic optimization techniques
to optimize some pre-defined cut criteria. The cut criteria
for the bipartition of a network is the number of inter-group
links. It is considered optimal, if it produces minimum cut.
However, this minimum cut criterion can result in bias parti-
tions. To overcome this, a number of methods proposed other
criteria. For example, some methods attempt to approximate
the optimal cut by transforming it into a constraint quadratic
optimization problem. Shi and Malik [115] proposed a nor-
malized cut method to compute the density of a partition
rather that the number of inter-group links inside the parti-
tion. It is a variant of the Laplacian-based matrix method.
The optimal solution is achieved by calculating the second
smallest eigenvector of the symmetric positive semi-definite
matrix.
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D. METHODS THAT APPLY RATIO CUT SPECTRAL
ASSOCIATION SEARCH
These methods assume that a given vertex is likely to belong
to a certain partition, if the number of edges linking this
vertex with vertices inside the partition is the same or higher
than the number of edges linking it with vertices that are
part of other partitions. Wei and Cheng [131] proposed a
ratio cut method for identifying the clustering structures
for hierarchical Very-Large-Scale Integration (VLSI). The
method solves the ratio cut problem via multi-commodity
flow formulation using linear programming techniques. Flake
et al. [35] proposed a method based on the graph theory’s
Max Flow-Min Cut theorem. The authors assume that the
maximum flow within a network can be determined by the
capacity of the minimum cut sets. They considered sparse
inter-community links as ‘‘bottlenecks’’ in the flow. There-
fore, they identify inter-community links through minimum
cut sets computation by iteratively removing ‘‘bottleneck’’
links.

V. STATIC METHODS THAT MAXIMIZE
THE DYNAMIC SIMILARITY
We review and discuss in this section the static cluster-
ing methods that optimize the dynamic similarity objective
function. Fig. 4 presents our methodology-based taxonomy,
which hierarchically classifies the static community detec-
tion methods that optimize the dynamic similarity objective
function.

A. VERTEX CENTRIC CLUSTERING CATEGORY
The methods of this category fall under the following
five fine-grained classes: vertex random walk distance-
based (Section V.A.1), vertex class membership-based
(Section V.A.2), vertex degree-based (Section V.A.3), vertex
reachability-based (Section V.A.4), and vertices complete
mutuality-based (Section V.A.5).

1) METHODS THAT APPLY VERTEX RANDOM WALK
DISTANCE BASED ON STOCHASTIC PROCESS
These methods aim at combining the accuracy of global
processing with the efficiency of local search. They employ
random walk to gain knowledge about the network’s topol-
ogy. This helps in the local heuristic search that detect parti-
tions. Meng et al. [80] proposed a K -path initialization-based
method for detecting community structures in complex social
networks by analyzing their topology structures’ information.
The probability of a node to be selected increases as its degree
increases. A k walk length is an indicative that the number of
walk attempts at a given time is k . The input to the algorithm
is a graph (G = V , E), the number of walks, the maximum
length of walk path k , and the uninitialized nodes. The output
is a set of initialized nodes.

As a global preprocessing, the Complex Network Cluster
Detection method proposed by De Meo et al. [30] computes
the k-path centrality of each edge using the ERW-Kpath

FIGURE 4. A methodology-based taxonomy, which hierarchically
classifies the static community detection methods that optimize the
dynamic similarity objective function.

algorithm [30], which approximates the centrality of the
edge by calculating its probability of being part of random
non-backtracking walks of length k . Then, the distances
between all pairs of vertices are computed using the k-path
centralities of the edges connecting them. Each edge is
assigned a weight that corresponds to the distance between
the vertices at the end points of the edge. The Louvain
Method proposed by Blondel et al. [12] clusters a network
based on the weights of its edges. As a global preprocessing,
the Infomap method [107] computes the shortest description
lengths of random walks based on concepts of information
theory. The description length is defined as the number of
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bits that a vertex needs to encode the random walk’s path.
It is computed using map equation [109].

2) METHODS THAT APPLY VERTEX CLASS MEMBERSHIP
BASED ON STOCHASTIC PROCESS
These methods divide a network by selecting edges and
the vertices at their endpoints uniformly at random using
some probability distribution. They cluster them accordingly.
Cui et al. [24] proposed a null network-based method that
applies vertex and edge class membership for detecting com-
munities. Only a community’s inner structure is changed.
However, the characteristics of community’s structure and the
number of communities are maintained without change. The
proposed method maintains the following two types of link
relationships: edges between communities and edges within
a community.

Palowitch et al. [100] proposed a method for detect-
ing communities from weighted networks. It applies ver-
tex class membership using iterative hypothesis tests under
iterative explicit null model. This includes sequential sig-
nificance tests. The method adaptively detects communities
sharing nodes. It ignores nodes that are insignificantly linked
to any community. The method proposed by Pizzuti [96]
selects a vertex v and one of its neighbors u at random.
It creates an initial division of the network from the pair
v and u. The method proposed by Liu et al. [71] selects
the vertices of a division by employing Markov random
walk. These vertices should satisfy Markov chains, where
the marginal and conditional distributions are multivariate
normal.

Watts [132] proposed a mixed membership model that
transforms multivariate normal distributions (probabilities
of class membership and ties between various classes) into
domain of probability vectors. Erdos and Renyi [34] proposed
a model that selects vertices connected by edges at random.
The probability of two vertices to be connected by an edge
is p; otherwise, it is 1− p.

3) METHODS THAT CLUSTER BASED
ON THE DEGREES OF VERTICES
These methods cluster a network in such a way that each ver-
tex within a partition is adjacent to a large number of vertices
confined within the partition [9]. They classify partitions into
two substructures called k-core and k-plex. A substructure k-
plex is a subnetwork withm vertices, each of them is adjacent
to at least m-k vertices in the subnetwork. When k = 1, a k-
plex becomes a clique. A substructure k-core is a subnetwork,
where each vertex is connected to at least k vertices in the
subnetwork.

4) METHODS THAT CLUSTER BASED
ON THE REACHABILITY OF VERTICES
Thesemethods determine a partition based on the reachability
between its vertices [63]. Thus, there should be a short path
between any two vertices in a partition.

5) METHODS THAT CONSIDER VERTICES
COMPLETE MUTUALITY
In these methods, a partition is a maximal complete sub-
network of vertices adjacent to each other (i.e., a clique) [67].

B. NETWORK CENTRIC CLUSTERING CATEGORY
Themethods that fall under this category do not define a com-
munity independently. They define a community based on the
topology of the entire network. They consider network-based
properties such as the ratio of the number of edges con-
necting a vertex within and outside a community and the
position of a vertex in the latent space. The vertex-influence
methods fall under this category. These methods measure the
global relative influence of each vertex in controlling the
flow of information in a network. They consider the task
of identifying the influential individuals in a social network
as a discrete optimization problem. They infer the social
status of individuals based on the influences of the vertices
representing them in controlling the flow of information in
the network [53], [119]. Most of these methods are based
on the notion that a set of vertices influenced by a same
influential vertex v must have rather a similar interaction
pattern with v [1], [4], [61], [73], [119].
Kempe et al. [61] proposed a framework based on submod-

ular functions. The authors considered the issue of selecting
the set of influential vertices in a network as a discrete
optimization problem. They employed operational models
from mathematical sociology to identify a joint distribution
over the behavior of all vertices in a network. A number
of methods that adopt different techniques have been pro-
posed for identifying individuals, who share a same social
position [59], [119] or individuals, who are influential in a
social network [120], [121], [136]. Jiang et al. [59] proposed
the concepts of ‘‘abnormal’’ and ‘‘synchronized’’ vertices to
identify the patterns of behavior of vertices representing crim-
inals in a criminal network. These concepts lead to the iden-
tification of suspicious vertices. Taha and Yoo [121], [126]
proposed two forensic analysis systems that can identify the
influential members and the immediate leaders of lower-level
criminals in a criminal organization. In the first system,
they employed the concept of existence dependency. Each
vertex is given a score that represents the number of other
vertices, whose existence in the Minimum Spanning Tree
of the network is dependent on this vertex. Vertices are
ranked based their scores. The top-ranked ones represent the
influential criminals. In the second system, they employed
formulas that quantify the degree of influence of each vertex
relative to the other vertices in a network depicting a criminal
organization.

VI. FITNESS METRICS FOR CLUSTERING
OBJECTIVE FUNCTIONS
Wepresent in this section the fitnessmetrics for evaluating the
goodness of clustering algorithms for satisfying the internal
density objective function (Section VI.A), structural simi-
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FIGURE 5. The fitness metrics for evaluating the goodness of clustering algorithms for
satisfying each clustering objective function.

larity objective function (Section VI.B), dynamic similarity
objective function (Section VI.C), and partition separability
objective function (Section VI.D). Fig. 5 lists the set of fitness
metrics for each objective function.

A. FINESSES METRICS FOR THE INTERNAL DENSITY
OBJECTIVE FUNCTION
The standard internal density metric [58] is a metric of
concentration. It identifies the essential qualities of a good
cluster as compact and tightly connected internally, while
well-separated from other clusters.Most internal densitymet-
rics define internal density as the ratio of the: (1) number
of edges connecting a partition’s vertices, and (2) number
of edges that have at least one endpoint confined within the
partition. In our evaluations, we used the standard internal
density metric [40], which is defined in Equation 1.

f (S) =
ms

ns(ns − 1)/2
(1)

where ms is the number of edges within partition S and ns is
the number of vertices within partition S.
The Chen et al. modularity metric [19] is a widely used

quality function based on modularity. It measures how well
a network is divided into modules. It is based on the notion
that a random network is not expected to have a cluster
structure. We used this metric in our evaluation. We also used
in our evaluations the popular modularity metric proposed
by Chen et al. [21]. Let F be the fraction of edges that
connect the vertices within a module S. The metric is based
on the following notion. If edges are constructed at random
and if F is larger than expected, then there are many more
edges inside S than one can expect by random means. The
Newman-Girvan modularity metric [87] is one of the widely
used clustering metrics in literature. It is a global quality
metric.

Omega Index [26] is a good metric for evaluating the
cohesiveness of clusters based on their connections. Since
cohesiveness can characterize the internal density of a cluster,
we use Omega Index as a metric for evaluating the degree
of concentration of clusters. It employs Rand Index for cor-
recting chance agreements. It takes into consideration the
number of clusters that contain the occurrences of same pairs
of nodes.

B. FINESSES METRIC FOR THE STRUCTURAL SIMILARITY
OBJECTIVE FUNCTION
The pairwise similarity metric measures the similarity
between a community detected by an algorithm and some
ground-truth community. Let Ci(v) be the set of vertices that
appear with vertex v in community i. The pairwise similarity
between two communities A and B is given by Equation 2.

