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ABSTRACT Medical image analysis is motivated by the success of deep learning, where annotations are
usually expensive and not easy to obtain. In this paper, we propose a deep quintuplet network CXNet-m3,
where the classification of lesion type of chest x-ray images (CXRs) could benefit from easily accessible
annotations like patient age, gender, identity and view position. To improve classification performance,
a novel loss function combining both deep metric learning and deep learning is first designed based on
multiple labels. Then, a deep model based on transfer learning is built to optimize the loss function. To solve
the problem of slow convergence, a quintuplet mining algorithm is presented to provide valuable training
samples for the proposed classification model. The experimental results on Chest X-ray14 database show
that our classification method outperforms some state-of-art models under Area Under Curve (AUC) score,
reaching 0.824 on an average. Besides, our proposal achieves more than 0.9 AUC values in the case of
Infiltration, Atelectasis, Cardiomegaly and Nodule.

INDEX TERMS Medical image, chest X-ray image classification, deep neural network, deepmetric learning

I. INTRODUCTION
Many chest lesions such as nodules and emphysema are early
manifestations of lung cancer, the leading cause of death in
the world [1]–[3]. Some lesions shown on chest X-ray images
(CXRs) are also useful biomarkers associated with severe
heart failure and respiratory diseases [4]–[6]. Therefore, diag-
nosing chest lesions is essential for reducing morbidity and
mortality from lung, heart and respiratory diseases.

Chest X-ray is the most commonly used radiology exam
for screening and diagnosing chest lesions. With growing
population and increasing health awareness, demand for chest
readings is growing. In the United States of America (USA)
alone, over 35 million CXRs are taken every year and radi-
ologists have to read more than 100 CXRs in a day [7].
Meanwhile, manual method has problems with providing
expert readings and correct diagnosis for CXRs. According
to a report, within 12 months, up to 23,000 CXRs were
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not formally reviewed by radiologists at Queen Alexandra
Hospital alone [8]. Therefore, advanced technologies are
urgently needed to assist radiologists, improve the work effi-
ciency and enhance the diagnosis accuracy.

With the development of computer computing power and
the advent of the era of big data, deep learning (DL) tech-
nology based on artificial neural networks has been a great
success in many fields including image processing [9]–[12].
Compared with traditional machine learning methods such as
support vector machine, K-nearest neighbor method and ran-
dom forest, deep learning method does not have to manually
extract image features including Local Binary Pattern, His-
togram of Oriented Gradient and Haar-like [13]–[17]. In con-
trast, deep convolutional neural networks (CNNs) obtainmul-
tiple levels of image features automatically by end-to-end
training [18]–[20]. The local connectivity and shared weights
make CNN to be the leading computational intelligence for
image processing and classification. However, the training of
CNNs should be supervised by expert annotations, generally
expensive and not easy to obtain in the field of medical
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imaging. Therefore, the value of labels like patient gender
and identity, easy to obtain but usually ignored by researchers,
should also be explored.

In this paper, a classification model, CXNet-m3, is pro-
posed based on convolutional neural network to provide
auxiliary diagnosis for CXRs in ChestX-ray14 database.
In CXNet-m3, the classification of lesion types benefits from
easily accessible annotations like patient age, gender, identity
and view position. Taking advantage of transfer learning,
CXNet-m3 is built with quintuplet inputs and trained by
both classification losses and embedding distances between
quadruplets of CXRs. These quintuplets are generated using
quintuplet mining (QM) algorithm,where quintuplets are also
filtered based on information frommultiple labels. Therefore,
the main contributions in this paper are listed as follows:

1) A novel idea of using easily available label information
is proposed to improve the classification performance of
CNN model for lesion types.

2) A novel loss function with the help of deep metric
learning for classification is proposed to make use of multiple
label information.

3) A quintuplet mining algorithm based on multiple labels
is presented to provide valuable training samples for the
proposed classification model.

II. RELATED WORK
The recent success of deep learning in image processing
tasks has led to rich applications in medical image field
including the classification of chest x-ray images. Using
5,232 CXRs as training set, Yadav et al. trained a linear
support vector machine, a fine-tuned convolutional neural
network, and a capsule neural network to classify CXRs
into bacterial pneumonia, viral pneumonia and disease-free
CXRs [21], [22]. Experimental results prove that deep learn-
ing algorithms are superior to traditional machine learning
algorithm, and the fine-tuning method is better than train-
ing from scratch. Lakhani et al. took a dataset containing
1,007 chest X-ray images as the research object, and clas-
sified tuberculosis based on convolutional neural networks
including AlexNet and GoogLeNet [23]–[25]. Among them,
AlexNet won the championship in the ImageNet image classi-
fication competition in 2012, far exceeding the second place.
GoogLeNet introduced inception module to improve the
expressive ability of CNN without increasing the amount of
calculation. Shin et al. used a recurrent neural network (RNN)
model to read chest X-ray images and conducted experi-
ments on the open database OpenI containing 3,955 radio-
logical reports [26].Kieu et al. proposed a multi-CNN model
combining with fusion rules to detect abnormal chest radio-
graphs [27]. Anavi et al. used age and gender to visualize
patients and improve deep learning frameworks for chest
X-ray image retrieval [28]. Although the above researches
have achieved good results, the study of deep learning meth-
ods in the field of chest X-ray imaging is still restricted
because of the limited scale of dataset.

