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ABSTRACT Compression distorted multi-view video plus depth (MVD) should be enhanced at the receiver
side without the original signals, especially the depth maps because they describe the positioning information
in 3D space and they are important for subsequent virtual view synthesis. However, challenge arises from
how to exploit the contribution from multi-modality priors from neighboring viewpoints, and how to handle
the gradient vanishing when textureless depth maps are involved. In this paper, we propose a multi-modality
residual network to enhance the quality of compressed multi-view depth video. Taking advantage from
high correlation among different viewpoints, depth maps from adjacent views are exploited as guidance
for the enhancement of depth video in target view. Color frames in target view are also involved to offer the
information object contours, obtaining multi-modality guidance. The proposed network is organized a deep
residual network to well eliminate distortion and restore details. Because above multi-modality guidance
have different correlations with target depth video and not all information can contribute to the enhancement,
an adaptive skip structure is designed to further exploit the contribution from different priors appropriately.
Experimental results show that our scheme outperforms other benchmarks and achieves an average 1.935 dB
and 0.0227 gains on PSNR and SSIM over all test sequences, respectively. All results on objective, subjective
and 3D reconstruction suggest that our method is able to provide superiority performance in practical
applications.

INDEX TERMS Compression distortion, depth map, quality enhancement, residual network.

I. INTRODUCTION
Multi-view video plus depth (MVD) is the fundamental
data representation of three-dimensional (3D) and interac-
tive visual applications, including super multi-view video,
free viewpoint television and virtual reality [1], [2]. For this
data representation, depth video is adopted to describe the
positioning information of all visible pixels in 3D space,
which is crucial for both immersive viewing experiences
and virtual content synthesize in interaction for end users,
especially for portable terminals in case of bandwidth lim-
ited applications. In this case, compression of MVD acts
an important role in handling the big data volume of
such data representation for the future success of above
visual applications. Lossy compression schemes of MVD
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have been developed through the 3D video extension of
High Efficiency Video Coding (H.265/HEVC) [3]. In these
schemes, however, quality of depth videos is affected by com-
pression distortion, subsequently destroying the positioning
and structural information of the object. Therefore, quality
enhancement of depth videos with compression distortion
is necessary. In this case, high correlation among MVD
is an important characteristic worth considering, as qual-
ity enhancement takes advantage of auxiliary information
from neighboring views. Especially, in asymmetric coding
framework, which is widely used in MVD for better cod-
ing efficiency, quantization parameter (QP) and thus quality
varies among viewpoints [4], [5]. Thus, benefits can be taken
from those viewpoints with higher quality in the quality
enhancement of depth video with lower quality, where Fig. 1
shows an example when different benefits are taken into
enhancement.
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FIGURE 1. Quality enhancement on depth map Dn when priors from
different viewpoints and modalities are taken.

Depth quality enhancement has witnessed a rapid devel-
opment in these years, and previously proposed filters and
methods have made success on this topic [6]–[9]. However,
these filters are facing difficulties when compression distor-
tions are involved in depth videos. Recently, learning-based
methods have been proposed which can adaptively handle
the artifacts in depth maps [10]–[12]. These works follow
similar structures of networks on color image artifacts, and
corresponding color images are usually taken into account
as guidance. However, as for the compressed MVD, color
and depth videos are both coded with different compression
parameters, thus the correlation between color and depth is
thus dropped. Under these concerns, more reliable auxiliary
information is needed. While existing methods almost focus
on auxiliary information insidemono-view, it can be observed
that the depth videos of different views have high correlation
and can provide reference information. Thus research on this
observation is very promising for quality enhancement.

Based on the above considerations, we propose an adaptive
multi-modality residual network for compressed multi-view
depth video. Considering the correlation among viewpoints,
depth maps from adjacent viewpoints are involved and
exploited as guidance for the enhancement of depth map in
current viewpoint. Since depth maps from adjacent views are
with compression distortion as well, color frames in current
view are also involved to offer the information of object con-
tours. These references and guidance are combined together
and regarded as multi-modality guidance. The proposed deep
learning network is in the structure of residual block for
better distortion elimination and details restoration. Although
above multi-modality guidance has higher correlation to
depth video in current view, not all information can provide
positive contributions to the target of quality enhancement.
Thus, an adaptive skip connection structure is designed to
further exploit appropriate contributions frommulti-modality
guidance. In the training stage, we apply specific strategies to
solve the problem caused by the characteristics of multi-view
depth videos. Experimental results show that our method

outperforms other state-of-the-art models, and superiority
performance can be obtained on both objective and subjective
evaluations.