S(A,B) =
1
n

∑
v∈V

|CA(v) ∩ CB(v)|
|CA(v) ∪ CB(v)|

(2)

Mutual Information I(A, B)measures the information of the
membership of all vertex-pairs in a community A compared
to a communityB, and vice versa. This is defined as I (A,B) =
H (A) − H (A|B), where H (A) is the Shannon entropy, which
is defined in Equation 3:

H (A) = −
∑
k

P(ak ) logP(ak ) (3)

where P(ak ) and P(bk ) are the probabilities of a random
vertex in the k th partitions A and B, respectively.
Normalized Mutual Information (NMI) is the normaliza-

tion of Mutual Information by averaging the entropies H (A)
and H (B) as defined in Equation 4.

NMI (A, B) =
I (A, B)

[H (A) + H (B)] /2
(4)

C. FINESSES METRIC FOR THE DYNAMIC SIMILARITY
OBJECTIVE FUNCTION
The clustering coefficientmetric measures transitivity, which
is an important local property of networks [130]. It reflects
the cohesion level between the neighbors of a vertex. The
clustering coefficient cv of vertex v is computed as the ratio
between: (1) the number of edges linking the neighbors of v,
and (2) the total number of edges. The regular equivalence
metric identifies vertices that serve similar structural roles
in terms of their connectivity profiles (e.g., reachability and
adjacency). It assumes that if some vertices behave in the
same role during interaction, the social status of the individ-
uals represented by the vertices is likely to be similar.

D. FINESSES METRIC FOR THE PARTITIONS
SEPARABILITY OBJECTIVE FUNCTION
Conductance metric measures the goodness of a partition
in terms of how well evenly connected internally. In other
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TABLE 1. Description of the ground-truth communities.

words, it measures how hard to split a partition into two sub
partitions. Conductance of the internal cut characterizes this
notion. Formally, given a network N = (V ,E) and a set
S ⊆ V , conductance is defined as shown in Equation 5:

Qs
2E + Qs

(5)

◦ ES = |{(u, v) ∈ E|u, v ∈ S|}|: the number of edges in S.
◦ QS = |{(u, v)|u ∈ S, v /∈ S}|: the number of edges

connecting the vertices in S with other vertices outside S.

VII. EVALUATING THE STATIC COMMUNITY DETECTION
METHODS EMPIRICALLY
Detected communities can be labelled as ‘‘bad’’ or ‘‘good’’
based on widely known and agreed upon properties that
capture the notion of quality. These properties are known in
literature as clustering objective functions. In this section,
we empirically compare the different methods that optimize
each of the following four objective functions: internal den-
sity, structural similarity, dynamic similarity, and partitions
separability objective functions. We used the fitness metrics
for the objective functions described in Section VI for the
evaluations. From the set of fitness metrics for each clustering
objective function, we selected the most popular and widely
used ones.

A. COMPILING GROUND TRUTH COMMUNITIES
We used five sets of ground-truth communities compiled by
the Stanford Network Analysis Project (SNAP) [78]. These
ground-truth communities allowed us to evaluate the meth-
ods quantitatively. The five ground-truth datasets are listed
in Table 1.

B. EVALUATION SETUP
We ran the prototypes adopting the different methods using
Windows 10 Pro and Intel(R) Core(TM) i7-6820HQ proces-
sor. The CPU and RAM of the machine have 2.70 GHz and
16 GB, respectively. We performed the following procedure
for the empirical evaluations:

1) For each of the static clustering methods described
in Sections II-V, we selected one of the proposed
techniques that falls under the method (i.e., adopts
the underlying principles of the method). That is, for
each method, we selected a paper, whose proposed
technique employs the underlying principles of the
method. We considered the selected technique/paper

as a representative of the method. From among all
papers proposed techniques adopting one of the meth-
ods, we selected the most influential one. We based
the influence of a paper on factors such as its number
of citations, recency, and state of the art. We evalu-
ated each selected technique using the different fitness
metrics for the objective function, which the technique
attempts to optimize (recall Section VI and Fig. 5).

2) For each clustering category, we ranked the different
methods that fall under the category. The ranking was
performed by averaging the fitness scores achieved by
each technique representing a method.

3) For each clustering objective function, we ranked the
different clustering categories that fall under the objec-
tive function. The ranking was performed by averaging
the fitness scores achieved by the methods that fall
under each clustering category.

Thus, based on the fitness scores achieved by the selected
techniques, we ranked the different methods and clustering
categories. We also ranked the different clustering categories
that fall under each objective function.

C. EVALUATING THE METHODS THAT MAXIMIZE THE
INTERNAL DENSITY OBJECTIVE FUNCTION
In this test, we use the following metrics described in
Section VI for measuring the accuracies of the methods that
maximize the internal density objective function: (1) New-
man & G. modularity [87], (2) Chen et al. modularity [19],
and (3) standard internal density metrics [58]. These met-
rics measures how well a network is divided into modules.
A network is identified as highly modular, if the vertices
within its modules are densely connected and it has sparse
inter-modules connections. The Chen et al. modularity met-
ric is based on the notion that a random network is not
expected to have a cluster structure. The Newman-Girvan
modularity metric is a global quality metric and it measures
how well edges are clustered within detected communities.
Table 2 shows the results.

D. EVALUATING THE METHODS THAT MAXIMIZE THE
STRUCTURAL SIMILARITY OBJECTIVE FUNCTION
In this test, we use the following metrics described in
Section VI for measuring the accuracies of the methods
that maximize the structural similarity objective function:
(1) Normalized Mutual Information (NMI) (recall Equa-
tion 4), (2) pairwise similarity (recall Equation 2), and (3)
Omega Index [26]. NMI measures the information of the
membership of all vertex-pairs in a detected community com-
pared to a ground truth community. It measures the distance
between the clustering result of a method and the ground truth
at each time. The value of NMI ranges from 0 to 1 and a
higher the value the better accuracy. Pairwise similarity met-
ric measures the proximity between the vertices of commu-
nities based on their structural similarities. The Omega Index
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TABLE 2. The Fitness score of each technique representing a method, the ranking of the different methods that fall under a same clustering category, and
the ranking of the different clustering categories that fall under a same objective function.
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considers the number of clusters that contain the occurrences
of same pairs of nodes. Table 2 shows the results.

E. EVALUATING THE METHODS THAT MAXIMIZE THE
DYNAMIC SIMILARITY OBJECTIVE FUNCTION
In this test, we use the following metrics described in
Section VI for measuring the accuracies of the methods
that maximize the dynamic similarity objective function: (1)
clustering coefficient, and (2) Fraction Over Median Degree.
Clustering coefficient is based on the notion that a community
is an indication of inhomogeneous distributions of edges;
therefore, vertex pairs that have common neighbors are likely
to be linked with each other [130]. Fraction Over Median
Degree considers vertices are similar, if they share same
connection pattern [33], [53]. Table 2 shows the results.

F. EVALUATING THE METHODS THAT MAXIMIZE THE
PARTITIONS SEPARABILITY OBJECTIVE FUNCTION
In this test, we use the conductance metric described in
Section VI (recall Equation 5) for measuring the accuracies
of the methods that maximize the partitions separa-
bility objective function. Conductance measures how
well a detected community connected evenly internally.
Table 2 shows the results.

G. DISCUSSION OF THE RESULTS
Table 2 shows the fitness score of each technique representing
a method, the ranking of the different methods that fall under
a same clustering category, and the ranking of the different
clustering categories that fall under a same objective function.
In each of the next Subsections 1-4, we discuss our observa-
tion of the results of the methods and clustering categories
that maximize each objective function.

1) DISCUSSION OF THE RESULTS OF THE METHODS AND
CATEGORIES THAT MAXIMIZE THE INTERNAL DENSITY
OBJECTIVE FUNCTION
Among the clustering categories that maximize the internal
density objective function, the results of the empirical eval-
uations revealed that the hierarchy centric category achieved
better results than the vertex centric and group centric cate-
gories. This is because, based on the results, the vertex centric
and group centric categories worked well only in specific
types of networks and problems. Specifically, they worked
well only in:

1) bisection networks,
2) networks with lot of vertices that serve similar struc-

tural roles in terms of their connectivity profiles, and/or
3) networks with lots of vertices that have strong connec-

tivity.

The vertex centric and group centric categories performed
poorly in more general problems, especially those required
the entire network topology or/and the interaction roles of
vertices to be analyzed. The hierarchy centric category com-
bated these limitations by considering the topology of the

entire network and by employing the betweenness centralities
of edges for analyzing the interaction patterns of vertices
to identify the boundaries of communities. This is because
community structure detection is largely a nonlocal problem.

Among the methods that fall under the hierarchy cen-
tric category, the top-down divisive method achieved bet-
ter results than the bottom-up agglomerative and bottom-up
intermediary score maximization methods. This is because
the divisive method optimized modularity over all possible
divisions to identify the best one. Instead of determining
which edges are most centrals to a community, the divisive
method focused on identifying the least central ones. The
method constructed communities by progressively removing
the least central edges. The results of the evaluations revealed
that the agglomerative method has a limitation caused by
its tendency to identify only the core vertices of communi-
ties and overlooks the peripheral ones. Core vertices have
strong similarities; therefore, they are connected early in
the agglomerative procedure. Peripheral vertices that have
weaker similarities to other vertices tend to be overlooked.
The bottom-up agglomerative method suffered from a reso-
lution limit, where communities below the threshold needed
to be merged. They did not guarantee optimal network parti-
tions.

2) DISCUSSION OF THE RESULTS OF THE METHODS AND
CATEGORIES THAT MAXIMIZE THE STRUCTURAL SIMILARITY
OBJECTIVE FUNCTION
Among the clustering categories that maximize the structural
similarity objective function, the results of the empirical
evaluations revealed that the network centric category was
significantly more general than the vertex centric and group
centric categories. This is due, in part, to the fact that the
network centric category could detect many forms of com-
munity structures as well as simple communities of dense
links. Unlike the vertex centric and group centric categories,
the network centric category showed the desirable property
of asymptotic consistency under certain conditions. More-
over, the network centric category considered successfully
the heterogeneity in the degrees of vertices. It considered
the degree distribution in the networks by analyzing various
types of degree heterogeneity, which improved the fitting to
the networks’ data. This eventually led to better community
detection accuracy.

Among the methods that fall under the network centric cat-
egory, the clique-based sub-graph similarity heuristic search
method achieved better results than the block-based sub-
graph similarity heuristic search and the latent space local
association search methods. This is due, in part, to the inclu-
sion of the degree-corrected model in the clique-based sub-
graph similarity method for inferring group structure proved
to produce more accurate community structures than the
uncorrected model. An uncorrected model tended to split
a network with a substantial degree of heterogeneity into
groups of low and high degree. This tendency prevented such
a model from detecting correct group memberships.
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The degree-corrected model adopted by the clique-
based sub-graph similarity method correctly overlooked
divisions based only on degree of heterogeneity. There-
fore, it is more suitable to underlying structures. However,
the degree-corrected model showed some limitations. The
model returned sometimes unrealistic number of zero-degree
vertices. It was also unable sometimes to deal with some
degree sequences. Sometimes, it represented higher-order
network structure incorrectly. Moreover, the model assumed
that the number k of blocks was given, which is a limitation.