In 2017, National Institutes of Health (NIH) of USA
released one of the world’s largest accessible labeled chest
X-ray image archive, ChestX-ray14. ChestX-ray14 contains
112,120 chest x-ray images from 30,805 patients [29]. Due
to the large scale, it triggers a considerable attention in
deep learning community. Xu et al. trained a two-class deep
model from scratch to detect abnormal chest radiographs in
ChestX-Ray14 [30]. Yao et al. and Xu et al. made use of
image features and dependencies between labels by com-
bining CNN and RNN to detect multiple lesions in a single
image [31], [32]. Most scholars conducted researches to clas-
sify CXRs in ChestX-ray14 into 14 kind of lesion types and
most of them only used the label of lesion type to super-
vise the training process of convolutional neural network.
X. Wang et al. fine-tuned four standard CNN architectures
including AlexNet, VGGNet, GoogLeNet and ResNet [24],
[25], [29], [33], [34]. Compared to AlexNet, the small con-
volutional kernels and stacked convolutional layers are two
improvements of VGGNet. Such a design improves the abil-
ity of extracting features, reduces network complexity, and
facilitates training convergence. To solve the problem of
vanishing gradient caused by deep layers, ResNet connects a
skip connection between the input and output of two stacked
convolutional layers, which also reduces the time complexity
of training. Among these four classic CNN models, ResNet
achieved the best result for multi-class classification in the
research work of X.Wang et al.. Li et al. presented amodel for
ChestX-ray14 that simultaneously performed the classi-
fication of lesion type and the localization of lesion
based on Resnet and a simple recognition network [35].
P. Rajpurkar et al. utilized a 121-layer DenseNet archi-
tecture with little modification to detect pneumonia using
ChestX-ray14 [36], [37]. Compared with Resnet, DenseNet
further establishes a skip connection not only between the
residual blocks, but also between each layer. Yao et al. intro-
duced an architecture that learned at multiple resolutions and
used a learnable lower bound adaptability to parameterize
the pooling function. They achieved satisfactory classifica-
tion and recognition results for up to 9 lesion types while
generating high-resolution saliency maps [38]. Aviles et al.
proposed a graph-based semi-supervised learning method for
chest X-ray image classification. They introduced a new loss
function to strengthen the synergy between a limited number
of labels and a large amount of unlabeled data. They obtained
good results on the Chest X-ray14 database while greatly
reducing the need for annotated data [39]. Different from
their method, Baltruschat et al. tried to use as many label
information as possible. Their research is currently the only
one that uses view position, patient gender, and patient age
information besides image information to train classification
model for Chest X-ray14 [13]. They abstracted the three label
into a 3-dimensional feature vector and concatenated it with
2048-dimensional feature vector of training image. Although
excellent work, low-dimensional non-image features may be
hard to play a really powerful role after being concatenated
with high-dimensional image features. However, the success
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FIGURE 1. The outline of our overall method for the classification of CXR lesions. Quintuplets are first mined from Chest X-ray 14 database, then 5
2048-dimensional feature vectors are extracted by parameter-shared feature extractors. Four of them are sent to the measurer and the rest one is sent to
the classifier. 1©, 2©, 3© and 4© shows the details of Extractor, Measurer, Classifier and RecBlock. The whole model is optimised by the proposed quintuplet
loss during training.

of their method has revealed that patient information and
view position information, usually ignored by researchers,
are also very useful. Inspired by their work, we propose a
multi-label supervision method that makes full use of non-
image information in this paper. Different from the research
work of Li et al., Our model is trained without the super-
vision of lesion location, expensive and difficult to obtain.
In ChestX-ray14 database, only 0.8% of chest X-ray images
were labeled by lesion location. we are committed to dig out
more value from other labels, easily accessible but usually
ignored by researchers. Rather than transforming non-image
information into features like what Baltruschat did, we take
advantage of them by combination of deep learning and deep
metric learning to implement the supervision of multiple
labels.