The remainder of this paper is organized as follows.
In Sec. II, we briefly survey the related works on depth video
enhancement. We then present our work in details in Sec. III,
and the scheme is verified in Sec. IV. Finally, we conclude
our work in Sec. V.

II. RELATED WORKS
Depth maps with compression distortions can be enhanced
via filters or learning based methods, and generally we
category them by classical and learning-based depth map
enhancement methods.

A. CLASSICAL DEPTH MAP ENHANCEMENT METHODS
In previous works, compression distortions on depth maps
were processed by specific filters. The design of these filters
is based on the fact that distribution of the depth value should
be smooth on an object surface but sharp for boundaries.
In order to recover the sharp boundaries, a candidate values
based boundary filtering (CVBF) was proposed by Zhao
et al. [6], where appropriate candidate values are selected
to replace detected unreliable pixels along the boundaries.
Rather than single depth map enhancement, some researchers
have applied benefits of external auxiliary priors, especially
color image in corresponding viewpoint are commonly used
with the assumption that depth discontinuities in original
depth maps are highly correlated with edges in color images.
Typical example including the joint bilateral filter (JBF) [13]
which originated from the bilateral filter (BF) [14], where
color image is adopted as a guidance and involved into a
spatial and range filter kernels. Chan et al. [7] further took
the intrinsic noisy of real-time depth data into consideration,
and an adaptive multi-lateral noise aware filtering (NAF) was
proposed based on that. Different from above, Min et al.
[15] proposed a weighted mode filtering method based on a
joint histogram where color similarity between reference and
neighboring pixels on the color image is used. Wang et al.
[16] proposed an energy minimization model to emphasize
the boundaries of objects in the filtering process.

B. DEEP DEPTH MAP ENHANCEMENT METHODS
Recently, convolutional neural network (CNN) showed its
superior performance on low-level computer vision tasks,
including the task of denoising [17], [18]. Inspired by the
super-resolution CNN (SRCNN) [19], Dong et al. [20]
designed a four layers artifacts reduction CNN (ARCNN)
for effectively suppressing blocking artifacts in JPEG com-
pressed images Based on ARCNN, a variable-filter-size
residue-learning CNN (VRCNN) for artifact reduction in
HEVC intra coding was proposed by Dai et al. [21]. Above
networks were designed with shallow layers to avoid the
problem of gradient vanishing. In order to tackle the prob-
lem of gradient vanishing and preserving image details in

VOLUME 8, 2020 97073



S. Chen et al.: Adaptive Multi-Modality Residual Network

deeper network, Mao et al. [22] propose a deep convolutional
encoder-decoder networks with symmetric skip connections.

The residue-learning technique used in [21] can make
learning process easier, more robust and converge faster.
The skip connections exploited in [22] can help to back-
propagate the gradients to shallow layers and pass more
details to deep layers, so the network can have performance
gain while the network going deeper. The success of above
design on color image enhancement provide important ref-
erences in the network design for depth enhancement. For
the enhancement of depth frame with compression distortion,
Jin et al. [23] cascaded the four-layer structure of ARCNN
for suppressing the JPEG compression artifacts on depth
frames. Considering the characteristic of depth maps, the cas-
caded network adopts a weighted loss function which can
emphasize the edges. On the other hand, less feature can
be extracted from depth maps because this kind of image
is actually a less-textured gray-scale image, thus weights
learned from sufficient textures are reused to initialized the
learning procedure of depth maps. Considering this special
characteristic of depth map, more researchers use auxiliary
information in consequent methods. Li et al. [24] proposed
the deep joint image filtering, where a CNN is utilized to
construct the joint filtering approach. This framework can
selectively transfer salient features that are coherent in both
guidance and target images. Referring to this, Zhao et al.
[25] designed a deep learning-based depth artifact removal
method (D-ARCNN). This framework contains two sub-
networks, namely joint depth-color sub-network and joint
depth sub-network. In addition to color images, the gradient
of color images is used in depth branch while the gradient of
depth maps is stacked into color branch. Above joint methods
assume that there is a co-occurrence of edges in depth map
and its corresponding color image, but it is not always valid
in all cases. Zhu et al. [26] proposed a deep residual network
based on deep fusion and local linear regularization to learn
the underlying correlation between depth frames and color
images.

