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ABSTRACT In order to achieve the safe and efficient energy use in the electric vehicle, the continuous
and accurate monitoring of lithium-ion batteries (LIBs) has become a long-standing research hot spot.
However, existing researches of LIBs state of charge (SOC) prediction are at the cost of unrefined vector
representation and inadequate feature extraction, which have been unable to meet prediction requirements
of LIBs SOC. Complementarily, in this study, a deep learning-based SOC prediction model is proposed
to ensure reliable vector representation and sufficient feature extraction. In order to improve battery data
representation, a recursive neural networks (RNNs)-based method is proposed. Then, aiming to fully extract
feature information, a multi-channel extended convolutional neural networks (CNNs)-based method, which
is fed with the well-trained vector representation, is proposed to accurately predict LIBs SOC. Based on the
reliable vector representation and sufficient feature extraction, the proposed method can provide improved
SOC prediction performance. Merits of the proposed method are verified using simulation test, which
shows that the proposed method gives improved prediction performance of 4.3% and 11.3% compared with
recurrent neural networks and Ah counting method, respectively.

INDEX TERMS Lithium-ion batteries, state of charge, recursive neural networks, convolutional neural
networks.

I. INTRODUCTION
The past years have witnessed the significant development
of electric vehicle industries, which have played a significant
role in improving the natural environment [1]. Lithium-ion
batteries (LIBs) are widely preferred in electric vehicles [2],
[3]. Battery management system (BMS) [4] can improve
energy efficiency and prolong the remaining service life
of batteries by supervising and controlling LIBs’ operation
appropriately [5], which ensures the normal work of the
battery within a safe range. The working mechanism of LIBs
in electric vehicles is shown in FIGURE 1. It illustrates the
simplified structure of LIBs, which are composed of the posi-
tive material of the battery, the cathodematerial of the battery,
electrolyte, diaphragm and battery case. It also describes
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the charging and discharging process of LIBs, which clearly
marks out the movement direction of lithium ions and
electrons.

The key function of BMS is to monitor the state of bat-
teries and ensure the safe operation of batteries. It is worth
mentioning that state of charge (SOC) [6], [7] is considered
as battery’s energy gauge which is one of the uppermost states
of BMS [4]. SOC reflects the ratio of the battery’s utilizable
capacity to its nominal capacity and can be written as follows:
SOC = Cr

CI
, where Cr denotes the remaining capacity of the

battery, and CI denotes the capacity of the battery when it
is discharged at a constant current I . Accurate SOC estima-
tion is essential, and techniques for battery SOC estimation
could be achieved by various methods such as Ampere-hour
(Ah) counting method, open-circuit voltage (OCV) method,
extended kalman filter (EKF) method and deep neural net-
works (DNNs) method.
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FIGURE 1. Lithium-ion batteries model applied to electric vehicles.

Ah counting, also called Coulomb counting method [8],
is one of the most straightforward approaches of SOC pre-
diction, in which SOC is determined by integrating charging
and discharging currents during operating period. However,
Ah method suffers from poor precision owing to accumula-
tion of the current sensor error [9]. Another rational method
of SOC estimation is OCV method [10] where voltage of
the battery is directly correlated with charging status of the
battery. However, this method needs to disconnect loads,
and the open-circuit voltage can only be measured after the
battery is stationary for a long time. Another technique for
battery SOC estimation is EKFmethod, which is usually used
in non-linear systems. EKF method uses partial derivatives
and first order Taylor series expansion to linearize the battery
model. This method can often produce good battery SOC
estimation, but it causes problem such as bad application in
real-time, as well. Thus, it raises urgencies of exploring other
alternatives regarding SOC prediction of LIBs.