Compared with classic metric learning, deep metric learn-
ing can make non-linear mapping of input features, and has
been widely used in the field of computer vision, such as
image clustering and image retrieval [40]–[45]. Deep metric
learning learns the mapping of samples to features through
a loss function. Under this mapping, the metric between
features can reflect the degree of similarity between sam-
ples. Taking the advantages of feature extraction of deep
learning, contrastive loss mapped the original input space to
Euclidean space, directly constraining the feature distance
of samples [46]. Triplet loss further considered the relative
relationship between intra-class pairs and inter-class pairs
[47]. By optimizing triplet loss, the distance between features
of intra-class (anchor-negative) is longer than that between
features of intra-class (anchor-positive). Triplet loss has a
good performance for extreme classification tasks such as
face recognition and person retrieval [48], [49]. In this paper,

the thought of triplet loss of constructing positive and neg-
ative sample pairs is transferred and improved to classify
CXRs based on multi-label information.

It can be found that most of the above medical
image classification researches make use of CNN by fine-
tuning the existing deep learning models such as AlexNet,
VGGNet, GoogLeNet, ResNet and DenseNet. Fine-tuning
is a kind of transfer learning method, proposed to over-
come problems caused by training models directly on rel-
atively small-scale dataset, such as over-fitting and poor
robustness [50]–[53]. In the field of medical images, datasets
as large as Imagenet are very difficult to obtain because of
expensive expert annotations [24]. Therefore, despite of the
success of natural image processing, the performance of deep
CNNs trained directly on medical images is limited. Transfer
learning solves to some extent the contradiction between
the use of deep learning methods and limited-scale medical
data set. Except for the research of Xu et al. of training
a two-classifier from scratch, above research teams trained
classification models for ChestX-ray14 by transferring
parameters trained on ImageNet [13], [29], [30], [35]–[37].
These researches prove the effectiveness of deep transfer
learning from natural domain to CXRs. Different from them,
this paper involves not only the transfer between different
domains, but also the transfer between the same domain.

III. PROPOSED CXNet-m3
The outline of our overall method for the classification
of CXR lesion types is shown in Fig.1. Taking advantage
of multiple labels, including lesion type, patient identity
(ID), gender, age and view position, the quintuplet mining
algorithm is first presented to mine quintuplets from

VOLUME 8, 2020 98695



S. Xu et al.: Cxnet-M3: A Deep Quintuplet Network for Multi-Lesion Classification

ChestX-ray14 database. After being extracted by parameter-
shared feature extractors, four feature vectors are sent to
the measurer and the rest one is sent to the classifier. The
initial parameters of the feature extractor are transferred from
ImageNet, and the parameters of classifier are pre-trained
before the formal training. The whole model is optimised
by the proposed quintuplet loss during training. Proposed
loss function and mining algorithm are discussed in the first
subsection and the model architecture is described in the
seconde subsection.

A. PROBLEM FORMULATION
1) CLASSIFICATION LOSS
To aid diagnosis, deep learning can be used to train an
end-to-end multi-lesion classification model. Each input of
the model is a chest X-ray image I and the output is
K -dimensional predictions, where K is the number of lesion
types. The location of the largest probability value ranging
from 0 to 1 represents the type of lesion predicted by the
model. In order to prevent local optimization, the softmax-
based cross-entropy loss function is used to optimize model
parameters, as shown in (1):

Ccla = −
1
n

∑
yi ln pi (1)

where n is the number of training images, yi is lesion type
label, and pi ∈ [0, 1] is defined as (2):

pi =
ezi∑(K−1)

k=0 ezk
(2)

where zi ∈ Z is the input of softmax layer.We useM to donate
the whole non-linear model and θf to donate the parameter
vector ofM . The aim of the training ofM is to find out the best
parameter combinations in the parameter space θF through
optimising Ccla, as shown in (3):

argminθf ∈θF
1
n

∑
Ci(M (I |θf ), yi) (3)

where argmin means ‘‘make it minimal’’, n is the number
of training chest x-ray images,I donates a training image,
yi is the label of image I and Ci is the loss of image I ,
where Ccla =

∑
Ci(M (I |θf ), yi).

2) DML-BASED LOSS
a: LESION-WISE LOSS
Deep metric learning (DML) implements classification by
optimizing the distance of features in the embedding layer.
Among them, triplet loss is widely used in the field of face
detection, such as FaceNet [47]. FaceNet sets two face pic-
tures belonging to the same person as anchor sample anc and
positive sample pos, and sets pictures not belonging to this
person as negative sample neg. The idea of triplet loss is that
d(anc, pos), the distance between anc and pos should be less
than d(anc, neg), the distance between anc and neg. Guided
by this thought, deep model can be trained by optimizing

triplet loss function as shown in (4).