C. SUMMARY
Since complex compression parameters of MVD make
enhancement more challenging, the above mono-view meth-
ods can hardly be extended to multi-view depth video quality
enhancement in a straightforward way. Owing to strong rep-
resentation and generalization ability, deep learning shows its
superiority on our task. In this case, preserving useful details
in deep network is important in the design as depth map is
with less textures. In addition to network design, useful aux-
iliary information should be involved for better exploitation.
Since MVD is assumed that the contents in different views
are geometrically and semantically related, it is possible to
have higher gains if cross-view depth map can be involved
in the framework design. Besides, color image corresponds
to the same viewpoint of depth map should be involved for
sharp boundaries. However, appropriately evaluating the con-
tribution of multi-modality priors to the quality enhancement

remains a challenge in the framework design, especially when
these priors are also compressed.

As noted above, the representation of MVD has unique
characteristics that are different from other types of images,
and a newmethod is necessary to satisfy these characteristics,
especially when artifacts of compression distortion is con-
sidered. In our work, we dedicate to handle these problems
by proposing an adaptive multi-modality residual network
for compressedMVD enhancement where contributions from
multi-modality priors are exploited and details can be well
preserved.

III. THE PROPOSED ADAPTIVE MULTI-MODALITY
RESIDUAL NETWORK
A. PROBLEM STATEMENT
Practically, depth map and color image of target (i.e., current)
view is Dn and Cn at the decoder side, respectively. Dn is
distorted by the process of compression, and the purpose of
quality enhancement on Dn is to predict a depth map Dnp with
minimal loss to its ground truth DGT as

argmin ||Dnp − DGT || (1)

In asymmetric coding framework, different QPs are set
for higher compression efficiency, and thus comprehensive
distortion levels are contained in the depth maps. This is
a challenge for classical filters of depth map enhancement
when distortion levels arbitrarily varied in the image. Differ-
ent from that, learning-based methods are able to solve the
problem of comprehensive distortion levels, but new chal-
lenge arises from how to evaluate the contributions of multi-
modality priors from both depth maps of adjacent viewpoints
and color images of current view. Intuitively, Dn and Cn are
mutually aligned because these two images are different data
representations of an exactly same scene. Therefore, scene
structure is shared by these two images, and it can be only
obtained through Cn instead of Dn in practical cases. For
the representation of scene structure, En is used and it is
obtained via Canny operator on Cn. For the decoder side, Cn
is composed by Y, Cr and Cb component after decoded from
MVD bitstream, while Dn is just represented by gray scale
image which can be regarded as Y component. In this case,
only Y component of Cn is picked for En comparing to Dn.
It should be noted that textures in En is not the exact scene
structure because one can hardly extract three-dimensional
scene structure from a two-dimensional image. Therefore,
both positive and negative contributions may be involved in
En in the procedure of enhancement.

Besides the above En, the set of cross-view depth maps
D = {D1, . . . ,Dn−1,Dn+1, . . . ,DN } that neighboring Dn
can also contribute to the purpose of enhancement, where N
is the total number of views in MVD. The reason comes form
that depth maps in D also reveal the same scene structure
of Dn but through different positions. In this case, positive
contributions may come from those common regions shared
by these depth maps. In order to make these common regions
more clear in the enhancement, 3Dwarpingmethod is applied
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FIGURE 2. The framework of the proposed scheme for compressed multi-view depth video enhancement.

on all depth maps inD , projecting them on the view n, to have
Dn
= {Dn1, . . . ,D

n
n−1,D

n
n+1, . . . ,D

n
N }.