3) DISCUSSION OF THE RESULTS OF THE METHODS AND
CATEGORIES THAT MAXIMIZE THE DYNAMIC SIMILARITY
OBJECTIVE FUNCTION
Among the clustering categories that maximize the dynamic
similarity objective function, the results of the empirical eval-
uations revealed that the network centric category achieved
better results than the vertex centric category. Specifically,
the natural greedy strategy adopted by the network centric
category outperformed the high-degree, centrality, and ran-
dom heuristic techniques adopted by the following vertex
centric methods:

1) Vertex random walk distance based on stochastic pro-
cess.

2) Vertex reachability.
3) Vertex degree.
4) Vertices complete mutuality.
5) Vertex class membership.

The evaluation results revealed that vertex centric category
overlooked the fact that some of the highest-degree or/and
central vertices may be clustered. As a result, the clustering
consideration of all these vertices may not be unnecessary.
Actually, the global influences and behaviors of vertices may
not be accurately reflected by the centralities and degrees
of these vertices. Initially, the methods that employ degree
and centrality techniques identified influential vertices better
than the methods that employ random heuristic techniques.
However, eventually the methods that employed random
heuristic techniques surpassed the methods that employed
degree and centrality techniques in identifying all influential
vertices because they did not focus exclusively on central
vertices.

The vertex influence-based heuristic method performed
joint distribution over the behavior of all vertices glob-
ally, which positively contributed to the method’s perfor-
mance. The results revealed that the distance-based and
random-based methods had the limitation of clustering most
seed vertices, because the distances between vertices in large
communities are usually small. The seed-based clustering
technique adopted by the vertex centric methods may signif-
icantly affect the identification of influential vertices. This
is due to the impact of influence spread. Overall, the results
showed that the network centric category had the advantage of
considering the dynamicity of information instead of relying
only on the structural relationships between vertices.

4) DISCUSSION OF THE RESULTS OF THE METHODS AND
CATEGORIES THAT MAXIMIZE THE PARTITION SEPARABILITY
OBJECTIVE FUNCTION
Within the network centric category, the results of the empir-
ical evaluations revealed that the matrix-based eigenvectors
method outperformed the normalized cost search, ratio cut
search, and cut cost searchmethods. This is due, in part, to the
employment of the matrix-based eigenvectors to global opti-
mal criteria for performing segmentation instead of focusing
only on local features and network topology. The cut cost
search and ratio cut searchmethods identify local (as opposed
to global) optimal solutions. The two methods accepted only
better neighbor solutions during local search process and
disregard worse ones. They required prior knowledge about
the average size and number of communities for detecting an
initial partition. Predicting prior knowledge values is not as
easy task. Also, the two methods relied on the accuracy of
the initially detected partitions. Inaccurate initial partitions
may cause a slow convergence. As a result, the two methods
produced several poor solutions. The cut cost search method
tended to produce small cut sets of isolated vertices. That
is, the method is bias towards partitioning small sets of
vertices.

VIII. EVALUATING THE STATIC COMMUNITY DETECTION
METHODS EXPERIMENTALLY
In this section, we experimentally compare the different static
clustering methods described in Sections II-V. We followed
the same procedure described in Subsection VII.B for select-
ing the techniques that represent the different methods. That
is, for each method, we selected a technique/paper as a repre-
sentative of the method. From among all papers that proposed
techniques adopting one of the methods, we selected the most
influential one (recall Subsection VII.B for more details).
We also used the five sets of ground-truth communities
described in Subsection VII.A and listed in Table 1. We eval-
uated the accuracy of the methods for detecting communities
from scratch (SectionVIII.A) and for assigning newmembers
to existing communities (Section VIII.B).

A. EVALUATING THE ACCURACY OF DETECTING
COMMUNITIES FROM SCRATCH
In this test, we compared the accuracies of the different meth-
ods and clustering categories for detecting the ground-truth
communities listed in Table 1 from scratch (as opposed to
augmenting existing partial communities). We computed the
Adjusted Rand Index (ARI) and F1-score for each method
by comparing its predicted communities with the correspond-
ing ground truth communities shown in Table 1. That is,
we computed the ARIs and F1-scores with reference to the
actual ground-truth communities. Figs. 6-9 plot the results
of comparing the methods and clustering categories in terms
of their ARIs and F1-scores for maximizing the internal
density, structural similarity, dynamic similarity, and partition
separability objective functions, respectively.
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FIGURE 6. Comparing the clustering methods and categories that
maximize the internal density objective function, where: (a) average
F1-score of the clustering methods, (b) average F1-score of the clustering
categories, (c) average ARI of the clustering methods, (d) average ARI of
the clustering categories, (e) average execution time (in seconds) of the
clustering methods, and (f) average execution time (in seconds) of the
clustering categories.

As the results of the methods and categories that
optimize the internal density objective function plotted
in Fig. 6 show, the hierarchy centric clustering category (rep-
resented by the top-down divisive, bottom-up intermediary
score, and bottom-up agglomerative methods) outperformed
the group centric clustering category (represented by the
vertex within-outside ties method) and the vertex centric clus-
tering category (represented by the density centric method).
Based on our observation of the results, we attributed the
good performance of the hierarchy centric category to its
employment of global preprocessing techniques that consider
the topology of the entire network. The category predicted
each vertex-vertex degree of association according to global
vertex-edge associations. It predicted the association between
each pair of vertices vi and vj based on the associations
between the edges in the path from vi to vj and each of vi
and vj. In other words, the degrees of association between
vertices are based on the degrees of influences of the edges
connecting them. The group centric and group centric cate-
gories detected communities in independence of how closely

FIGURE 7. Comparing the clustering methods and categories that
maximize the structural similarity objective function, where: (a) average
F1-score of the clustering methods, (b) average F1-score of the clustering
categories, (c) average ARI of the clustering methods, (d) avg ARI of the
clustering categories, (e) avg execution time (seconds) of the clustering
methods, and (f) avg execution time of the clustering categories.

associated their connections are based on the global influ-
ences of the edges connecting them.

Due to the specificity nature of the structural character-
istics of a vertex in a network, the network centric cate-
gory outperformed the group centric and vertex centric cat-
egories by considering the structural similarities of vertices
for optimizing the structural similarity objective function
as shown in Fig. 7. Based on our analysis of the experi-
mental results, we observed that the structural-based search
properties required for identifying communities with certain
structural similarities are includedwithin the underlying tech-
niques of the network centric methods. Specially, the network
centric methods considered the following: (1) the ratio of
the number of edges connecting a vertex within and outside
a community, and (2) the position in the latent space of a
vertex. Thus, the network centric methods considered the
connections in the entire network, where a community was
not defined independently. This ensured that each pair of
vertices within a community was connected by edges that are
closely associated with the other vertices in the community.
The degrees of association between vertices and the edges
connecting them were based on the topological influences of
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FIGURE 8. Comparing the clustering methods and categories that
maximize the dynamic similarity objective function: (a) average F1-score
of the clustering methods, (b) average F1-score of the clustering
categories, (c) average ARI of the clustering methods, (d) average ARI of
the clustering categories, (e) average execution time (seconds) of the
clustering methods, and (f) avg execution time of the clustering
categories.

these edges, because they control the flow of information in
the network.

As the results of the methods and categories that opti-
mize the dynamic similarity objective function plotted
in Fig. 8 show, the network centric clustering category (repre-
sented by the vertex influence heuristic method) outperformed
the vertex centric clustering category (represented by the ver-
tex random walk distance, vertex reachability, vertex degree,
vertices complete mutuality, and vertex class membership
methods). The dynamic similarity objective function seeks,
mainly, to infer the global relative influences of vertices by
analyzing their interaction patterns. The ultimate objective
of the function is the identification of the influences of ver-
tices to infer the social status of the individuals represented
by these vertices: it assumes that if some vertices behave
in the same role during interaction, they are likely to be
similar. Based on our analysis of the experimental results,

FIGURE 9. Comparing the methods that maximizes the partition
separability objective function, where: (a) F1-score of the clustering
methods, (b) ARI of the clustering methods, (c) average execution time (in
seconds) of the clustering methods.

we observed that the underlying techniques adopted by the
vertex influence heuristic method achieved this objective by
successfully inferring the influences of vertices. It did so by
considering the topology of the entire network to analyze
the interaction patterns of vertices. Specifically, the Kempe
et al. [61] method considered the issue of selecting the set of
influential individuals in a network as a discrete optimization
problem. It assigned scores to vertices to reflect their global
interaction roles and relative influences in networks. It suc-
cessfully drew the boundaries of communities by taking into
consideration the impact of their influential vertices.

From among the methods that maximize the partition sep-
arability objective function, the matrix-based eigenvectors
method outperformed the normalized cost search, ratio cut
search, and cut cost search methods as Fig. 9 shows. Based on
our observation of the results, we attributed the performance
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of the matrix-based eigenvectors method, mainly, to the fact
that the Eigen spectrum of the modularity matrix employed
by the method was closely tied to the detected communities’
structures. We observed that the magnitudes of eigenvectors’
elements reflected the strength of the ‘‘belonging’’ of vertices
to the communities assigned to them. Eigenvectors contained
important information about communities’ structures. The
matrix eigenvectors method maximized each group of ver-
tices connected with edges that have higher than average
density.

B. EVALUATING THE ACCURACY OF ASSIGNING NEW
VERTICES TO EXISTING COMMUNITIES
In real-world settings, there are always new members joining
social networks that have existing communities. This makes
it necessary for clustering methods to be able to advice such
new members with the appropriate existing communities that
match their profiles. Towards this, we evaluated the accu-
racy of the different methods and clustering categories to
correctly assigning new vertices to the existing communities
that match their structural profiles. We adopted the following
strategy for the evaluation: (1) we shrank the boundaries of
the com-LiveJournal communities (recall Table 1), (2) we
considered the vertices that are outer of the new boundaries
as new vertices need to be assigned to communities, and (3)
we evaluated the accuracy of the methods for reassigning
these vertices to their actual com-LiveJournal communities.
We kept shrinking the boundary of each com-LiveJournal
community until the percentage of its vertices that fell outside
its new boundary amounted to 25% of its overall number
of vertices. We considered the 25% as vertices that need
to be reassigned to their actual ground-truth communities.
We evaluated the accuracy of the methods to correctly reas-
sign these vertices to their actual communities. We repeated
the same procedure several times by reshrinking the boundary
of each com-LiveJournal community so that the percentage
of its vertices fell outside its new boundary amounted to
50%, 75%, and then 90% of its overall number of vertices.
Figs. 10-13 plot the results of comparing the methods and
clustering categories in terms of their F1-scores for max-
imizing the internal density, structural similarity, dynamic
similarity, and partition separability objective functions,
respectively.