Ctri=
T∑
j=1

max(d(anc, pos)−d(anc, neg)+ margin, 0) (4)

The idea of triplet loss can be transferred to classification
task of chest radiographs. Assume that there is an ideal model
that can correctly classify all the chest radiographs. This
model should be able to accurately capture the discrimina-
tive features of each lesion. Therefore, the extracted features
between CXRs belonging to the same lesion should be highly
similar, while the extracted features betweenCXRs belonging
to different lesion types should be highly different. It can
be set as an optimization goal to train the parameters of the
multi-lesion classification model we build, just like (4). The
only difference is that anc, neg and pos are selected based on
the type of lesion rather than the person’s ID.

b: PATIENT-WISE LOSS
In above subsections, model is supposed to be optimized from
the supervision of lesion labels. In fact, patient ID is also
a kind of important label because medical images from the
same patient are possibly more similar. Therefore, patient-
wise split is often required to construct training, validation
and test data sets. Such requirements eliminate the bad effects
that the model’s performancemay be biased by seeing images
of the same patient ID from different subsets.

However, instead of avoiding the problems caused by the
same patient ID, it is better to utilise the patient ID for opti-
mizing. Ideally, suppose that there are some chest radiographs
containing lesion type x and a 100% accurate multi-lesion
classification model. The model extracts powerful features
and accurately classify them into the same class x. In this
case, patient-wise differences are no longer obvious and it can
be set as a part of optimization goal to train the classification
model. We set up a similar sample sim with the same lesion
type and patient ID as the anchor sample anc, and a positive
sample pos with the same lesion but different patient ID as
the anchor sample anc. The distance between anc and pos,
d(anc, pos) should be close to the distance between anc and
sim, d(anc, sim). Guided by this thought, the following loss
function is formulated, shown as(5).

Cpti =
T∑
j=1

|d(anc, sim)− d(anc, pos)| (5)

Taking advantage of lesion-wise loss and patient-wise loss,
a DML-based loss is constructed as (6):

Cdml = β ∗ Ctri + (1− β) ∗ Cpat (6)

As shown in Figure 2, this DML-based loss minimizes
the distance between an anchor and a positive CXR, and
maximizes the distance between the anchor and a negative
CXR. At the same time, this DML-based loss makes the dis-
tance between the anchor and positive CXR and the distance
between the anchor and similar CXR as close as possible.

98696 VOLUME 8, 2020



S. Xu et al.: Cxnet-M3: A Deep Quintuplet Network for Multi-Lesion Classification

FIGURE 2. The changes of distances between CXRs through proposed metric learning.

3) QUINTUPLET LOSS
In summary,Ccla is a direct classification loss function, while
Cdml provides an optimization target for the multi-lesion
model from lesion type and patient ID. Our strategy is to
perform a weighted sum of Cdml and Ccla. Although metric
learning is notmain task, the optimization ofCdml could guide
the model to learn discriminative features for classification.
Taking advantage of classification loss and DML-based loss,
the Quintuplet loss is formulated as (7):

Cqui = α ∗ Ccla + (1− α) ∗ Cdml (7)

According to the loss function, every 5 CXRs including
anchor sample * 2, a positive sample * 1, a negative sample
* 1 and a similar sample*1 need to be put in model each time
to train. And this is why formula (7) is called Quintuplet loss.

4) QUINTUPLET MINING ALGORITHM
In addition to lesion type and patient ID, there are also patient
gender label∈ {0, 1}, view position label∈ {0, 1}, and patient
age information of each CXR in ChestX-ray14 database.
In order to make use of them, a strategy is to treat them
as three-dimensional features connected to high-dimensional
image features [13]. However, under the contrast of high-
dimensional image features, these low-dimensional features
are difficult to play an important role. Another strategy is
to integrate them into the quintuplet loss function and then
provide online supervision for model along with the lesion
type. However, it involves more hyper-parameters and slower
convergence in our experiment. Finally, we decide to use
these information to mine the quintuplets, achieving off-line
selection to accelerate model convergence.

Generating all possible quintuplets would result in super
large-scale data pairs that are easily fulfill the constraint in
formula (4) and formula (5). These quintuplets would not
contribute to the training but slows down the convergence
of model. It is crucial to select relatively hard quintuplets
according to multi-view label.