All these contributions from both En and Dn should be
properly exploited in the prediction ofDnp in our work. There-
fore, we model the prediction of Dnp by

Dnp = f (Dn,En,Dn
;W ) (2)

where f (·;W ) is a network with weightsW .
When practical application background is considered,

the framework of our proposed scheme is illustrated in Fig. 2.
The proposed work is a post-processing within a MVD com-
munication system for the purpose of quality enhancement
from compression distortions. At the source side, MVD is
compressed by an asymmetric video encoder for better com-
pression performance over all views. At the decoder side,
the de-compressed MVD data are used as input to our work,
where distortion level varies among views. Depth map Dn
with lower quality is then enhanced by the proposed adap-
tive multi-modality residual network, and Dnp is obtained as
higher quality for output. Details of the proposed network is
discussed in subsequent subsections.

B. ADAPTIVE MULTI-MODALITY RESIDUAL NETWORK
1) NETWORK STRUCTURE DESIGN
The target depth map Dn, texture map En and warped depth
maps Dn are all involved as input to the proposed network
for prediction of Dnp. Deeper networks are benefit for more
features and thus better performance of enhancement, but
challenge arises from gradient vanishing, especially when
depth map is applied as the target because this kind of images
are lack of features. Therefore, residual network is adopted in
ourwork to handle the problem of gradient vanishing and then
deeper network can be used.

The proposed network is shown in Fig. 3. As depicted in
this figure, residual block based network structure is applied
to handle the problem of gradient vanishing. Residual block
with skip connection design can address the degradation
problem when deeper network is used. Different from high-
level task which are insensitive to the details of images, our
target is for accurate depth value and restoring the damaged
information. In this case, batch normalization (BN) layers

in original residual blocks is not adopted in the proposed
network, because the process of feature normalization is not
necessary for our task.

For more details of the residual network, each convolu-
tional layer has 64 feature maps, while the final layer yields
1, and the size of the convolution kernel is 3 × 3 for all
layers. We take each image as one way of input to the net-
work, followed by a convolutional layer to extract the feature
maps. The feature maps from all input will be concatenated
and fed into the subsequent residual network. The network
consists of 5 residual block in total. Different from original
ResNet, the proposed network can hardly have a deeper
design because of the high similarity and smoothness of depth
maps. In the first residual block, we compute the residual
between output and the target view depth branch, increasing
theweight of the target view depthmap. Since the target depth
maps and multi-modality priors that employed as input are of
different characteristics and quality, it is necessary to exploit
the contributions from different modality data among En and
Dn. Therefore, an adaptive skip connection is applied in our
network which is described in the subsequent subsection.

2) ADAPTIVE SKIP CONNECTION
Specialized in the task of depth map artifacts reduction,
depth maps in target view are distorted in the process of
compression, and thus high frequencies (i.e., structural infor-
mation) in depth map are vanished. In this case, shallow
layers are insufficient for feature extraction for subsequent
enhancement. Therefore, more layers are used in our work.
However, at the meanwhile, possible details or structural
information may be lost in the deeper layers. In order to
pass these details to deeper layers for better performance in
enhancement, skip connections are used to adaptively evalu-
ate the contribution from multi-modality priors. It should be
noted that the priors from En and Dn are differently treated.
For the texture map En, as aforementioned, both positive
and negative contributions may be provided by it. For more
specifically, the problem of texture copying may be found
if skip connection is used for En, where object contours
are enhanced while fake textures on object surface can also
be transferred to Dnp. Different from En, features are only
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FIGURE 3. The architecture of the proposed adaptive multi-view multi-modality network for depth map enhancement from compression distortion.

extracted on common regions in all depth map of Dn, and
these features are positive contributions toDnp. Therefore, skip
connections are necessary for these depth maps.

We summary the adaptive skip connections as following

y = F(αx +
N∑

i=1,i6=n

γixDni ,W )+ x (3)

where x and y is the input and output of residual block, respec-
tively, and xDni is feature obtained from Dni . The function
F = (·,W ) represents the residual mapping to be learnedwith
network weights W . Parameters α and γi are corresponding
tuning factors among x and xDni , which are learned together
with other network parameters by network itself. The param-
eter α and γi is initialized as 0.5 and 0.5/(N−1), respectively,
and they will be updated in the iteration of network solving.

Although depth features from adjacent views are beneficial
for enhancement, the warping errors inDnmay bring artifacts
on Dnp when these features are transferred to those blocks
close to the network output. Thus, the proposed adaptive skip
connection is deployed on both second and third residual
blocks instead of last two.