For maximizing the internal density objective function,
the hierarchy centric, group centric, and vertex centric clus-
tering categories achieved close results when the fraction of
revealed vertices was small (see Fig. 10). However, as the
fraction increases, the hierarchy centric and group centric
categories kept outperforming the vertex centric clustering
category at higher rate. Based on our analysis of the results,
we attributed these findings to the following:
• Every time a new set of vertices was revealed, the hier-
archy centric and group centric methods recomputed the
relative influence of each vertex accordingly based on
the topology of the entire network. These newly recom-
puted values were enhancements over the previous ones.

FIGURE 10. Comparing the clustering methods and categories that
maximize the internal density objective function, where: (a) average
F1-score of each clustering method to correctly reassign the vertices of
com-LiveJournal dataset to their actual communities, and (b) average
F1-score of each clustering category to correctly reassign the vertices of
com-LiveJournal dataset to their actual communities.

In other words, every time a new set of vertices
was revealed, the hierarchy centric and group meth-
ods optimized and updated the current relative influ-
ence scores of the vertices confined within a commu-
nity. This is advantageous to the hierarchy centric and
group centric methods, because their performances will
keep improving over time, which is due to the fact
that there are always new members joining social net-
works that have existing communities in a real-world
setting.

• The group centric methods are better suited for detect-
ing overlapping communities. Most of them are bet-
ter suited for clustering together the sets of vertices
whose neighborhoods are overlapping. These methods
achieved good results, because many of the users of the
com-LiveJournal dataset are members of more than one
activity (i.e., community). LiveJournal classifies groups
based on their activities into culture, sports, life/style,
entertainment, gaming, technology, and student life.

Formaximizing the structural similarity objective function,
as the fraction of revealed vertices increases, the network
centric category kept outperforming the vertex centric clus-
tering category at higher rate as shown in Fig. 11. From
our observation of the results, we attributed the insignificant
accuracy increase rate of the vertex centric category to the
following: the accuracy of the vertex centric category tended
to degrade, if there is a large portion of a set of vertices that
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FIGURE 11. Comparing the clustering methods and categories that
maximize the structural similarity objective function, where: (a) average
F1-score of each clustering method to correctly reassign the vertices of
com-LiveJournal dataset to their actual communities, and (b) average
F1-score of each clustering category to correctly reassign the vertices of
com-LiveJournal dataset to their actual communities.

belongs to a community was also relevant to one or more
other communities. This could be an indicative of a limitation
of the category for detecting overlapping communities in
large and complex networks.

For maximizing the dynamic similarity objective function,
the network centric clustering category achieved good results
as shown in Fig. 12. From our observation of the results,
we attributed this performance to the fact that most of the
methods falling under this category are better suited for
detecting overlapping communities and a large number of
the users of the com-LiveJournal dataset are members of
more than one community (i.e., activity). Edges in most of
these methods represent the intensities of the overlap between
subgraphs (e.g., cliques and blocks) in a network. They
identify a subgraph-subgraph overlap to detect overlapping
communities.

From among the methods that maximize the partition sepa-
rability objective function (see Fig. 13), we observed that the
matrix eigenvectorsmethodwas able to accurately detect both
group and individual vertices that are relevant to a specific
community. It was able to select the vertices that maximize a
community’s flow of information. As more information was
revealed, the techniques of the method les to partitioning with
higher correlations. We observed that the clustering accuracy
of the normalized cost search method tended to degrade in
situations where a set of revealed vertices was relevant to a
specific community, but some of the vertices in this set were
more relevant to other communities.

FIGURE 12. Comparing the clustering methods and categories that
maximize the dynamic similarity objective function, where: (a) average
F1-score of each clustering method to correctly reassign the vertices of
com-LiveJournal dataset to their actual communities, and (b) average
F1-score of each clustering category to correctly reassign the vertices of
com-LiveJournal dataset to their actual communities.

FIGURE 13. Comparing the clustering methods that maximize the
partition separability objective function in terms of the average F1-score
of each method to correctly reassign the vertices of com-LiveJournal
dataset to their actual communities.

IX. EVALUATING THE DYNAMIC COMMUNITY
DETECTION METHODS EMPIRICALLY AND
EXPERIMENTALLY
We empirically and experimentally evaluated and compared
the dynamic community detection methods that optimize the
structural similarity and internal density objective functions.

98350 VOLUME 8, 2020



K. Taha: Static and Dynamic Community Detection Methods That Optimize a Specific Objective Function

A. COMPILING GROUND TRUTH COMMUNITIES
1) SYNTHETIC DATASET
We employed the data generating method proposed by New-
man and Girvan [87] for generating two types of synthetic
datasets, one whose number of communities is fixed (called
FIX-NUM-COM) and the other whose number of communi-
ties is variable (called VAR-NUM-COM). Below are descrip-
tions of the two datasets.
• FIX-NUM-COM: The dataset comprises 128 nodes

divided into four communities. Each community contains
32 nodes. We generated a network data for 10 consecu-
tive timestamps. Dynamics into the generated data is intro-
duced as follows. We selected three nodes at random from
each of the communities in the 10 timestamps. From each
community, we made three nodes leave the community
and join the other three communities at random. Edges are
placed randomly with a higher probability pin between two
nodes within a same community and lower probability pout
between-community nodes. The value of pout and pin are
selected in such a way that the average node’s degree is
16. To control the level of noise in the dynamic network,
we considered a parameter z that reflects the average number
of edges connecting between-community nodes. Specifically,
we considered the following two values for z:

◦ z = 5: for evaluating clear and easy to detect community
structure due to low level of noise. This corresponds to
pout = 0.16 and pin = 0.05.

◦ z = 6: for evaluating fuzzier community structure due
to higher level of noise. This corresponds to pout =
0.12 and pin = 0.06.

• VAR-NUM-COM: In this dataset, nodes are allowed to
depart their original communities and form new ones. The
dataset comprises 320 nodes divided into four communities.
Each community contains 80 nodes. We generated a network
data for 10 consecutive timestamps. We selected 12 nodes
from each community at random and constructed two new
communities from these nodes, each contained 24 nodes.
This process was repeated in the first five timestamps. Then,
the process was reversed in each of the other five timestamps,
where nodes returned to their original communities. There-
fore, the number of communities in timestamps 1-10 are 4, 6,
8, 10, 12, 12, 10, 8, 6, and 4 respectively. The values of pout
and pin are selected in such a way that the average node’s
degree is half of the number of nodes in a community.

2) REAL DATASET
To further evaluate more features of the methods, we used
the DBLP real-word dataset [118]. This dataset com-
prises 13,470 ground-truth communities constructed from
the co-authorship of research papers in computer science.
The dataset contains 317,080 nodes representing authors
and 1,049,866 edges connecting the nodes. Two nodes in
the co-authorship network are linked by an edge, if the
two authors depicted by the two nodes published one or
more papers together. Authors who published in a same

TABLE 3. The list of papers, in which the selected dynamic clustering
techniques were proposed.

journal/conference form a community. A venue of a publi-
cation is also a ground-truth community.

B. EVALUATION SETUP
We performed the following procedure for the evaluations:

1) For each of the dynamic clustering methods described
in Sections II and III, we selected the most influential
technique employing the underlying principles of the
method to serve as a representative of the method.
We based the influence of a technique on factors such
as the number of citations of the paper in which the
technique was proposed, its recency, and its degree of
state of the art.

â Table 3 shows the list of papers, in which the
selected dynamic clustering techniques were
proposed.

2) For each clustering category, we ranked the different
methods that fall under the category. The ranking was
performed by averaging the fitness scores achieved by
the techniques employed by the methods that fall under
the clustering category.

3) For each clustering objective function, we ranked the
different clustering categories that fall under the objec-
tive function.

C. EVALUATING THE METHODS THAT MAXIMIZE THE
STRUCTURAL SIMILARITY OBJECTIVE FUNCTION
1) EVALUATION USING THE ACCURACY OF DETECTED
COMMUNITIES
In this test, we use the NormalizedMutual Information (NMI)
metric described in Section VI for measuring the accura-
cies of the dynamic methods that maximize the structural
similarity objective function. We measured the accuracies of
the methods for clustering the FIX-NUM-COM and VAR-
NUM-COM datasets described in Subsection IX.A.1 based
on their ground truth communities and the memberships of
these communities at each timestamp. The values of NMI
range from 0 to 1. The higher the value the better accuracy.

â Fig. 14 shows the accuracies of detecting commu-
nities using the FIX-NUM-COM dataset.
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FIGURE 14. Accuracies of detecting communities using the FIX-NUM-COM
dataset (α = 0:8), where: (a) z = 5, and (b) z = 6.

â Fig. 15 shows the accuracies of detecting commu-
nities using the VAR-NUM-COM dataset.

2) EVALUATING THE QUALITY OF SNAPSHOTS AND
FREQUENCY OF FORMING AND DISSOLVING COMMUNITIES
Measuring the quality of snapshots reflects the degree in
which detected clusters capture current network’s structure.
Measuring the quality of temporal reflects the degree inwhich
detected clusters are similar to previous clusters. During clus-
tering, the trades of between the above two qualities at every
timestamp results in smoothness. In this section, we evaluate
the methods that maximize the structural similarity objective
function using a parameter α, which controls the following:
(1) the trade-off between history quality and snapshot qual-
ity, and: (2) the frequency of dissolving/forming clusters.
We used the DBLP dataset described in Subsection IX.A.B.
Fig. 16 shows communities’ average length and the num-
ber of communities based on the variation of parameter α
from 0 to 1.

D. EVALUATING THE METHODS THAT MAXIMIZE THE
INTERNAL DENSITY OBJECTIVE FUNCTION
In this test, we use Newman & G. modularity [87] and
Chen et al. modularity [19] metrics described in Section VI
for measuring the accuracies of the methods that maxi-
mize the internal density objective function. We used the

FIGURE 15. Accuracies of detecting communities in 10 timestamps using
the VAR-NUM-COM dataset (α = 0 : 8), where: (a) z = 5, and (b) z = 6.

FIX-NUM-COM dataset described in Subsection IX.A.1
based on its ground truth communities and the memberships
of these communities at each timestamp. Fig. 17 shows the
modularity of detected communities in 10 timestamps, using
Newman & G. modularity and Chen et al. modularity.

