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ABSTRACT Identifying intravenous immunoglobulin-resistant patients is essential for the prompt and
optimal treatment of Kawasaki disease, suggesting the need for effective risk assessment tools. Data-driven
approaches have the potential to identify the high-risk individuals by capturing the complex patterns of real-
world data. To enable clinically applicable prediction of intravenous immunoglobulin resistance addressing
the incompleteness of clinical data and the lack of interpretability of machine learning models, a multi-
stage method is developed by integrating data missing pattern mining and intelligible models. First, co-
clustering is adopted to characterize the block-wise data missing patterns by simultaneously grouping the
clinical features and patients to enable (a) group-based feature selection and missing data imputation and
(b) patient subgroup-specific predictive models considering the availability of data. Second, feature selection
is performed using the group Lasso to uncover group-specific risk factors. Third, the Explainable Boosting
Machine, which is an interpretable learning method based on generalized additive models, is applied for
the prediction of each patient subgroup. The experiments using real-world Electronic Health Records
demonstrate the superior performance of the proposed framework for predictive modeling compared with
a set of benchmark methods. This study highlights the integration of co-clustering and supervised learning
methods for incomplete clinical data mining, and promotes data-driven approaches to investigate predictors
and effective algorithms for decision making in healthcare.

INDEX TERMS Co-clustering, interpretable machine learning, medical informatics, predictive models,
Kawasaki disease.

I. INTRODUCTION
Kawasaki disease (KD) is a nonspecific systemic vascu-
lar inflammation in infancy and early childhood. KD may
lead to serious coronary complications and has become
the leading cause of acquired cardiac disease in children
worldwide with increased incidence in recent years. Many
aspects of the etiology and pathophysiology of KD remain
unknown. Approximately 25% of patients with KD develop
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coronary artery aneurysms without treatment, and coronary
artery aneurysms from KD account for 5% of acute coronary
syndromes in adults under 40 years of age [1]. Therefore,
prompt diagnosis and treatment are essential for favorable
clinical outcomes. In clinical practice, the timely initiation
of treatment with intravenous immunoglobulin (IVIG) and
aspirin can reduce the risk of coronary artery aneurysms
significantly (to less than 5%) [2]. However, about 15%–20%
of patients with KD are refractory to IVIG therapy and
have an elevated risk of coronary artery lesion [3]. Existing
studies show that risk-tailored initial therapy can improve

97064 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1735-9525
https://orcid.org/0000-0003-1050-1792


H. Wang et al.: Integrating Co-Clustering and Interpretable Machine Learning

the outcome of patients with KD. Therefore, the early
prediction of IVIG-resistance can have an important role
in supporting the decision making of healthcare profes-
sionals, suggesting the need for effective risk assessment
tools.

Mining Electronic Health Records (EHRs), which capture
clinical data relating to all aspects of patient care (such
as diagnosis, medication, and laboratory test), can facili-
tate cohort-wide investigations and discovery of clinical evi-
dence on an unprecedented scale [4]. Learning from data
provides potentially important opportunities for identify-
ing underlying patterns to develop predictive models for
improving healthcare outcomes with individualized diagno-
sis, prognosis, and administration of treatments [5]. Data-
driven approaches attempt to utilize retrospectively collected
EHRs data and computational methods to identify patients
with IVIG-resistance, and enable prompt and optimal treat-
ment for patients with KD. Recently, several clinical studies
have investigated the clinical and laboratory factors to predict
KD patients with IVIG-resistance who require further ther-
apy. The utility of six models by using different risk factors
for the prediction of IVIG-resistance are compared with a
cohort of 504 patients with KD [6]. The presented model
with the best performance has an AUC of 0.80, sensitivity
of 0.72, and specificity of 0.75. Tan et al. have identified eight
independent risk factors and developed a prediction model by
using multivariate regression analysis [7]. The presented pre-
dictive model shows an AUC of 0.74, sensitivity of 0.76, and
specificity of 0.59. Another study has performed multivariate
logistic regression analyses to predict the lack of response to
IVIG and concluded that several factors, which are associated
with IVIG-resistance, are not good indicators for accurate
prediction in terms of AUC score [8]. Meta-analysis was
performed to identify predictive factors of resistance to IVIG
to address the conflicting results reported in relevant publi-
cations [3], [9]. In addition to statistical techniques, machine
learning-based approaches are developed for risk assessment
tools. Takeuchi et al. have collected a dataset of 767 patients
with KD, including 170 who are refractory to initial IVIG
therapy and used the random forest classifier to identify
IVIG-resistance in patients with KD [10].