In order to address these above-mentioned impediments,
a simple and effective optimization technique based on deep
neural networks (DNNs) is proposed. DNNs have been suc-
cessfully applied to various perceptual domains, including
computer vision and natural language processing. Moreover,
DNNs-based techniques are showing impressive performance
in new domains such as medicine and finance. Success
in non-perceptual domains suggests that DNNs-based tech-
niques could be successfully used to develop BMS so as to

monitor SOC of LIBs [11], [12]. Therefore, the DNNs-based
SOC prediction method has been a growing research field in
recent years. Among the various fields of DNNs, recursive
neural networks (RNNs) perform well in natural language
processing, and convolutional neural networks (CNNs) are
better than most existing models in image recognition. RNNs
store sequential information in hidden memory to prop-
erly process, represent, and store information. CNNs extract
abstract feature information like points, lines, and faces of the
input data, and preserve the relationship between the input
data.

In recent years, many researchers have conducted to extract
features by combining RNNs and CNNs. LIBs SOC predic-
tion problem also deals with the correlation between mul-
tivariate variables. Most classical methods only use some
features and only model single feature information for LIBs
SOC prediction. Since RNNs model battery data and map
battery information into separable space and CNNs are used
to remove noise and to extract feature information between
multivariate variables, RNNs-CNNs model is chosen to pre-
dict LIBs SOC.

Motivated by the aforementioned observations, in this
paper, a RNNs-CNNs neural network combining RNNs and
CNNs is proposed to predict LIBs SOC. Due to the inade-
quate vector representation of battery data, an adaptive vector
representation model based on RNNs is proposed. Then,
in order to fully extract feature information, the well-trained
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vectors are integrated into multi-channel extended CNNs to
realize accurate SOC prediction.

Main contributions of this paper are stated below:
• To improve battery data representation, LIBs data is
fully represented by establishing the RNNs-based data
representation model. The model provides the refined
vector representation of battery data for subsequent SOC
prediction, which ensures validity and stability of SOC
prediction.

• To fully extract feature information, a multi-channel
extended CNNs-based model, which is fed with the
well-trained battery vector representation, is proposed
to extract the unknown feature information hidden in
battery vector.

• Extensive simulation using LIBs subject to dynamic
current profiles, dynamic voltage profiles and change
in temperature, is conducted. Simulation results demon-
strate that, in terms of mean absolute error, our scheme
improves 4.3% and 11.3% compared with recurrent neu-
ral networks and Ah counting method, respectively.

The rest of this paper is organized as follows: Section II
gives an overview of related work. Section III presents the
problem and challenges. Section IV analyzes the method
of SOC estimation of LIBs. In Section V, the experimental
results are presented. Finally, Section VI concludes the paper.

II. RELATED WORK
In this section, the most relevant works with regard to
LIBs SOC estimation are briefly presented, and differences
between our research and existing researches are identified.

Many researches of battery SOC estimation, each with its
own advantages and limitations, were proposed [13]. The
most commonly used estimation models include electro-
chemical mechanism model [14], Ah counting model [15],
equivalent circuit model (ECM) [16], neural network model
[17] and other SOC estimation models.

A detailed review of electrochemical mechanismmodels is
presented in [18]. Since electrochemical model can analyse
the battery mechanism, the model is increasingly popular.
However, since battery parameters have relationship with the
structure, dimensions and materials of batteries, the model is
too complicated to estimate LIBs SOC efficiently. Ah count-
ing method is trivial to be implemented, which is often used
in the battery SOC prediction [19]. In practice, due to uncer-
tain disturbances, Ah counting method may induce accumu-
lated estimation errors. In addition, the method requires a
known initial value to estimate LIBs SOC adaptively, but it
is quite challenging to determine the initial SOC value. ECM
has advantages of intuitive structure and low computational
requirement [20]; hence, the model has been widely used
in the SOC estimation. However, since ECM mimics the
input-output behavior by electric components such as resis-
tors and capacitors, it cannot accurately characterize electro-
chemical dynamics.

Different from the above systems, neural network model
can show the nonlinear relationship between SOC and its

influencing factors. Many intelligent approaches, such as
artificial neural networks (ANNs) model [12], fuzzy logic
model [21], RNNs model [22] and support vector regres-
sion (SVR) model [23], were proposed to establish SOC
estimation models. This type of methods have the power-
ful function of approximating nonlinear function, which can
often provide good SOC estimation [24].