First, symbols are used to define some relationships,
as shown in Table (1). According these relationships, total
three constraints are added to the pairs that appear in for-
mula (4) and formula (5). As a hard pair, the distance between
the anchor sample and the positive sample should be as far

TABLE 1. Symbols and their descriptions.

as possible except for the type of lesion. The relationship
between anchor sample and positive sample should satisfy the
constraint shown in formula (8):

Constraintap = {Ls&Pd&Gd&Vd&largeAc} (8)

In contrast, the distance between anchor sample and negative
sample should be as close as possible. Although the type of
lesion is different, gender and view position should be the
same. The relationship between anchor sample and negative
sample should satisfy the constraint shown in formula (9):

Constraintan = {Ld&Ps||Ld&Pd&Gs&Vs&smallAc} (9)

The relationship between anchor sample and similar sam-
ple should satisfy the constraint shown in formula (11):

Constraintas = {Ls&Ps} (10)

Based on these constraints, the quintuplet mining algo-
rithm is proposed for quintuplet selection, as shown in
Algorithm1:

B. MODEL ARCHITECTURE
In the problem formulation subsection, a method is proposed
to jointly supervise the deep model using classification loss
and embedding layer distance. Accordingly, an end-to-end
deep model with five inputs is designed, as shown in Figure1.

After comparing the current multi-lesion classification
methods for ChestX-ray14, we find that transfer learn-
ing is widely used and more effective than training from
scratch. Further, Baltruschat et.al. compared some existing
deep convolutional network models that could be used for
transfer learning on ChestX-ray14. They found that Resnet
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Algorithm 1 Quintuplet Mining (QM) Algorithm
Input:

Chest X-ray14 dataset;
Output:

Quintuplets generated from Chest X-ray14 dataset;
1: Sort CXRs according to patient ID;
2: for each img1, img2,img3,img4 in CXR dataset do
3: Define empty list: Obj, Pos, Neg;
4: if img1 & img2 : Constraintas, img1 & img3 :

Constraintap,
img1 & img4 : Constraintan then

5: Append img1 and img2 to Obj;
Append img3 to Pos;
Append img4 to Neg;

6: end if
7: Constraint the length of list Obj, Pos, Neg by random

selection
8: while loop time do
9: Select anc & sim from Obj, pos from Pos, neg from

Neg randomly;
Put anc*2, sim, pos, neg together into a quintuplet;

10: end while
11: end for

had the best transferability [13]. We therefore choose Resnet-
50 as the base-bone of our model. As shown in Figure 1,
the model is expanded into three parts based on Resnet-
50: a feature extractor, a classifier, and a measurer. Among
them, the network structure of the feature extractor is the
same as that of Resnet-50 except for class layers, shown
in Figure 1 1© 4©. Such a network structure can benefit from
transfer learning by directly loading the parameters trained
on ImageNet. The classifier consists of a BanchNorm layer,
a Flatten layer, and a Dense layer, as shown in Figure 1 3©.
The BanchNorm layer normalizes the learned features, and
the Dense layer outputs the predicted classification results.
The measurer first uses the Concatenate layer to connect the
down-sampled features of anchor sample, similar sample,
positive sample and negative sample. After L2 regularization,
the output feature vectors are measured, shown in Figure 1 2©.
The classifier and the measurer are not connected to each
other, while they are both connected to the last layer of the
parameter-shared feature extractors.

The parameters of classifier and the measurer are sepa-
rately optimized by two different loss functions from quintu-
plet loss, while the design of parameter sharing allows them
to jointly optimize feature extractors. Although classification
performance is our only concern, the measurer is used to
further enhance the capabilities of the feature extractors.

IV. EXPERIMENT AND RESULTS
A. DATASET
The dataset used in this study is ChestX-ray14, established
by the researchers from the National Library of Medicine

and Clinical Center of NIH. Chest X-ray14 is the largest
publicly accessible chest x-ray database, downloaded through
https ://nihcc.app.box.com/v/ChestXray-NIHCC. Its recent
release triggered research on chest radiographs by the deep
learning community. Chest X-ray14 contains more than
30,000 patients, 112,120 labeled chest x-ray images labeled
by 14 kinds of lesion types including Infiltration, Effu-
sion, Atelectasis, Nodule, Mass, Pneumothorax, Consolida-
tion, Pleural Thickening (PT), Cardiomegaly, Emphysema,
Edema, Fibrosis, Pneumonia and Hernia. In Chest X-ray14,
60,361 CXRs are lesion-free, while other 51,759 CXRs are
abnormal. Although a large scale, Table 2 shows that the
lesion distribution in Chest X-ray14 is imbalanced.

Each CXR with a resolution of 1024 * 1024 has a unique
image identity. In addition to the type of lesion, CXRs are
also labeled by other basic information such as patient ID
(30805), gender(female or male), view position( posterio
anterior (PA) or anterior posterio (AP)), and age. The vast
majority of chest radiographs are concentrated in the 20 to
80 age group, with the largest number in the 50 to 60 age
group. Table 6 shows that the gender-wise and view position-
wise distribution are relatively uniform. Therefore, the impact
of gender and view position on classification accuracy cannot
be ignored.