Most of the existing studies are insightful but suffer from
small sample size and inconsistent potential risk factors. The
lack of sensitive risk factors and effective methods limits
the performance of these studies in accurately predicting
potential patients with IVIG-resistance. Our paper addresses
the two following challenges for clinical data mining to
support medical decision making, and investigate effective
data-driven approaches to improve prediction performance.

First, the incompleteness of clinical data presents a major
challenge for predictive modeling with sufficient patient
cohort and results in potential biases for estimation. A com-
mon problem in retrospective studies is the large amount
of data missing from patient subsets. In clinical practice,
physicians usually issue the minimum amount of labora-
tory testing and diagnostics to treat patients effectively.

FIGURE 1. Illustration of the clinical dataset with block-wise missing data.

Complex and individualized health conditions lead to a vari-
ety of personal health records. Tests that are not measured
may suggest that the patient appears to be healthy. Thus,
the missingness in EHRs can provide insights into the unob-
served values that indicate the patient’s health state. Com-
mon strategies to address the missing data such as patient
selection reduce sample size, and simple data imputation may
introduce potential biases. Most of the missing data impu-
tation methods deal with data missing at random. However,
missing values are usually associated with different clinical
assessment measures, which are missing not at random. The
groups of features from similar sources demonstrate similar
block-wise gaps in data [11]. For example, an illustration
of clinical dataset is shown in Figure 1. A clinical assess-
ment measure consisting of feature 2 and 3 are missing for
patients 1–3, and the results of a laboratory testing consisting
of feature 4 and 5 are missing for patients 7–10. Commonly
used missing data imputation and machine learning methods
are inefficient in dealing with such block-wise missing data
patterns, suggesting the need to develop methods considering
the incompleteness of clinical data. For instance, assessing
the model validity only on observed data entries is less sen-
sitive to imputation uncertainty and effective in dealing with
missingness for multi-view learning [12].

Second, advanced machine learning models have demon-
strated huge success in various tasks by capturing complex
patterns of real-world data and exhibited satisfactory perfor-
mance in terms of accuracy. However, the predictions of these
models are considered risky and not actionable for clinical
applications due to the lack of interpretability or explainabil-
ity. Understanding the reasons behind prediction is funda-
mental to provide applicable and actionable decision support.
To address this limitation, there has been an increased inter-
est in explainable machine learning, which aims to design
inherently interpretable models to provide explanations of the
risk factors for high descriptive accuracy without degrading
the predictive accuracy. Considering the modeling stage of
data science life cycle, interpretability can be defined as
model-based and post hoc interpretability [13]. For instance,
Letham et al. have developed a predictive model in the form
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of sparse decision statements. This model is interpretable by
human experts to estimate the risk of stroke in patients with
atrial fibrillation [14]. Lundberg and Lee have presented a
unified framework for interpretable prediction by assigning
each feature an importance score for a certain prediction [15].
Both model-based and individualized interpretability can be
addressed using interpretable learning models.

We present a multi-stage approach to identify homoge-
neous clusters considering the availability of clinical data and
fit localized prediction models for each group. The proposed
method performs co-clustering to identify data blocks to char-
acterize the block-wise data missing patterns. Uncovering
both feature and patient subgroups can support group-based
feature selection using the group Lasso and the group-specific
predictive models to take advantage of the patterns of indi-
viduals that may differ from the entire population groups.
We integrate the Explainable Boosting Machine (EBM) to
provide the contributing factors for the predictive model and
explain why a certain prediction is made for a patient. We val-
idate the proposed method using a cohort of 2796 patients
extracted from the EHRs, and demonstrate the superior per-
formance of the proposed method with the advantages of
interpretability and flexibility.

The remainder of this paper is organized as follows.
Section 2 briefly introduces related works for the feasible
integration of co-clustering and interpretable machine learn-
ing. Section 3 presents the proposed framework to address
incompleteness and interpretability for clinical data min-
ing. Section 4 evaluates the performance of the proposed
method by comparison with several benchmark models using
a real-world EHRs dataset. The last section concludes this
paper.