Recently, the idea of battery uncertainties online esti-
mation has been introduced to achieve higher precision in
the LIBs SOC estimation. With the development of neural
network technologies, a radial basis function (RBF) neural
network is provided to solve the estimation uncertainty in
the online training [25]. To be more specific, a RBF neural
network-based nonlinear observer is designed to estimate
LIBs SOC. Then, following Lyapunov stability analysis,
it is proved that battery’s SOC estimation error is ultimately
bounded and the error bound can be arbitrarily small. In [26],
a more accurate method using ANNs is investigated for SOC
estimation. More specifically, a state observer based on elec-
trochemical principles is designed, and this electrochemical
observer is simulated using ANNs. The result from under-
taking this research provided more accurate SOC estimation
of real-time applications. In summary, compared with other
kinds of models, neural network-based models are the most
suitable models of LIBs SOC estimation.

III. PROBLEM DESCRIPTION AND CHALLENGES
In this section, the problem of existing models is presented.
And then, the challenges faced by the system are summarized.

A. PROBLEM DESCRIPTION
In the battery control system, SOC is one of the most
critical parameters. The estimation of battery remaining
capacity is mainly achieved by SOC prediction. SOC plays
an important role in managements of battery energy use,
which prevents the batteries from overcharging and overdis-
charging [27], [28]. In addition, the estimation performance
of the battery remaining capacity has a significant influence
on driving safety of electric vehicles. Therefore, a well-
developed model plays a crucial role in accurate SOC predic-
tion. However, existing methods of LIBs SOC prediction are
at the cost of unrefined vector representation and inadequate
feature extraction, which have been unable to meet prediction
requirements of LIBs SOC.

B. CHALLENGES
Aiming to make prediction performance of LIBs SOC
achieve a certain level of accuracy, a number of problems
need to be solved in the deep learning-based SOC prediction
model. That is, how the model implements a refined vec-
tor representation of battery data, and how the model real-
izes sufficient feature extraction for accurate SOC prediction
of LIBs. The challenges can be summarized as follows:
• It is difficult to obtain a sufficient vector representation
of LIBs information owing to the incomplete expression
of the relationship between multiple statuses.
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• The CNNs-based model is a promising way to solve the
low accuracy of SOC prediction. However, a huge chal-
lenge remains on the transmission of feature information
within a network-such as only using single channel to
extract feature information.

We note that a refined vector representation of battery
data is the prerequisite for accurate SOC prediction. Before
improving predictive performance, the refinement vector rep-
resentation of battery data is first realized.

IV. THE METHOD OF STATE OF CHARGE PREDICTION
In this section, a DNNs-based SOC observer is proposed to
accurately predict LIBs SOC. More specifically, a data repre-
sentation model based on RNNs is presented to obtain the
fine vector representation. Then, a multi-channel extended
CNNs-basedmodel is proposed to extract feature information
hidden in vectors.

A. A RECURSIVE NEURAL NETWORKS-BASED VECTOR
REPRESENTATION MODEL
The implementation details of data representation model
include two parts. Firstly, a data representation model is
constructed. Secondly, the vector space model is trained to
realize the sufficient vector representation.

1) THE FUNDAMENTALS OF RECURSIVE NEURAL
NETWORKS
RNNs have the rich expressive power and deterministic inter-
nal dynamics, which provide a computationally attractive
alternative. Now the example of RNNs training is considered.
Assume that there is a parse tree (h2(h1xy)z) where x, y and
z show inner vector representations. The representation of a
parent node is computed in a bottom up manner. In order to
compute the parent node, a neural network containing the
weight matrix W1 ∈ On×n for left children and the weight
matrixW2 ∈ On×n for right children, is used. For every parent
node h, a vector representation hi is assumed. h1 is computed
as follows:

h1 = f (W1x +W2y+ b) (1)

where f is an activation function (e.g., sigmoid or tanh),W1 is
the weight matrix for left children,W2 is the weight matrix for
right children, x and y are child nodes, and b is a bias vector.
Next, h2 can be computed, moving a level up in the hierarchy.
The representation of parent node is given as follows:

h2 = f (W1h1 +W2z+ b) (2)

where z is the child node. The process is continued until the
root node is reached.