E. DISCUSSION OF THE RESULTS
Table 4 shows the fitness score of each technique representing
a method, the ranking of the different methods that fall under
a same clustering category, and the ranking of the different
clustering categories that fall under a same objective function.
In the next two subsections 1-4, we discuss our observation of
the results of the methods and clustering categories that max-
imize the structural similarity and internal density objective
functions.

1) RESULTS OF THE METHODS THAT MAXIMIZE THE
STRUCTURAL SIMILARITY
• Using FIX-NUM-COM dataset: When it is clear and

easy to detect community structure due to low level of noise
(i.e., z = 5), the results revealed that the block-based
method achieved very good accuracy results. When commu-
nity structures are fuzzier due to higher level of noise (i.e.,
z = 6), the results revealed that both of the block-based and
clique-based methods achieved very good accuracy results.
The good performance of the two methods is attributed,
mainly, to the temporal smoothing techniques employed by
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TABLE 4. The fitness score of each technique representing a dynamic method, the ranking of the different methods that fall under a same clustering
category, and the ranking of the different clustering categories that fall under a same objective function.

FIGURE 16. (a)Communities’ average length, and (b) number of
communities. (a) and (b) are based on parameter α variation from 0 to 1.

the methods. This is evident in the accuracy increase at each
timestamp ts over timestamp ts-1 due to the improvement of
smoothness.

• Using VAR-NUM-COM dataset: The block-based
method showed significant performance over the other meth-
ods in the two values of parameter z (i.e., z = 5 and z = 6).
This is because the method is sensitive to any change occurs
in the number of communities due to the dissolving of com-
munities and the formation of new communities. The method
deals with such changes effectively. However, the perfor-
mance of the method at the middle of the timestamps was
not as good as the beginning and end when z = 6. This
is because the difference between the number communities
produced by the method and the ground truth data is maxi-
mized at the middle. The incremental-based method did not
respond effectively to changes in number of communities.
The decomposition method showed performance degradation
between timestamps 7 and 10. The accuracy of all methods
when z = 6 was much lower than when z = 5. This due
to the lack of temporal smoothness as a result of constant
changes in the number of communities. As Fig. 16 shows,
the block-based method showed the best stability in terms
of number of detected communities and the lengths of these
communities as timestamp goes on. This is an indicative of
smoothness in the detection of communities.

2) RESULTS OF THE METHODS THAT MAXIMIZE THE
INTERNAL DENSITY
As Fig. 17 shows, all methods achieved good modularity
values at the beginning of the timestamps. This is because
local clusters are likely to be connected and the lifetimes of
communities tend to be high (i.e., the variation of number
of communities tends to be low) at the beginning of the
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FIGURE 17. The modularity of detected communities in 10 timestamps,
using: (a) Newman & G. modularity, and (b) Chen et al. modularity.

timestamps. However, as timestamp goes on, the modularity
of all the methods decreases. This is because the number of
local clusters that are disconnected increases as timestamp
goes on due to their low densities. Therefore, the number of
communities increases and a community’s lifetime decreases
as timestamp goes on.

X. CONCLUSION
A. SUMMARY
Most current survey papers classify community detection
methods into broad categories and do not draw clear
boundaries between the specific techniques employed by
these methods. To overcome this, we introduced this
survey paper to classify static and dynamic clustering tech-
niques into fine-grained categories and methods. We pro-
vided methodology-based taxonomies that classify static and
dynamic community detection methods into hierarchically
nested, fine-grained, and specific classes. We provided tax-
onomies, whose classifications resulted in 31 fine-grained
methods for detecting clusters. We hierarchically classified
the clustering methods and categories that optimize each
objective function. We empirically and experimentally com-
pared and ranked the different methods that fall under each
clustering category. We also empirically and experimentally
compared and ranked the different clustering categories that
optimize a same objective function. We summarize below the
findings of the empirical and experimental evaluations:

• Findings of the static and dynamic methods that max-
imize the structural similarity objective function:
◦ Static community detection methods:

â The network centric clustering category achieved
better results than the vertex centric and group
centric clustering categories.

â Among the clustering methods that fall under
the network centric clustering category, the
block-based sub-graph similarity method
achieved better results than the clique-based
sub-graph similarity and latent space search
methods.

â The vertex centric clustering category has a lim-
itation in detecting overlapping communities for
large and complex networks.

◦ Dynamic community detection methods:

â The block-based method achieved very good
accuracy results when it is clear and easy to
detect community structure.

â The block-based and clique-based methods
achieved very good accuracy results when com-
munity structures are fuzzier.

â The block-based method showed significant per-
formance over the other methods using a dataset,
whose number of communities is variable.

â The incremental-based method did not respond
effectively to changes in number of
communities.

• Findings of the static and dynamic methods that max-
imize the internal density objective function:
◦ Static community detection methods:

â The hierarchy centric and group centric clus-
tering categories outperformed the vertex cen-
tric category. Results showed that the perfor-
mance of the hierarchy centric and group cen-
tric categories kept improving as the sizes
of communities increased. This is advanta-
geous to the two methods because communities’
sizes keep increasing over time in real word
setting.

â Among the clustering methods that fall under
the hierarchy centric clustering category,
the top-down divisive-based clustering method
achieved better results that the bottom-up
agglomerative and the bottom-up intermediary
score maximization clustering methods.

◦ Dynamic community detection methods:

â All methods achieved good modularity values
at the beginning of the timestamps. However,
as timestamp goes on, the modularity of all the
methods decreases.

â The number of communities increases and a
community’s lifetime decreases as timestamp
goes on.
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• Findings of the static methods that maximize the
dynamic similarity objective function:
â The network centric category achieved better results

than the vertex centric clustering category. Results
showed that the network centric category kept out-
performing the vertex centric category at higher rate
as communities’ sizes increased.

â The network centric methods are better suited for
detecting overlapping communities in large and
complex networks.

â Among the clustering methods that fall under the
vertex centric clustering category, the vertex ran-
dom walk distance method achieved better results
than the vertex reachability, vertex degree, vertex
complete mutuality, and vertex class membership
methods.

• Findings of the static methods that maximize the par-
tition separability objective function:
â Among themethods that fall under the network cen-

tric category, the matrix-based eigenvectors method
outperformed the normalized cost search, ratio cut
search, and cut cost search methods.

â The normalized cost search method was able to
accurately detect both, group and individual ver-
tices that were relevant to a specific community.
However, the accuracy of the method tended to
degrade in situations where a set of vertices was
relevant to a specific community, but some of them
were more relevant to other communities.

B. CURRENT CHALLENGES AND POSSIBLE SOLUTIONS
The results of the empirical and experimental evaluations
revealed the following two major limitations, which nega-
tively affected the quality of a large number of communi-
ties detected by different methods: (1) inconsideration of
multi-objective functions, and (2) inconsideration of how
closely associated vertices are based on the global influences
of the edges connecting them. We discuss below these two
limitations and present our recommended solutions.

1) INCONSIDERATION OF MULTI-OBJECTIVE FUNCTIONS
Real-world networks are complex and may require multiple
driving factors of quality partitioning. One of these factors
is the optimization of multiple objective functions. Real-
izing a ‘‘good’’ community by solely optimizing a single
objective function is often an unrealistic expectation [72].
This may cause a method to work well for only certain
settings of real-world networks. To overcome this, many
methods adopted multi-objective techniques (e.g., [133]).
However, most of thesemethods optimize only two functions.
We observed that most real-word networks require maximiz-
ing two or more of the following objective functions: internal
density, structural similarity, dynamic similarity, and partition
separability.

Below are our recommended solutions for maximizing
each of the four objective functions:

• Maximizing the partition separability objective func-
tion can be achieved by adopting the underlying
techniques of the network-centric clustering category
(recall Subsections II.A.1 and V.B). These techniques
ensure that each pair of connected vertices in a partition
is closely associated. A global preprocessing scheme
should be employed for identifying closely associated
vertices based on the topology of the entire network.

• Maximizing the dynamic similarity objective function
can be achieved by adopting the underlying techniques
of the hierarchy-centric clustering category (recall Sub-
section III.A.1). One of these techniques employs a
ranking scheme that assigns a score to each vertex
to reflect its global relative importance and degree of
interaction role in the network.

• Maximizing the internal density objective function can
be achieved by adopting the underlying techniques of
the group-centric clustering category (recall Subsec-
tions 2.1.3 and 3.1.3). One of these techniques takes
into consideration the associations between all connec-
tions confined within a partition. This ensures that each
pair of vertices within a partition is closely associated.

• Maximizing the structural similarity objective function
can be achieved by adopting the underlying techniques
of the vertex-centric clustering category (recall Subsec-
tion 3.1.2). One of these techniques considers a pair of
vertices to be part of a partition, only if the degrees of
association between the pair and the influential vertices
in the partition are significant.

2) INCONSIDERATION OF HOW CLOSELY ASSOCIATED
VERTICES ARE BASED ON THE GLOBAL INFLUENCES OF THE
EDGES CONNECTING THEM
By analyzing the results of the empirical and experimental
evaluations, we observed that most of the methods detected
communities in the independence of how closely related their
connections are based on the global relative importance of
the edges connecting them. They considered all edges to
have the same degree of influence. Intuitively, however, some
communication channels (i.e., edges) pass significant amount
of the information diffused by the influential individuals
(i.e., influential vertices) in a social network, while others
do not. Consequently, most of these methods may not work
well in networks with connections that have varying degrees
of association with the influential vertices in the networks.
To overcome this, a good method should be able to take into
consideration the impact of the global influences of edges
on the degrees of association between the vertices at the
endpoints of these edges.

REFERENCES
[1] N. Agarwal, H. Liu, L. Tang, and P. S. Yu, ‘‘Identifying the influential

Bloggers in a community,’’ in Proc. Int. Conf. Web Search Web Data
Mining, New York, NY, USA, 2008, pp. 207–218.

[2] R. Andersen, F. Chung, and K. Lang, ‘‘Local graph partitioning using
PageRank vectors,’’ in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci.
(FOCS), Oct. 2006, pp. 475–486.

VOLUME 8, 2020 98355



K. Taha: Static and Dynamic Community Detection Methods That Optimize a Specific Objective Function

[3] A. Airodi, D. Blei, S. Fienberg, and E. Xing, ‘‘Mixed membership
stochastic block models,’’ J. Mach. Learn. Res., vol. 9, pp. 1981–2014,
2008.

[4] M. Alzaabi, K. Taha, and T. A. Martin, ‘‘CISRI: A crime investigation
system using the relative importance of information spreaders in networks
depicting criminals communications,’’ IEEE Trans. Inf. Forensics Secu-
rity, vol. 10, no. 10, pp. 2196–2211, Oct. 2015.

[5] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava, ‘‘Dense subgraph
maintenance under streaming edge weight updates for real-time story
identification,’’ Proc. VLDB Endowment, vol. 5, no. 6, pp. 574–585,
Feb. 2012.