II. RELATED WORKS
For complex real-world data, a single model may not be
sufficiently efficient in capturing the distributions and under-
lying structure in the data. Multiple classifier systems have
demonstrated advantages for increasing accuracy over indi-
vidual classifier models [16]. An effective approach to gen-
erate multiple classifiers is the divide-and-conquer strategy,
which divides data samples into homogenous subgroups and
learning localized models for each group [17]. For instance,
clustering models can be performed to learn the underlying
group structure, and classification models can utilize the
obtained information to train the classification rules [18]. The
interleaving of unsupervised clustering and supervised clas-
sification models can improve the performance of learning
from complex data with better interpretability and reliability.
This paper follows a sequential learningmanner for clustering
and classification. Different from previous studies, our parti-
tioning based on co-clustering aims to characterize the data
missing patterns of the dataset through grouping clinical fea-
tures and patients simultaneously. In addition to identifying
patient subgroups, the structural information obtained by co-
clustering can enable localized feature selection for feature
subsets [19].

Co-clustering is an extension of cluster analysis to
detect coherent patterns in multidimensional data [20].
Co-clustering is known as bi-clustering for matrix, in which
group row and column clusters simultaneously identify
homogeneous data blocks via appropriate permutations [21].
Widely used algorithms for co-clustering consist of spectral,
model-based, factorization-based, and information-theoretic-
based methods. Many of these algorithms seek to discover a
diagonal structure. In our case, the number of row and column
clusters can be different. Thus, nondiagonal co-clustering
methods are suitable. The information-theoretic-based co-
clustering method has become very popular due to its speed
of convergence and scalability.Mutual information is suitable
for co-clustering, which uses rows and column information
symmetrically [22]. In general, the co-clustering algorithms
can be implemented using alternating iterative procedures
by fixing one of the partitions (such as row partition) and
searching for an optimal partition of the other set (such as
column partition) [23].

Although advanced machine learning methods, such as
deep learning and ensemble models, can provide accurate
predictions, the inherent complexity obfuscates the interpre-
tation and limits the use of these models for clinical decision
support. Understanding why amodel makes a specific predic-
tion provides insight and engenders appropriate trust in pre-
dictions. Interpretable machine learning has emerged as a key
aspect of data-driven medical decision making. For instance,
a model is developed to represent the feature importance of
the risk prediction of hypoxaemia during surgery [24]. Two
case studies are presented for pneumonia risk and hospital
readmission predictions by using Generalized Additive Mod-
els (GAMs) with pairwise interactions [25]. GAMs can be
interpreted easily with single variables due to its additive
property and can provide flexible functions to model the lin-
ear and the nonlinear relationships among individual predic-
tors to uncover latent patterns. GAMs usually provide more
accurate predictions than commonly used machine learning
models by capturing the nonlinear patterns in data. EBM is
an implementation of the GA2M algorithm, which has high
accuracy and intelligibility [26]–[28]. EBM is adopted for
the prediction of group-specific IVIG-resistance to capture
nonlinear patterns and pairwise interactions enhanced by
ensemble learning.

III. METHODS
For the EHRs datasets, the clinical features can be natu-
rally organized into groups associated with different clin-
ical assessment measures. The available set of diagnostic
and laboratory testing records issued by medical experts can
reveal inherent similarities and health conditions of patient
subpopulation. Co-clustering is a well-suited approach to
group clinical features and patients into subgroups and make
the complex and incomplete data easy to handle and inter-
pret. An indicator matrix of n × d , which represented
d-dimensional features of n patients, was introduced in the
clinical dataset to characterize the data missing patterns.
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FIGURE 2. (a) Indicator matrix of the clinical dataset. (b) Reorganized
matrix with row and column clusters.

The entry Mij in the indicator matrix was set to 0 or 1 for
data missing or not, respectively. Constant co-clusters can be
identified for blocks via co-clustering methods. An illustra-
tive example is shown in Figure 2. The x-axis represented the
clinical features, whereas the y-axis represented the patients.
The observed and missing elements were labeled using dis-
tinct colors. Based on the availability of clinical features,
the co-clustering of the indicator matrix of patients with
KD dataset can organize features and patients simultaneously
into clusters. Figure 2 (b) shows three feature (column) clus-
ters and two patient (row) subgroups.

This paper followed a sequential learning manner in inte-
grating co-clustering for prediction. The proposed diagram
is presented in Figure 3. The applied co-clustering enabled
group-based feature selection and patient subgroup-specific
predictive models. For instance, the illustrative example
in Figure 2 shows that feature groups 1 and 2 should be
selected for patient subgroup 1, and feature groups 2 and 3
should be selected for patient subgroup 2. Two predictive
models can be trained for patient subgroups considering the
availability of clinical data.