B. METRICS
AUC, accuracy, recall, precision, and F-value are important
and commonly-used metrics for classification tasks in the
field of machine learning. There are 4 quantities are first
defined:

• true positive as TP: The prediction is positive and
the prediction is true.

• true negative as TN: The prediction is negative and the
prediction is true.

• false positive as FP: The prediction is positive and the
prediction is false.

• false negative as FN: The prediction is negative and
the prediction is false

1) ACCURACY [54]
The classification accuracy rate refers to the proportion of
correctly classified samples in total samples. The accuracy
rate A is defined as (11):

A =
TP+ TN

TP+ TN + FP+ FN
(11)

2) PRECISION [55]
The classification precision rate is the ratio of the number
of positive samples classified correctly to the number of
samples determined by the classifier as positive samples. The
precision rate P is defined as (12):

P =
TP

TP+ FP
(12)
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TABLE 2. Overview of lesion distributions in the ChestX-ray14 dataset.

3) RECALL [56]
The classification recall rate refers to the ratio of the number
of positive samples that are correctly classified to the number
of samples that are truly positive. The recall rate R is defined
as (13):

R =
TP

TP+ FN
(13)

4) F-VALUE [57]
In most cases, the higher the recall rate, the lower the pre-
cision rate and vice versa. Therefore, using either P or R
cannot fullymeasure the performance of classificationmodel.
F-measure value is defined to take both P and R into consid-
eration (14):

F =
(α2 + 1) ∗ P ∗ R
α2(P+ R)

(14)

where α2 is weight factor, and when α2 = 1, P and R are
equally-weighted.

5) AUC [58]
The AUC is defined as the area under the receiver operating
characteristic (ROC) curve, which has typically horizontal
axis as False Positive Rate and vertical axis as True Pos-
itive Rate. True Positive Rate (Sensitivity) is computed as
TP/(TP+FN) and False Positive Rate is defined as FP/(TN+
FP). Using the AUC value as the evaluation standard is more
clear and direct than ROC Curve. Larger AUC means the
classification performance is better.

C. EXPERIMENTAL SETUP
1) EXPERIMENT ENVIRONMENT
The experiments are conducted on an ubuntu linux server
with 32G random access memory (RAM) and a 16-core
central processing unit (CPU). Both the quintuplet mining
procedure and the model architecture are developed with
Python and deep learning libraries (e.g., Keras and Tensor-
flow). The whole model is trained using 2 GeForce GTX
1080 Ti graphics processing units (GPUs).

2) TRAINING DETAILS
In our experiments, the CXRs in the Chest Xray14 database
are divided into training set, validation set and test set at a
ratio of 8:1:1.

TABLE 3. Overview of gender-wise and VP-wise distributions in the
ChestX-ray14 dataset.

During training, the feature extractor’s parameters of
Resnet-50, which were pre-trained from Imgenet, are first
transferred to our model. Then parameters of the classi-
fier are trained by freezing feature extractor and optimiz-
ing formula (1), using all lesion-labeled CXRs in Chest
X-ray14 except the test set and validation set. After that,
the feature extractors’ parameters trained by ImageNet and
the classifier’s parameters trained by Chest X-ray14 are
loaded into the whole model. In the last step, classifier, mea-
surer, and high-level features of feature extractor in CXNet-
m3 are trained by parameter transfer between the same
domain and optimising formula (7).

3) HYPERPARAMETER SETTING
In the quintuplet mining algorithm, Ac in Constraintap is
set as larger than 10, while Ac in Constraintap is set as
equal to 0.

In the training procedure, the weight of the classification
loss in formula (7) α is set as 0.8. In formula (6), the pro-
portions of patient-wise distance and lesion-wise distance are
each set to 0.5. According to experience and the validation
results, we choose the different initial learning rates for two
losses, decayed by 10 manually through monitoring the loss
curve.

D. EXPERIMENTAL RESULTS AND DISCUSSION
Ling et al. discussed about AUC in their paper and they
conclude that AUC is a better measure than accuracy based on
formal definitions of discriminancy and consistency [58]. The
implicit goal of AUC is to deal with situations where there
is a skewed sample distribution and over-fit to a single class
should be avoided. The paper recommends using AUC as a
‘‘single number’’ measure to over accuracy when evaluating
and comparing classifiers.
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TABLE 4. Result evaluation and comparison on AUC.

FIGURE 3. The average AUC values under different parameter choices. The
ordinate is AUC values. The abscissa is the weight factor of Cdml , ranging
from 0.1 to 0.5. Four lines adopt different sample selection strategies.