[6] T. Aynaud and J.-L. Guillaume, ‘‘Static community detection algorithms
for evolving networks,’’ in Proc. 8th IEEE Int. Symp. Modeling Optim.
Mobile, Ad Hoc Wireless Netw. (WiOpt), May 2010, pp. 513–519.

[7] S. Asur, S. Parthasarathy, and D. Ucar, ‘‘An event-based framework for
characterizing the evolutionary behavior of interaction graphs,’’ ACM
Trans. Knowl. Discovery Data, vol. 3, no. 4, pp. 16:1–16:36, Nov. 2009.

[8] R. Agrawal, ‘‘Bi-objective community detection (BOCD) in networks
using genetic algorithm,’’ inContemporary Computing. Berlin, Germany:
Springer-Verlag, 2011, pp. 5–15.

[9] B. Balasundaram, S. Butenko, and I. V. Hicks, ‘‘Clique relaxations in
social network analysis: The maximumk-plex problem,’’ Oper. Res.,
vol. 59, no. 1, pp. 133–142, Feb. 2011.

[10] S. Borgatti, M. Everett, and P. Shirey, ‘‘LS sets, lambda sets and other
cohesive subsets,’’ Social Netw., vol. 12, no. 4, pp. 337–357, 1990.

[11] A. Blum and T. Mitchell, ‘‘Combining labeled and unlabeled data with
co-training,’’ in Proc. 11th Annu. Conf. Comput. Learn. Theory, 1998,
pp. 92–100.

[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, ‘‘Fast
unfolding of communities in large networks,’’ J. Stat. Mech. Theory Exp.,
vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

[13] S. Bhatt, S. Padhee, A. Sheth, K. Chen, V. Shalin, D. Doran, and
B. Minnery, ‘‘Knowledge graph enhanced community detection and char-
acterization,’’ in Proc. 12th ACM Int. Conf. Web Search Data Mining
(WSDM), Melbourne, Australia, Jan. 2019.

[14] A. Bahulkar, B. K. Szymanski, N. O. Baycik, and T. C. Sharkey, ‘‘Com-
munity detection with edge augmentation in criminal networks,’’ in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM),
Barcelona, Spain, Aug. 2018, pp. 1168–1175.

[15] P. Bogdanov, M. Mongiovì, and A. K. Singh, ‘‘Mining heavy subgraphs
in time-evolving networks,’’ in Proc. IEEE 11th Int. Conf. Data Mining,
Dec. 2011, pp. 81–90.

[16] J. Chen and Y. Saad, ‘‘Dense subgraph extraction with application to
community detection,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 7,
pp. 1216–1230, Jul. 2012.

[17] A. Clauset, C. Moore, and M. E. J. Newman, ‘‘Hierarchical structure and
the prediction of missing links in networks,’’ Nature, vol. 453, no. 7191,
pp. 98–101, May 2008.

[18] M. Coscia, F. Giannotti, and D. A. Pedreschi, ‘‘Classification
for community discovery methods in complex networks,’’ CoRR,
vol. abs/1206.3552, 2012.

[19] D. Chen, M. Shang, Z. Lv, and Y. Fu, ‘‘Detecting overlapping commu-
nities of weighted networks via a local algorithm,’’ Phys. A, Stat. Mech.
Appl., vol. 389, no. 19, pp. 4177–4187, Oct. 2010.

[20] M. Crampes and M. Plantié, ‘‘A unified community detection, visualiza-
tion and analysis method,’’ CoRR, vol. abs/1301.7006, 2013.

[21] M. Chen, T. Nguyen, and B. Szymanski, ‘‘A new metric for quality of
network community structure,’’ ASE Hum. J., vol. 2, no. 4, pp. 226–240,
2013.

[22] G. Caldarelli, R. Pastor-Satorras, and A. Vespignani, ‘‘Cycles struc-
ture and local ordering in complex networks,’’ 2002, arXiv:cond-mat_
0212026. [Online]. Available: https://arxiv.org/abs/cond-mat/0212026

[23] A. Clauset, M. E. J. Newman, and C. Moore, ‘‘Finding community
structure in very large networks,’’Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, no. 6, Dec. 2004, Art. no. 066111.

[24] W.-K. Cui, K.-K. Shang, Y.-J. Zhang, J. Xiao, and X.-K. Xu, ‘‘Construct-
ing null networks for community detection in complex networks,’’ Eur.
Phys. J. B, vol. 91, no. 7, p. 145, Jul. 2018.

[25] R. Cazabet, F. Amblard, and C. Hanachi, ‘‘Detection of overlapping
communities in dynamical social networks,’’ in Proc. IEEE 2nd Int. Conf.
Social Comput. (SocialCom), vol. 14, Aug. 2010, p. 309.

[26] G. Murray, G. Carenini, and R. Ng, ‘‘Using the omega index for evaluat-
ing abstractive community detection,’’ in Proc. Workshop Eval. Metrics
Syst. Comparison Autom. Summarization, Assoc. Comput. Linguistics,
2012, pp. 10–18.

[27] J. Hou Chin and K. Ratnavelu, ‘‘A semi-synchronous label propagation
algorithm with constraints for community detection in complex net-
works,’’ Sci. Rep., vol. 7, no. 1, Apr. 2017, Art. no. 45836.

[28] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, ‘‘Evolutionary
spectral clustering by incorporating temporal smoothness,’’ in Proc.
13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2007,
pp. 153–162.

[29] D. Chakrabarti, R. Kumar, and A. S. Tomkins, ‘‘Evolutionary clustering,’’
in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data sMining,
pp. 554–560. ACM Press, 2006.

[30] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, ‘‘Mixing local and
global information for community detection in large networks,’’ J. Com-
put. Syst. Sci., vol. 80, no. 1, pp. 72–87, Feb. 2014.

[31] D. Duan, Y. Li, R. Li, and Z. Lu, ‘‘Incremental K-clique clustering in
dynamic social networks,’’ Artif. Intell. Rev., vol. 38, no. 2, pp. 129–147,
Aug. 2012.

[32] T. N. Dinh, Y. Xuan, and M. T. Thai, ‘‘Towards social-aware routing in
dynamic communication networks,’’ in Proc. 28th Int. Perform. Comput.
Commun. Conf., Dec. 2009, pp. 161–168.

[33] M. G. Everett and S. P. Borgatti, ‘‘Regular equivalence: General theory,’’
J. Math. Sociol., vol. 19, no. 1, pp. 29–52, May 1994.

[34] P. Erdös and A. Rényi, On Random Graphs, vol. 6. Debrecen, Hungary:
Publicationes Mathematicae, 1959, pp. 290–297.

[35] G. Flake, S. Lawrence, and C. Giles, ‘‘Efficient identification of Web
communities,’’ in Proc. 6th ACM SIGKDD, New York, NY, USA, 2000,
pp. 150–160.

[36] K. Faust and S. Wasserman, ‘‘Blockmodels: Interpretation and evalua-
tion,’’ Social Netw., vol. 14, nos. 1–2, pp. 5–61, Mar. 1992.

[37] I. Farkas, D. Ábel, G. Palla, and T. Vicsek, ‘‘Weighted network modules,’’
New J. Phys., vol. 9, no. 6, p. 180, Jun. 2007.

[38] A. Fang-ju, ‘‘Research on a large-scale community detection algo-
rithm based on non-weighted graph,’’ Cluster Comput., vol. 22, no. S2,
pp. 2555–2562, Mar. 2019.

[39] T. Falkowski, A. Barth, and M. Spiliopoulou, ‘‘Dengraph: A density-
based community detection algorithm,’’ in Proc. IEEE/WIC/ACM Int.
Conf. Web Intell., Nov. 2007, pp. 112–115.

[40] T. Falkowski, J. Bartelheimer, and M. Spiliopoulou, ‘‘Mining and
visualizing the evolution of subgroups in social networks,’’ in Proc.
IEEE/WIC/ACM Int. Conf. Web Intell., Dec. 2006, pp. 52–58.

[41] F. Folino and C. Pizzuti, ‘‘An evolutionary multiobjective approach for
community discovery in dynamic networks,’’ IEEE Trans. Knowl. Data
Eng., vol. 26, no. 8, pp. 1838–1852, Aug. 2014.

[42] S. Fortunato and M. Barthélemy, ‘‘Resolution limit in community detec-
tion,’’ Proc. Nat. Acad. Sci. USA, vol. 104, no. 1, pp. 36–41, 2007.

[43] M. Gong, Q. Cai, Y. Li, and J. Ma, ‘‘An improved memetic algo-
rithm for community detection in complex networks,’’ in Proc. IEEE
Congr. Evol. Comput. (CEC), Brisbane, QLD, Australia, Jun. 2012,
pp. 1–8.

[44] S. Giannini, ‘‘RDF data clustering,’’ in Proc. BI Syst. Workshops, Poznan,
Poland, 2013.

[45] M. Girvan and M. E. J. Newman, ‘‘Community structure in social
and biological networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Jun. 2002.

[46] C. Gong, G. Wang, J. Hu, M. Liu, L. Liu, and Z. Yang, ‘‘Finding multi-
granularity community structures in social networks based on signifi-
cance of community partition,’’ in Proc. IEEE Int. Conf. Data Mining
Workshops (ICDMW), Singapore, Nov. 2018, pp. 415–421.

[47] R. Görke, T. Hartmann, and D. Wagner, ‘‘Dynamic graph clustering
using minimum-cut trees,’’ J. Graph Algorithms Appl., vol. 16, no. 2,
pp. 411–446, 2012.

[48] R. Görke, P. Maillard, A. Schumm, C. Staudt, and D. Wagner, ‘‘Dynamic
graph clustering combining modularity and smoothness,’’ J. Exp. Algo-
rithmics, vol. 18, no. 1, pp. 1.1–1.29, Dec. 2013.

[49] L. Gauvin, A. Panisson, and C. Cattuto, ‘‘Detecting the community
structure and activity patterns of temporal networks: A non-negative
tensor factorization approach,’’ PLoS ONE, vol. 9, no. 1, Jan. 2014,
Art. no. e86028.

[50] P. Guan and J. Wu, ‘‘Effective data communication based on social
community in social opportunistic networks,’’ IEEE Access, vol. 7,
pp. 12405–12414, 2019.

[51] R. Gorke, P. Maillard, C. Staudt, and D. Wagner, ‘‘Modularity-
driven clustering of dynamic graphs,’’ in Proc. SEA, vol. 6049, 2010,
pp. 436–448.

[52] M. Handcock, A. Raftery, and J. Tantrum, ‘‘Model-based clustering for
social networks,’’ J. Roy. Stat. Soc. A, vol. 127, no. 2, pp. 301–354, 2007.