Feature selection plays an essential role to increase compu-
tational efficiency, prevent overfitting and improve learning
performance. Given the existence of the group structure of

FIGURE 3. Proposed prediction workflow.

features associated with various clinical assessment mea-
sures, we tend to select or not select features in the same
feature group simultaneously. Commonly used methods such
as filter methods based on mutual information and knockoff
framework for feature selection usually ignore the group
feature structures. In contrast, group Lasso which assumed
that the features formed k disjoint groups is adopted in this
study. It performed regularization on the model parameters
corresponding to the groups of coefficients [29].

We train a localized predictive model for each patient
subgroup to increase prediction accuracy and take advantage
of the patient group structure. The adopted EBM is designed
to be explainable and intelligible, and demonstrates high
accuracy comparable with state-of-the-art machine learning
methods. The improvements of EBM over traditional GAMs
include the integration of ensemble learning techniques and
the automatic detection of pairwise feature interactions in the
form of [28]:

g(E[y]) = β0 +
∑

fj(xj)+
∑

fij(xi, xj)

This model can be effectively learned using gradient boosting
with shallow tree-like ensembles [26], [27].

In summary, the proposed method performed co-clustering
to characterize the availability of clinical data, group Lasso
for group-based feature selection, and EBM for group-
specific prediction in a sequential manner.

IV. EXPERIMENTS
The dataset comprised 2796 patients admitted from 2007 to
2016 in the Children’s Hospital of Chongqing Medical Uni-
versity in a de-identified format. The main diagnosis of the
enrolled patients in their discharge records was KD. The
patients who received IVIG treatment before admission and
those who did not receive IVIG treatment during hospital-
ization were excluded. The collected structured EHRs record
of the patients consisted of 227 features, including their
demographic information (i.e., age and gender), symptom
(e.g., days of fever), image diagnosis (e.g., degree of coronary
artery lesions), and laboratory test (e.g., platelet count). How-
ever, around 41% of the values were missing in this dataset.
Unlike conventional approaches discarding features and sam-
ples with high missing rate to identify several significant risk
factors for prediction, this paper aimed to develop methods
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FIGURE 4. Reorganization of patients with KD dataset by using
co-clustering to identify feature groups and patient subgroups.

to take advantage of the incomplete clinical data, obtain an
informative and accurate information to improve prediction
accuracy. IVIG-resistance is defined as persistent or recur-
rence of fever at any time during 48 hours to 2 weeks after the
initial IVIG treatment. A total of 184 patients presented IVIG-
resistance, whereas the rest were IVIG-responsive, result-
ing in imbalanced data distribution, which is a well-posed
problem in the study of medical or healthcare events. Given
this issue, the classifier usually leans to be partial toward
the major class, leading to poor accuracy for the minority
class [30]. Over-sampling was performed using SMOTE [31]
to increase the prevalence of IVIG-resistance to 15%. Data
balancing aims to obtain the typical incidence rate reported
in existing studies [3] and improve the capability of the
predictive models. It is worth noting that data balancing is
feasible for validating predictive models in our paper but may
introduce biases in causality studies [32]. The final dataset
consisted of 3017 patients with 459 IVIG-resistance samples.

We investigate the data-driven approaches for the predic-
tion of IVIG-resistance of patients with KD by using the
collected dataset. First, we implemented several benchmark
models, including regression models (logistic regression,
Lasso, and Ridge regression), popular machine learningmod-
els (K-nearest neighbors (KNN), multinomial naive Bayes
(MNB), and multiple layer perceptron (MLP)) and ensem-
ble methods (random forest (RF), lightGBM (GBM) [33],
XGboost (XGB) [34], and EBM). Multivariate imputation
was performed for missing value imputation [35]. Second,
we presented the study of those baseline methods enhanced
by the proposed co-clustering-based framework.

For the proposed method, the CROINFO algorithm was
performed for the co-clustering of the indicator matrix of
the collected dataset [23]. The co-clusters of the collected
dataset are shown in Figure 4. The x-axis represented the
227 clinical features, whereas the y-axis represented the

FIGURE 5. ROC curves for the prediction of IVIG-resistance enhanced by
the proposed framework.

FIGURE 6. (a) Importance (contribution) score of risk factors for the
prediction model. (b) Risk score contributed by factors for individualized
prediction.

3017 patients. The number of row and column clusters
were determined by cross-validation of the training set to
optimize the overall classification performance in terms of
the AUC score. The presented study identified 20 feature
(column) clusters and 2 patient (row) clusters, resulting
in 40 co-clusters (blocks labeled as 1-40) with missing entries
(labeled as 0). These co-clusters characterized the different
data missing patterns of the dataset. Considering the group-
based data missing patterns associated with clinical assess-
ment measures, the group Lasso was performed for feature
selection for each patient subgroup. EBM-based prediction
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TABLE 1. Experimental results (mean ± standard deviation) for the prediction of IVIG-resistance.

models were then learned for two patient subgroups for the
prediction of IVIG-resistance.