As shown in Table 2, the sample distribution in the Chest
X-ray14 dataset is extremely uneven. For example, the cate-
gory with the most samples is Infltration, with 19,894 CXRs,
while the category with the least samples is Hernia, with only
227 CXRs. Therefore, AUC is used as a measure for each
class in our paper and the values are compared with experi-
mental results of state-of-art algorithms for multi-lesion clas-
sification for this dataset.

As shown in Figure 3, the average AUC values are com-
pared in our experiments under different parameter choices.
the ratio ofCdml in formula (7) is set as 0.1,0.2,0.3,0.4 and 0.5,
respectively. the difference between line 0, line 1, line 2, and
line 3 is the quintuplet sample selection strategies, as shown
in Table 5. QM refers to whether the proposed quintuplet
mining algorithm is used. S-N, P-N, and N-N represent the
number of similar samples, the number of positive samples,
and the number of negative samples, respectively. Q-N-A
donates the number of quintuplets of each Anchor sample.
Here, since the similar samples are very similar, the number

of all similar samples is set to 1. Since the convergence rate of
Cdml and Ccla is different, the total number of samples should
not be too much. Otherwise, Cdml will not recognize any
pattern when Ccla has converged. In this case, if the training
process is continued, the over-fitting phenomenon will be
exacerbated. If the training process is stopped,Cdml would not
contribute to the model training.Therefore, Q-N-A is set three
values of 4, 8, and 16, where Q-N-A is the product of S-N,
P-N, and N-N. Compared with positive samples, the distribu-
tion of negative samples in the feature space is more scattered.
Therefore, when the Q-N-A is limited, the number of negative
samples N-N is set to a larger value.

In Figure 3, the AUC values of line 0 is much lower
than those of other lines. It means that the quintuplet mining
algorithm is effective for improving model performance. The
use of quintuplet mining algorithm also speeds up the con-
vergence of the model during training. It takes about a day to
converge without quintuplet mining algorithm, while the loss
value no longer changes significantly only after about 5 hours
with training data selection. With the increase of the ratio,
the AUC values of line 1 and line 2 tend to increase first and
then decrease. However, the AUC values of line 3 decreases
as the ratio becomes larger. Compared with line 1 and line 2,
the Q-N-A value of line 3 is higher, which is 16. It means
that the quintuplet mining algorithm allocates 16 quintuplets
for each eligible Anchor sample. The model thus converges
more slowly during training. The larger the weight of Cdml ,
the slower the model will converge. Line 1 and line 2 reach
their peaks at a ratio of 0.2 and 0.4, respectively. Both of them
obtain high AUC values. It can be inferred from Figure 3 that
the selection of samples and the proportion of two losses are
very important influencing factors. When selecting samples,
the quintuplet mining algorithm is effective, and the total
sample size should not be too large. Besides, 0.2 to 0.4 is an
optimal range of weight factor of Cdml for our task.
As shown in Table 4, our work is compared with the work

ofWang, Z. Li, A. I. Aviles-Rivero, Y. L, and I.M. Baltruschat
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TABLE 5. Different sample selection strategies.

[13], [29], [35], [38], [39]. Among them, Wang et al. first
released the Chest Xray14 dataset in 2017 and used deep
learning models to classify 14 lesions, which was published
on IEEE Conference on Computer Vision and Pattern Recog-
nition [29]. Li et al. used a simple recognition network to
assist the training of Resnet. Although only a few hundred
chest radiographs labeled with lesion location, the auxiliary
task greatly improved the classification effect. Their research
was published on IEEE Conference on Computer Vision and
Pattern Recognition in 2018 [35]. Although a newly pub-
lished paper in 2019, the citation rate of I. M. Baltruschat
et al’s paper is relatively high [13]. They used view position,
gender, and age information as feature to train deep model
and obtained good results. The work of Reference [39] and
Reference [38] are also very new, printed in arXiv in 2019 an
2018, relatively.

Table 4 shows that our method achieves an average AUC
value of 0.824, which is higher than other research work.
Comparedwith the initial work of Reference [29], the average
AUC values of later research work are all increased. In addi-
tion to our work, the average AUC values of Reference [35]
and Reference [13] are also relatively high. Compared with
other research, both of our proposal and their work use aux-
iliary information, such as lesion location, patient ID, gender
and view position. It can be inferred that the use of auxiliary
information can to some extent contribute to classification.

In addition to average performance, our model shows
better performance for about half of the lesions, such as
Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass and
Nodule. Although not the best, our results of other lesions,
such as Pneumothorax, Consolidation, Edema, Emphysema,
Fibrosis, PT and Hernia, are not bad. However, in terms of
AUC values, the model has the worst classification effect on
Pneumonia. One possible reason is that our model does not
obtain the strong features of pneumonia from small sample
set.