98356 VOLUME 8, 2020



K. Taha: Static and Dynamic Community Detection Methods That Optimize a Specific Objective Function

[53] R. A. Hanneman and M. Riddle, ‘‘Introduction to social network meth-
ods,’’ Univ. California, Riverside, Riverside, CA, USA, Tech. Rep., 2005.

[54] S. Harenberg, G. Bello, L. Gjeltema, J. Harlalka, R. Seay, and
N. Samatova, Community Detection in Large-Scale Networks: A Survey
and Empirical Evaluation. Hoboken, NJ, USA: Wiley, 2014.

[55] J. E. Hopcroft, O. Khan, B. Kulis, and B. Selman, ‘‘Tracking evolving
communities in large linked networks,’’ Proc. Nat. Acad. Sci. USA,
vol. 101, pp. 5244–5253, Apr. 2004.

[56] A. Jain and R. Dubes, Algorithms for Clustering Data. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1988.

[57] P. Jiang and M. Singh, ‘‘SPICi: A fast clustering algorithm for large
biological networks,’’ Bioinformatics, vol. 26, no. 8, pp. 1105–1111,
Apr. 2010.

[58] Y. Jaewon and L. Jure, ‘‘Defining and evaluating network communities
based on ground-truth,’’ inProc. IEEE Int. Conf. DataMining, Dec. 2012,
pp. 745–754.

[59] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang, ‘‘CatchSync:
Catching synchronized behavior in large directed graphs,’’ in Proc. 20th
ACM Int. Conf. Knowl. Discovery Data Mining, New York, NY, USA,
2014, pp. 941–950.

[60] L. Jiang, L. Shi, L. Liu, J. Yao, and M. Yousuf, ‘‘User interest community
detection on social media using collaborative filtering,’’ Wireless Netw.,
vol. 25, no. 7, p. 4443, 2019.

[61] D. Kempe, J. Kleinberg, and É. Tardos, ‘‘Maximizing the spread of
influence through a social network,’’ inProc. 9th ACMSIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2003, pp. 137–146.

[62] B. Kernighan and S. Lin, ‘‘An efficient heuristic for partitioning graphs,’’
Bell Syst. Tech. J., vol. 49, pp. 291–308, 1970.

[63] R. Kumar, J. Novak, and A. Tomkins, ‘‘Structure and evolution of online
social networks,’’ in Proc. 12th ACM SIGKDD, New York, NY, USA,
2006, pp. 337–357.

[64] G. Karypis and V. Kumar, ‘‘A fast and high quality multilevel scheme
for partitioning irregular graphs,’’ SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Jan. 1998.

[65] J. M. Kumpula, M. Kivelä, K. Kaski, and J. Saramäki, ‘‘Sequential
algorithm for fast clique percolation,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 78, no. 2, Aug. 2008, Art. no. 026109.

[66] B. Karrer andM. E. J. Newman, ‘‘Stochastic blockmodels and community
structure in networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 83, no. 1, Jan. 2011, Art. no. 016107.

[67] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, ‘‘Trawling
the Web for emerging cyber-communities,’’ Comput. Netw., vol. 31,
nos. 11–16, pp. 1481–1493, May 1999.

[68] A. Konstantinidis, D. Zeinalipour-Yazti, P. Andreou, and G. Samaras,
‘‘Multi-objective query optimization in smartphone social networks,’’ in
Proc. 12th Int. Conf. Mobile Data Manage. (MDM), 2011, pp. 27–32.

[69] M. S. Kim and J. Han, ‘‘A particle-and-density based evolutionary clus-
tering method for dynamic networks,’’ in Proc. 35th Int. Conf. Very Large
Databases (VLDB), 2009, pp. 622–633.

[70] R. Kannan, S. Vempala, and A. Vetta, ‘‘On clusterings: Good, bad and
spectral,’’ J. ACM, vol. 51, no. 3, pp. 497–515, 2004.

[71] D. Liu, D. Jin, C. Baquero, D. He, B. Yang, andQ. Yu, ‘‘Genetic algorithm
with a local search strategy for discovering communities in complex
networks,’’ Int. J. Comput. Intell. Syst., vol. 6, no. 2, pp. 354–369,
Apr. 2013.

[72] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, ‘‘Statistical prop-
erties of community structure in large social and information networks,’’
in Proc. 17th Int. Conf. World Wide Web, 2008, pp. 695–704.

[73] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, ‘‘Cost-effective outbreak detection in networks,’’ in Proc.
13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2007,
pp. 420–429.

[74] P.-Z. Li, L. Huang, C.-D. Wang, J.-H. Lai, and D. Huang, ‘‘Community
detection by motif-aware label propagation,’’ ACM Trans. Knowl. Dis-
covery Data, vol. 14, no. 2, pp. 1–19, Mar. 2020.

[75] W. Liu, T. Suzumura, L. Chen, and G. Hu, ‘‘A generalized incremental
bottom-up community detection framework for highly dynamic graphs,’’
in Proc. IEEE Int. Conf. Big Data (Big Data), Boston, MA, USA,
Dec. 2017, pp. 3342–3351.

[76] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, ‘‘Analyzing
communities and their evolutions in dynamic social networks,’’ ACM
Trans. Knowl. Discovery Data, vol. 3, no. 2, pp. 1–31, Apr. 2009.

[77] A. Lancichinetti, S. Fortunato, and J. Kertész, ‘‘Detecting the overlapping
and hierarchical community structure in complex networks,’’ New J.
Phys., vol. 11, Mar. 2009, Art. no. 033015.

[78] K. Macropol and A. Singh, ‘‘Scalable discovery of best clusters on
large graphs,’’ Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 693–702,
Sep. 2010.

[79] F. D. Malliaros and M. Vazirgiannis, ‘‘Clustering and community
detection in directed networks: A survey,’’ CoRR, vol. abs/1308.0971,
2013.

[80] X. Meng, L. Dong, Y. Li, and W. W. Guo, ‘‘A genetic algorithm using
K-path initialization for community detection in complex networks,’’
Cluster Comput., vol. 20, no. 1, pp. 311–320, Mar. 2017.

[81] N. Mehrabi, F. Morstatter, N. Peng, and A. Galstyan, ‘‘Debiasing
community detection: The importance of lowly connected nodes,’’ in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM),
Vancouver, BC, Canada, 2019, pp. 509–512.

[82] M. Pósfai, N. Braun, B. A. Beisner, B. McCowan, and R. M. D’Souza,
‘‘Consensus ranking for multi-objective interventions in multiplex net-
works,’’ New J. Phys., vol. 21, no. 5, May 2019, Art. no. 055001.

[83] R. Márquez, ‘‘Overlapping community detection in static and dynamic
networks,’’ in Proc. 13th Int. Conf. Web Search Data Mining (WSDM),
Houston, TX, USA, Jan. 2020, pp. 925–926.

[84] M. E. J. Newman and J. Park, ‘‘Why social networks are different from
other types of networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 68, no. 3, Sep. 2003, Art. no. 036122.

[85] K. Nowicki and T. Snijders, ‘‘Estimation and prediction for stochastic
block structures,’’ J. Amer. Stat. Assoc., vol. 96, no. 455, pp. 1077–1087,
2001.

[86] M. E. J. Newman, ‘‘Finding community structure in networks using the
eigenvectors of matrices,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 74, no. 3, Sep. 2006, Art. no. 036104.

[87] M. E. J. Newman and M. Girvan, ‘‘Finding and evaluating community
structure in networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 69, no. 2, Feb. 2004, Art. no. 026113.

[88] L. Ni, W. Luo, W. Zhu, and B. Hua, ‘‘Local overlapping community
detection,’’ ACM Trans. Knowl. Discovery Data, vol. 14, no. 1, pp. 1–25,
Feb. 2020.

[89] C.-C. Ni, Y.-Y. Lin, F. Luo, and J. Gao, ‘‘Community detection on
networks with Ricci flow,’’ Sci. Rep., vol. 9, no. 1, pp. 1–2, Dec. 2019.

[90] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang, ‘‘Incremental spectral
clustering with application to monitoring of evolving blog communities,’’
in Proc. SIAM Int. Conf. Data Mining, Apr. 2007, pp. 261–272.

[91] G. K. Orman, V. Labatut, and H. Cherifi, ‘‘Comparative evaluation of
community detection algorithms: A topological approach,’’ J. Stat. Mech.
Theory Exp., vol. 2012, no. 8, Aug. 2012, Art. no. P08001.

[92] M. Porter, J. P. Onnela, and P. J. Mucha, ‘‘Communities in networks,’’
Notices Amer. Math. Soc., vol. 56, no. 9, pp. 1082–1097, 2009.

[93] P. Pons, ‘‘Détection de communautés dans les grands graphes de terrain,’’
Ph.D. dissertation, Paris Univ., Paris, France, 2007.

[94] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos, ‘‘Com-
munity detection in social media,’’ in Proc. Data Mining Knowl. Discov-
ery, Apr. 2011, pp. 1–40.

[95] G. Palla, A.-L. Barabási, and T. Vicsek, ‘‘Quantifying social group evo-
lution,’’ Nature, vol. 446, no. 7136, pp. 664–667, Apr. 2007.

[96] C. Pizzuti, ‘‘GA-Net: A genetic algorithm for community detection in
social networks,’’ in Proc. Int. Conf. Parallel Problem Solving Nature,
Berlin, Germany, 2008.

[97] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, ‘‘Uncovering the overlap-
ping community structure of complex networks in nature and society,’’
Nature, vol. 435, no. 7043, pp. 814–818, Jun. 2005.

[98] P. Pascal and M. Latapy, ‘‘Computing communities in large networks
using random walks,’’ in Computer and Information Sciences—ISCIS.
Berlin, Germany: Springer, 2005, pp. 284–293.

[99] T. P. Peixoto, ‘‘Merge-split Markov chain Monte Carlo for
community detection,’’ 2020, arXiv:2003.07070. [Online]. Available:
http://arxiv.org/abs/2003.07070

[100] J. Palowitch, S. Bhamidi, and A. Nobel, ‘‘Significance-based community
detection in weighted networks,’’ J. Mach. Learn. Res., vol. 18, no. 1,
pp. 188:1–188:48, 2018.

[101] C. Pizzuti and A. Socievole, ‘‘Many-objective optimization for com-
munity detection in multi-layer networks,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), San Sebastian, Spain, Jun. 2017, pp. 411–418.

[102] S. Pang, C. Chen, and T. Wei, ‘‘A realtime community detection algo-
rithm: Incremental label propagation,’’ in Proc. 1st Int. Conf. Future Inf.
Netw., Oct. 2009, pp. 313–317.

[103] X. Qian, L. Yang, and J. Fang, ‘‘Overlapping community detection based
on community connection similarity ofmaximum clique,’’ inProc. ICPC-
SEE, vol. 1, 2018, pp. 241–252.