C. TRAINING STRATEGIES FOR DISTORTION
MULTIPLEXED DATASET
Besides the challenge on prior exploitation of Dn, another
challenge arises from how can we efficiently train the pro-
posed network for practical visual applications when video
compression tools are applied. In the framework of asym-
metric coding, QP settings are varied in the procedure
of compression, resulting in different quality arrangements
among views in viewpoint dimension, frames in temporal
dimension, and even blocks in spatial dimension. Therefore,
training strategies adopted in previous works, where JPEG
compression distortions were mainly considered, can hardly
be applied in our work. Different from asymmetric coding
framework, QP setting in JPEG compression is uniformed,
resulting in similar distortion levels among different image
blocks. In this case, dataset of training can be arranged
according to QP settings in JPEG oriented tasks, and at the
mean time, the capability of generalization for these networks

are limited due to this kind of settings. However, as discussed
above, dataset of training should be arranged on multi QP
settings when asymmetric coding framework is evaluated,
where multiplexed distortions of different levels are simul-
taneously considered. Based on this dataset, the capability of
generalization can be increased for the proposed network.

When multiplexed distortions are involved in the dataset,
special treatments on parameter initialization and network
optimization should be considered as below.

1) INITIALIZATION STRATEGY
For neural network, initialization strategy is important in the
determination on whether the network can be converged,
especially when the network is deep and the variation of
data is significant in dataset. Specified in our work, MSRA
initialization strategy proposed in [27] is applied to initial the
weights and biases, which is designed to keep the input and
output distribution consistent considering the characteristic
of ReLU particularly. This strategy initializes the weights
by drawing them from a zero-mean Gaussian distribution
whose standard deviation is

√
2/nl , where nl is the number

of connections of a response from l-th layer.

2) OPTIMIZATION STRATEGY
Smoothness of depth map is another challenge in the pro-
cedure of training. As aforementioned, depth map is lack
of texture in most of regions, especially when higher QP is
applied on it. Because of that, the gradient may be vanished
soon in optimization, especially when depth map is split into
small blocks in training. In order to solve this problem, Adam
optimization algorithm in [28] is adopted in our work for its
appropriate performance in case of sparse gradients.

IV. EXPERIMENTS AND DISCUSSIONS
A. DATASETS AND EXPERIMENT SETTINGS
1) DATASETS AND CODING PARAMETERS
There 6 in total MVD test sequences are used in our exper-
iments with different resolutions, including Shark, Dancer,
GhostTownFly, PoznanStreet, Lovebird and Balloon from the
MPEG 3DV Group. These test sequences are widely used
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TABLE 1. Details of depth sequences.

TABLE 2. Settings in asymmetric compression framework.

in the community. Characteristics of these sequences are
summarized in Table 1. Both the number of viewpoints and
the viewpoint selections are suggested by the common test
conditions of 3DV core experiments described in [29]. In this
case, N is 3 for D .

H.265/HEVC HTM 16.0 is used to for the depth video
under the framework of asymmetric coding, and details are
presented in Table 2. In each sequence, 100 consecutive
frames are coded, and the middle viewpoint is set as the Dn
because it is with lower quality than its neighbors.

2) DETAILS OF TRAINING AND BENCHMARKS
It should be noted that there is no available datasets can
be selected for our work. In this case, the reconstructed
test sequences are used as the datasets in training stage.
As described above, 6 test sequences with 100 frames in each
are available in the experiments. In this case, the strategy
of Leave One Out is used in this section of experiments to
avoid overfitting where 1 of 6 sequences is picked as the
test while the other 5 are used in training. We present the
results when all these 6 sequences are tested in the subsequent
discussions. On the other hand, we train a single network with
multiple QPs (i.e., multiplexed distortions), which is different
from previous methods that trained a network separately for
each compression level. Depth maps from 5 sequences with
3 different QPs together are used in the training set. For
more specifically, we take 1 from every 10 frames in each
reconstructed sequence to increase the variation of features
from reconstructed depthmaps. All the depthmaps in training
are split into blockswith size of 64×64 andwith a stride of 32.
Zero-padding technique is used to keep the image size during
the training process. We implement our proposed network
with the Caffe [30] framework and train them using NVIDIA
GTX1080Ti GPUs. Training samples are randomly shuffled
and the mini-batch size is 64. The weight decay is set to
0.0005 and learning rate is 10−5. For Adam optimizer, we set
β1 = 0.9, β2 = 0.999 and ε = 10−8 as default.