Table 4 also illustrates that our method has outstand-
ing classification performance for Atelectasis, Cardiomegaly,
Infiltration, Nodule, getting AUC values higher than 0.9.
Comparing Table 2 and Table4, we find that sample size of
lesions with high AUC values is relatively large. For Infil-
tration, the AUC value has improved by nearly 30% when
comparing with the earliest research work in Reference [29].
Deep learning encourages a large number of training samples
to learn more robust features. Although the sample size is
the largest, the AUC value of Infiltration has not always been
high before our work. One possible reason is that Infiltration’s

TABLE 6. Result evaluation on Accuracy and F-score.

classification features are difficult to learn. Our method is
specifically designed to enhance the learning performance
of classification features, thus improving the classification
performance of large sample classes.

For Chest X-ray14 with uneven sample distribution, all
state-of-art methods only use AUC as the evaluation metric,
as compared in Table4. As auxiliary measures, we also verify
the overall model performance under accuracy and F-score
which takes both precision and recall into consideration.
When the accuracy and F-score of the training set reach
0.925 and 0.950, respectively, the accuracy and F-score of the
validation set reach the maximum. At this time, the accuracy
and F-score of the test set are average 0.749 and 0.853,
respectively. Generally, as a robust evaluationmetric based on
all cutoff values, the value of AUC is smaller than the value of
accuracy. In our experiments, the accuracy value is relatively
small, which may be caused by a large cutoff threshold.

In addition to the classification performance, the complex-
ity of CXNet-m3 model is also analyzed and compared to the
existing results. In neural networks, the spatial complexity
is determined by the number of parameters, related to the
number of convolution kernels, the number of output chan-
nels, and the number of layers. The more the number of
parameters, the higher the spatial complexity of the model.
Floating-point operations (FLOPs) is used to measure the
time complexity of the model, related to the number of
feature maps, the number of convolution kernels, the number
of output channels and the number of layers [59]. FLOPs
refers to the number of additions and multiplications in the
model. The larger the FLOPs value, the higher the time
complexity of the model. Table 7 shows the comparison of
parameter number (Params) and FLOPs between CXNet-m3
and other methods. Among them, Reference [29]-1 to
Reference [29]-4 are improved based onAlexNet, GoogLeNet,
VGGNet and ResNet, respectively. Correspondingly, the
model size and FLOPs value are similar to respective base
model. Although based on ResNet, References [35], [13] and
our method have different spatial complexities and time com-
plexities due to different improvement strategies. The model
size and FLOPs value of Reference [13] and our method are
similar to standard ResNet, while the method in Reference
[35] needs more parameters and larger FLOPs because of
changed image scale and added recognition network. Classi-
fication in Reference [38] in designed based on both standard
ResNet and standard DenseNet, which means parameter
number and FLOPs should be close to the sum of ResNet and
DenseNet. It can be seen from Table 7 that parameters in our
model is the second least, which means relatively low space
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TABLE 7. Complexity analysis and comparison on model size and FLOPs.

complexity. Table 7 also shows that FLOPs of our model
is similar to Reference [29]-4 and Reference [13], but less
than Reference [29]-1, Reference [29]-2, Reference [29]-3,
Reference [35] and Reference [38]. FLOPs is related to the
size of the input image. Except that Reference [35] sets the
input image size to 299 * 299, other FLOPs in Table 7 are
calculated based on a 224 * 224 input image. During training,
CXNet-m3 model is more time-consuming than single-input
models because it needs to process 5 images at each time.
However, only one input is open during the inference process
of CXNet-m3 model, which is really time-saving according
to Table 7.

V. CONCLUSION
Chest X-rays are the most common imaging examination tool
used to detect lesions related to heart, lungs, and respiratory
system. In this paper, a deep multi-lesion classification model
CXNet-m3 for CXRs in Chest X-ray14 is proposed to aid
diagnosis. In CXNet-m3, easily accessible labels are explored
to assist the classification of lesion types. To enhance the
classification performance, a DML-based loss function is
first constructed using labels of lesion type and patient ID.
Then, a deep model taking advantage of transfer learning
is built with quintuplet inputs to optimize both DML-based
loss function and the classification loss function. To over-
come the problem of slow convergence, a quintuplet mining
algorithm for the selection of training sample is proposed
based on labels of lesion type, view position, patient ID,
patient age, and patient gender. The experiment results show
that our method can achieve better AUC values than some
state-of-art methods for the classification of multiple lesions
in Chest X-ray14. The analysis of the experimental results
also shows that our method has a significant effect on improv-
ing the classification performance of large sample categories.
The disadvantage of this method is that CXNet-m3 involves a
lot of hyper-parameters. How to make a reasonable or adap-
tive selection of the best hyper-parameters to make further
improvements will be the focus of our future work.
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