VOLUME 8, 2020 98357



K. Taha: Static and Dynamic Community Detection Methods That Optimize a Specific Objective Function

[104] X. Qian, L. Yang, and J. Fang, ‘‘Heterogeneous network community
detection algorithm based on maximum bipartite clique,’’ in Proc. ICPC-
SEE, 2018, pp. 253–268.

[105] J. Riedy, D. A. Bader, and H. Meyerhenke, ‘‘Scalable multi-threaded
community detection in social networks,’’ in Proc. 26th IPDPSW, Wash-
ington, DC, USA, May 2012, pp. 1619–1628.

[106] J. Reichardt and S. Bornholdt, ‘‘Statistical mechanics of community
detection,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 74, no. 1, 2006, Art. no. 016110.

[107] M. Rosvall and C. T. Bergstrom, ‘‘Maps of randomwalks on complex net-
works reveal community structure,’’ Proc. Nat. Acad. Sci. USA, vol. 105,
no. 4, pp. 1118–1123, Jan. 2008.

[108] U. N. Raghavan, R. Albert, and S. Kumara, ‘‘Near linear time algorithm to
detect community structures in large-scale networks,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 76, no. 3, Sep. 2007,
Art. no. 036106.

[109] M. Rosvall, D. Axelsson, and C. T. Bergstrom, ‘‘The map equation,’’ Eur.
Phys. J. Special Topics, vol. 178, no. 1, pp. 13–23, Nov. 2009.

[110] G. R. Rossetti, ‘‘Graph benchmark handling community dynamics,’’
J. Complex Netw., vol. 5, no. 6, pp. 893–912, 2017.

[111] R. Shang, J. Bai, L. Jiao, and C. Jin, ‘‘Community detection based on
modularity and an improved genetic algorithm,’’ Phys. A, Stat. Mech.
Appl., vol. 392, no. 5, pp. 1215–1231, Mar. 2013.

[112] V. Sindhwani and P. Niyogi, ‘‘A co-regularization approach to semisu-
pervised learning with multiple views,’’ in Proc. ICML Workshop Learn.
Multiple Views, 2005, pp. 824–831.

[113] S. Fortunato, ‘‘Community detection in graphs,’’ Phys. Rep., vol. 486,
nos. 3–5, p. 103, Jun. 2009.

[114] P. Sarkar and A. Moore, ‘‘Dynamic social network analysis using latent
space models,’’ SIGKDD Explor. Newsl., vol. 7, no. 2, pp. 31–40, 2005.

[115] J. Shi and J. Malik, ‘‘Normalized cuts and image segmentation,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–904,
Aug. 2000.

[116] A. Sankararaman and F. Baccelli, ‘‘Community detection on Euclidean
random graphs,’’ in Proc. 29th Annu. ACM-SIAM Symp. Discrete Algo-
rithms (SODA), New Orleans, LA, USA, 2018, pp. 2181–2200.

[117] J. Shang, L. Liu, F. Xie, Z. Chen, J. Miao, X. Fang, and C. Wu, ‘‘A real-
time detecting algorithm for tracking community structure of dynamic
networks,’’ CoRR, vol. abs/1407.2683, 2014.

[118] Stanford Large Network Dataset Collection. Accessed: Mar. 16, 2020.
[Online]. Available: http://snap.stanford.edu/data/

[119] K. Taha, ‘‘Disjoint community detection in networks based on the relative
association of members,’’ IEEE Trans. Comput. Social Syst., vol. 5, no. 2,
pp. 493–507, Jun. 2018.

[120] K. Taha and P. D. Yoo, ‘‘Shortlisting the influential members of criminal
organizations and identifying their important communication channels,’’
IEEE Trans. Inf. Forensics Security, vol. 14, no. 8, pp. 1988–1999,
Aug. 2019.

[121] K. Taha and P. D. Yoo, ‘‘Using the spanning tree of a criminal network
for identifying its leaders,’’ IEEE Trans. Inf. Forensics Security, vol. 12,
no. 2, pp. 445–453, Feb. 2017.

[122] K. Taha and R. Elmasri, ‘‘GOcSim: GO context-driven similarity,’’
in Proc. IEEE Symp. Comput. Intell. Bioinf. Comput. Biol. (CIBCB),
San Diego, CA, USA, May 2012, pp. 355–362.

[123] M. Tasgin, A. Herdagdelen, and H. Bingol, ‘‘Communities detection in
complex networks using genetic algorithms,’’ inProc. Eur. Conf. Complex
Syst. (ECSS), 2006.

[124] K. Taha, D. Homouz, H. Al Muhairi, and Z. Al Mahmoud, ‘‘GRank:
A middleware search engine for ranking genes by relevance to given
genes,’’ BMC Bioinf., vol. 14, no. 1, p. 251, Dec. 2013.

[125] K. Taha, ‘‘Determining semantically related significant genes,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 11, no. 6, pp. 1119–1130,
Nov. 2014.

[126] K. Taha and P. D. Yoo, ‘‘SIIMCO: A forensic investigation tool for
identifying the influential members of a criminal organization,’’ IEEE
Trans. Inf. Forensics Security, vol. 11, no. 4, pp. 811–822, Apr. 2016.

[127] K. Taha and R. Elmasri, ‘‘BusSEngine: A Business Search Engine,
Knowledge and Information Systems,’’ Int. J., vol. 23, no. 2, pp. 153–197,
2010.

[128] M. Takaffoli, J. Fagnan, F. Sangi, and O. R. Zaiane, ‘‘Tracking changes
in dynamic information networks,’’ in Proc. IEEE Int. Conf. Comput.
Aspects Social Netw., Oct. 2011, pp. 94–101.

[129] N. Veldt, D. Gleich, and A. Wirth, ‘‘A correlation clustering framework
for community detection,’’ in Proc. World WideWeb Conf. (WWW), Lyon,
France, Apr. 2018, pp. 439–448.

[130] D. J. Watts and S. H. Strogatz, ‘‘Collective dynamics of small-world
networks,’’ Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[131] Y. Wei and C. Cheng, ‘‘Ratio cut partitioning for hierarchical designs,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 7,
pp. 911–921, Jul. 1991.

[132] D. Watts, ‘‘Networks, dynamics, and the small-world phenomenon,’’
Amer. J. Sociol., vol. 105, no. 2, pp. 493–527, 1999.

[133] P. Wu and L. Pan, ‘‘Multi-objective community detection based
on memetic algorithm,’’ PLoS ONE, vol. 10, no. 5, May 2015,
Art. no. e0126845.

[134] J. J. Whang, D. F. Gleich, and I. S. Dhillon, ‘‘Overlapping community
detection using neighborhood-inflated seed expansion,’’ IEEE Trans.
Knowl. Data Eng., vol. 28, no. 5, pp. 1272–1284, May 2016.

[135] J. Xie and B. K. Szymanski, ‘‘Towards linear time overlapping com-
munity detection in social networks,’’ in Proc. 16th Pacific-Asia
Conf. Knowl. Discovery Data Mining (PAKDD), Malaysia, May 2012,
pp. 25–36.

[136] J. J. Xu and H. Chen, ‘‘CrimeNet explorer: A framework for criminal
network knowledge discovery,’’ ACM Trans. Inf. Syst., vol. 23, no. 2,
pp. 201–226, Apr. 2005.

[137] J. Xie, S. Kelley, and B. K. Szymanski, ‘‘Overlapping community detec-
tion in networks: The state-of-the-art and comparative study,’’ ACM
Comput. Surv., vol. 45, no. 4, p. 43, 2013.

[138] K. S. Xu and A. O. Hero, ‘‘Dynamic stochastic blockmodels for time-
evolving social networks,’’ IEEE J. Sel. Topics Signal Process., vol. 8,
no. 4, pp. 552–562, Aug. 2014.

[139] X. Gao, Q. Zheng, D. A. Vega-Oliveros, L. Anghinoni, and L. Zhao,
‘‘Temporal network pattern identification by community modelling,’’ Sci.
Rep., vol. 10, no. 1, pp. 1–12, Dec. 2020.

[140] J. Xie, M. Chen, and B. K. Szymanski, ‘‘LabelRankT: Incremental com-
munity detection in dynamic networks via label propagation,’’ in Proc.
Workshop Dyn. Netw. Manage. Mining, 2013, p. 25.

[141] K. S. Xu, M. Kliger, and A. O. Hero, Tracking Communities in Dynamic
Social Networks (Lecture Notes in Computer Science), vol. 6589,
J. Salerno, S. J. Yang, and D. Nau, and S.-K. Chai, Eds. Springer, 2011,
pp. 219–226.

[142] B. Yang, D. Liu, J. Liu, and B. Furht, Discovering Communities From
Social Networks: Methodologies and Applications. New York, NY, USA:
Springer, 2010.

[143] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang, ‘‘Index-based densest
clique percolation community search in networks,’’ IEEE Trans. Knowl.
Data Eng., vol. 30, no. 5, pp. 922–935, May 2018.

[144] F. Ye, C. Chen, Z. Zheng, R.-H. Li, and J. X. Yu, ‘‘Discrete overlapping
community detection with pseudo supervision,’’ in Proc. IEEE Int. Conf.
Data Mining (ICDM), Beijing, China, Nov. 2019, pp. 708–717.

[145] K. R. Žalik and B. Žalik, ‘‘Node attraction-facilitated evolution algorithm
for community detection in networks,’’ Soft Comput., vol. 23, no. 15,
pp. 6135–6143, Aug. 2019.

[146] Y. Zhang, Y. Zhang, Q. Chen, Z. Ai, and Z. Gong, ‘‘True-link clustering
through signaling process and subcommunity merge in overlapping com-
munity detection,’’Neural Comput. Appl., vol. 30, no. 12, pp. 3613–3621,
Dec. 2018.

KAMAL TAHA (Senior Member, IEEE) received
the Ph.D. degree in computer science from The
University of Texas at Arlington, USA. He was
an Engineering Specialist with Seagate Technol-
ogy (Computer Disc Drive Manufacturer), USA,
from 1996 to 2005. He was also an Instructor of
computer science with The University of Texas
at Arlington, from August 2008 to August 2010.
He has been an Associate Professor with the
Department of Electrical and Computer Engineer-

ing, Khalifa University, United Arab Emirates, since 2010. He has over
100 refereed publications that have appeared in prestigious top ranked jour-
nals, conference proceedings, and book chapters. Over 30 of his publications
have appeared with the IEEE TRANSACTIONS journals. His research interests
span information retrieval, data mining, databases, defect characterization of
semiconductor wafers, bioinformatics, and information forensics and secu-
rity, with an emphasis on making data retrieval and exploration in emerging
applications more effective, efficient, and robust. He serves as a member for
the program committee, the editorial board, and the Review panel for several
international conferences and journals.

98358 VOLUME 8, 2020