Complehensive benchmarks are used in the comparison,
including Bilateral filter (BF) [14], joint bilateral filter (JBF)
[13], noise aware filtering (NAF) [7], weighted mode filter-
ing (WMF) [15], candidate values based boundary filtering
(CVBF) [6], REDNet [22]and variable-filter-size residue-
learning CNN (VRCNN) [21]. Among these benchmarks,
BF, JBF, NAF, WMF and CVBF are filters, while REDNet
and VRCNN are learning based methods. Moreover, CVBF
and VRCNN are designed specifically for HEVC scheme,
and REDNet has excellent generalization ability that can deal
with different low-level tasks. In the comparison, all param-
eters of benchmarks have been set to to have optimal perfor-
mance on all the involved test sequences. For JBF and NAF,
σd = 0.1 for depth range kernel, σc = 0.1 for color range
kernel, and σs = 3 for spatial kernel are applied. For CVBF,
the appropriate filtering window radium r is given in [6], and
source codes released by authors are used. Since VRCNN
and REDNet are not designed for HEVC compressed depth
maps, we cannot use the test modal for comparison directly.
In this case, VRCNN and REDNet are re-trained via the
same training strategies used by our network. Because of the
specific characteristics of our dataset, Gaussian initialization
originally used in REDNet cannot converge anymore. Thus,
we apply MSRA initialization as ours in the training proce-
dure of REDNet.

B. OBJECTIVE EVALUATION OF DEPTH VIDEO
Two metrics are used to measure the quality of the enhanced
depth maps. One is the peak signal-to-noise ratio (PSNR),
which measures the pixel fidelity of depth maps. The other
is the structural similarity (SSIM) [31] index, which is used
to measure similarities between original and reconstructed
depth maps. We use the gain between enhanced depth map
and compressed depth map of PSNR and SSIM as objective
evaluation result, to better show the enhancement perfor-
mance of different methods.The objective results of 10-frame
average PSNR and SSIM gain on each test sequence with
different QPs are presented in Tables 3 and 4 respectively.
As presented, the quality of enhanced depth maps obtain-
ing by compared methods tends to be worse when QP is
increasing, owing tomore severe distortion of the depthmaps.
Instead, our method has better performance with larger QP.

Besides, not only the performance of the traditional single
depth enhancement method CVBF, but also the performance
of learning based method is even poorer than traditional
joint method such as NAF and JBF in some test sequences.
Whether shallow network like VRCNN or deep network with
skip structure like REDNet, the details cannot be learned
from compressed depth maps itself anymore in case of severe
distortion.

In an ideal situation, a network model which is trained
with abundant training samples composed of adequate char-
acteristics can achieve good performance in all kinds of test
sequences. However, in case of the lack of multi-view sam-
ples, the test performances differ in learning based methods,
especially in two compared methods. In some specific test
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TABLE 3. The average PSNR gain of the test sequences in comparison.

TABLE 4. The average SSIM gain of the test sequences in comparison.

sequences, they are totally ineffective to enhance the depth
maps quality. Due to the appropriate employment of multiple
priors, our method works well in most test sequences. In other
words, our designed network has better generalization capa-
bility compared to other learning based methods. It is worth
mentioning that the reason why our method is failed to work
on Balloon is the characteristics of this sequence. Different
from other sequences, the depth values of a large area of the
left and right views do not match the values of the target
middle view. Thus, while the SSIM increases as the structure
of objects is recovered, the PSNR reduces because of the
wrong depth values of adjacent views. In this situation, our
methods can still achieve bast performance on Balloon with
QP = 48 which is with extremely severe distortion, for the
quality gain obtained by our methods is better than the impact
of mistake depth guidance. It demonstrates that our method
can well handle compression distortion on high bit rates.