The stratified five-fold cross-validation was performed to
evaluate the performance of the benchmark models and the
proposed method. The AUC that considered all possible
thresholds for binary classification was used as a standard
metric to quantify the performance. In terms of the AUC
scores, all methods presented satisfactory performance for
prediction (AUC > 0.82) as shown in Table 1. For those
baseline methods, the ensemble learning methods including
GBM, XGB and EBM outperformed other methods in pro-
viding accurate prediction for IVIG- resistance as expected
since they demonstrate state-of-the-art performance in many
prediction tasks [28]. Despite the difference in performance
is not significant, this study focuses on EBM for its inter-
pretability and effectiveness for prediction. The integra-
tion of the proposed framework can improve the perfor-
mance for all those methods consistently under the same
settings.

The mean receiver operating characteristic (ROC) curves
with one standard deviation of the evaluated methods
enhanced by the proposed framework are shown in Figure 5.
The proposed method integrating co-clustering and EBM
demonstrated superior performance by presenting the ROC
curve at the top left corner with the highest AUC score
(AUC = 0.917), followed by GBM and XGB.

The performance was further evaluated using average pre-
cision score (AP), precision, recall, and F1 score. The average
score with standard deviation is presented in Table 1. The AP
(micro) summarized the precisions achieved at each thresh-
old. In terms of the AP and F1 score, the proposed method
demonstrated best performance. The computation of preci-
sion and recall depends on the threshold for classification
such that they are not suitable for comparison separately. The
reported precision and recall used threshold that maximized
the F1 score for each model. Unlike the AUC score, the
integration of the proposed framework may not improve the
precision/recall/F1 score of each base classifier. This is partly
because the performance is essentially improved by training
multiple localized classifiers supported by co-clustering, but
the single threshold used for binary classification to evaluate
the overall performance may not optimal for each classifier.

In addition to prediction accuracy, interpretability is an
important aspect for the data-driven models to support clin-
ical decision making. The trained model for prediction is
highly interpretable by keeping the contribution of each
feature additive. For illustration, the contribution of several
clinical features for the prediction of IVIG-resistance can
be sorted in accordance with their importance, as shown
in Figure 6 (a). The top-ranked risk factors identified by the
EBM model in our experiments included brain natriuretic
peptide (BNP), platelet count (PLT), albumin, erythrocyte
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sedimentation rate (ESR), hemoglobin (HB), C-reactive pro-
tein (CRP), total bilirubin (TB), and alanine aminotransferase
(ALT), which were consistent with the risk factors reported in
published studies [3], [7].

Figure 6 (b) illustrates a correct prediction for a patient
with IVIG-resistance to support individual level risk predic-
tion with a list of clinical features that are most salient to
each prediction. Five risk factors supported IVIG-resistance,
whereas three other factors lowered the risk for this patient.
The interpretation and understanding of the prediction model
and individualized factors may be helpful for the decision
making of healthcare professionals. Supplementary materi-
als related to this study are available online (https://github.
com/wanghaolin/coclustering_clinical_prediction).

V. CONCLUSION
We investigate data-driven learning approaches for the pre-
diction of IVIG-resistance by using retrospectively col-
lected EHRs, and present a multi-stage approach integrating
co-clustering and EBM. The proposedmethod results in inter-
pretable models considering the incompleteness of EHRs
data with improved predictive performance. We demonstrate
that co-clustering is feasible for exploiting the block-wise
missing patterns of clinical data by grouping patients and
features simultaneously, and can be integrated with super-
vised learning algorithms to enhance the capability to capture
the underlying structure of complex real-world data. Despite
the improved performance for predictive modeling, there
are several limitations can be addressed in future studies.
First, the proposed method should be further validated using
multi-center datasets and evaluated prospectively. Second,
generating multiple classifiers using different subsets of the
dataset can increase the flexibility of the method, leading
to the reduced information used for the training of each
classifier. Thus, a sufficient amount of data is required to
ensure the effectiveness of the prediction model. Third, joint
optimization of the co-clustering and classification have the
potential to further improve the performance. The adoption of
interpretablemachine learningmodels can offer opportunities
for identifying high-risk patients at an early stage to enable
prompt treatment and obtaining novel insights from EHRs.
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