C. SUBJECTIVE EVALUATION OF DEPTH VIDEO
We also compare the subject results between our network and
other methods, which is shown as hot maps for better visual-

ization in Fig. 4. We utilize the first frame of test sequences
with QP = 48 for comparison. A typical region from each
depth map is marked by rectangles and enlarged to display
more restored details. The depth maps illustrated in Fig. 4 are
Dancer, GhostTownFly, Lovebird, Shark, PoznanStreet and
Balloon from top to the bottom line.

As can be found in these results, our method can remove
blocking artifacts effectively and restore more details com-
pared with other methods. Taking the test sequence Poz-
nanStreet and Balloon as examples, blocking artifacts appear
on the car in PoznanStreet and the balloons in Balloon due to
compression distortion in Fig. 4(b). Only our method reduces
such blocking artifacts, restoring the flat area inside the
object. More obviously, in test sequence Shark, the small fish
almost completely disappear in case of severe quantization
distortion, which are hardly recovered from the compressed
depth map itself. Even color image is used as guidance in
some filter methods, effect of color image is suppressed
because of the great difference between depth map and color
image. Those fish recovered exclusively by our method illus-
trate the contributions of the selected priors to the final per-
formance.
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FIGURE 4. Comparisons on subjective results of the depth enhancement with different methods.

FIGURE 5. Performance evaluation between networks without/with adaptive skip connection. (a) Evaluation on PSNR gain.
(b) Evaluation on SSIM gain.

FIGURE 6. Subjective results comparison of adaptive skip connection.

D. EVALUATION OF ADAPTIVE SKIP CONNECTION
To further evaluation the performance of proposed adaptive
skip connection, we trained twomodels that networkwith and
without adaptive skip connection respectively. The compari-

son results of 10-frame average PSNR and SSIM gain on each
sequence with QP48 are presented in shown in Fig. 5. As we
can see, network with adaptive skip connection structure
can achieve better performance on both PSNR and SSIM.
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FIGURE 7. Comparisons on perceptual quality of point cloud.

We compare the subject results for PonzanStreet as an exam-
ple to more intuitively investigate where the gain comes from,
and the result is shown in Fig. 6. Compared to other depth
map, slight texture appear on enhanced depth map by the
method without adaptive skip connection (Fig. 6(c)), which is
not belong to original depth map (Fig. 6(a)). Instead, this kind
of texture can be find as windows in corresponding original
color image (Fig. 6(e)). In other words, texture of color image
is copied to depthmap. Aswe can see in Fig. 6(d), the addition
of adaptive skip connection can suppress the texture copying
problem, from which greater quality gain is obtained.

E. SUBJECTIVE EVALUATION OF POINT CLOUDS
As the quality of a depth map is fundamental to point cloud
and 3D modeling, we further verify our method by this

experiment. To illustrate the advantages of the enhanced
depth videos, we merge original color image and correspond-
ing depth map into a point cloud. We useMeshlab as a visual-
ization tool to show the obtained point cloud. The results are
shown in Fig. 7. The images illustrated in Fig. 7 are Dancer,
GhostTownFly, Lovebird, Shark, PoznanStreet and Balloon
from top to the bottom line.

As is shown, smooth object surfaces such as wall in Dancer
and ground in Dancer, Shark, PoznanStreet disappear in
the point clouds built by compressed depth map (Fig. 7(b))
compared to the point cloud built by original depth map
(Fig. 7(a)), which results from quantization distortion. Also,
object structures such as wheel in PoznanStreet and step
in Lovebird are broken due to quantization distortion. With
our enhanced depth map, above disappeared surfaces and
broken structures are properly restored as shown in Fig. 7(c).
It demonstrates that point cloud reconstruction can benefit
from our proposed method, and then capabilities of high
quality remote 3D applications can be improved.

V. CONCLUSION
In this paper, we propose an adaptive multi-modality residual
network for depth map enhancement that distorted by com-
pression. In this framework, depth maps from adjacent views
and corresponding color images of target depth maps are
taken asmulti-modality priors. These priorsmake appropriate
contribution to the enhancement due to the designed adaptive
skip structure. Training set contains images with multiple
QPs, which provides various compression artifacts to the
network training in order to obtain a more generalized model.
Experimental results show that our method outperforms the
state-of-the-art methods in both the objective and subjective
quality, and we also have superior performance in point cloud
reconstruction.
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