RNNs are used to parse text into a structured tree. The
nodes in the tree represent interdependence of words in the
text. That is, larger feature is divided into a number of small
features, each of which exists on the basis of their internal
correlations.

2) THE VECTOR REPRESENTATION MODEL
In order to obtain the appropriate vector representation of
battery data, building the data representation model is an
important yet challenging task. The data representationmodel
is expected to remove redundant information to meet the
demands of subsequent SOC prediction. At dealing with the
structured representations of LIBs data, the compact vector
representations are expected to provide, but the compact vec-
tor representations are difficult to obtain directly. To address
the above-mentioned impediment, a novel RNNs-based data
representation model is proposed.

In the RNNs-based vector representation model, battery
state values such as temperature, voltage and current are
vectorized. The model obtains LIBs state data and then maps
n × 1 dimension data into the vector space of n × m dimen-

sion. Suppose that a input X3×1 =

 TV
C

 is given. (Note

that, T represents the temperature value, V represents the
voltage value, and C represents the current value.) Here,
the dimension n of the data is equal to 3. Analogously, when
the input is temperature and voltage, the dimension n of the

data is equal to 2. Hence, a input is X2×1 =
[
T
V

]
. RNNs

requires the vector representation of the input original data
as output. Moreover, the correlation between battery data is
saved to the vector space due to the powerful logic analy-
sis advantage of neural networks. When the network inputs
are temperature, voltage and current, the network output is

Y3×m =

 t1, t2, . . . , ti, . . . , tmv1, v2, . . . , vi, . . . , vm
c1, c2, . . . , ci, . . . , cm

. Here, the range of i is

1 < i ≤ m, ti represents the ith data vector of temperature,
vi represents the ith data vector of voltage, and ci represents
the ith data vector of current. The process provides the refined
vector representation of battery data for later SOC prediction,
which ensures correctness and stability of SOC prediction.

Construction steps of the vector representation model are
as following:

Step 1: Build the RNNs-based vector representation model
in Matlab 2016a.

Step 2: Train the vector representation model by adjusting
model parameters to realize the refined vector representation.

3) TRAINING VECTOR SPACE MODEL
The experiment platform is installed on high performance
server and operated in Matlab environment. At first, envi-
ronment and GCC are updated. Next, Java running envi-
ronment is built. Meanwhile, mathematical processing tools:
Numpyscipytheano and Pylearn2, are installed. Then, DNNs
kit: Scikit-neural network, Java test tool and some depen-
dence, is installed. Afterwards, the display environment is
initialized. Finally, the vector space model is trained.

Training steps of the model are as follows:
Step 1: Input 80% of the collected data into RNNs model.
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FIGURE 2. The training process of RNNs.

Step 2: Training the RNNs-based vector space model in
Java environment.

Step 3: Observe training errors, and adjust model parame-
ters.

Step 4: Terminate training within the error range.
Step 5: Input the remaining 20% data to validate model

performance.
Step 6: If the error is not less than 0.02, keep the vector

space dimension unchanged, adjust model parameters, and
repeat Step 1-Step 5 to continue training.

FIGURE 2 shows the training process of the RNNs-based
vector representation model where X-axis represents the
number of iterations, Y-axis represents the number of train-
ing, and Z-axis represents the training error (namely mean
absolute error). Mean absolute error is to calculate the abso-
lute value of the error between the output value and the true
value. The training process shows that the initial learning
rate is large resulting in faster convergence of the model.
When the training error changes more gently and the error is
less than 0.02, the training process is completed. It will take
1536 seconds for one-time training process.

LIBs data is mapped by RNNs, and one-dimensional data
of voltage and temperature is mapped to the high-dimensional

space of 40 dimensions. LIBs data is represented refinedly,
and the non-linear evolution of LIBs data is described in
detail. FIGURE 3 shows that voltage and temperature of
the first batch are respectively intercepted in the 3d vector
space. Note that colors in the FIGURE 3, such as green, blue
and cyan, represent the state information of LIBs under a
SOC value. As shown in FIGURE 3, coordinates of voltage
and temperature data are distributed in −1.0 ∼ 1.0. In the
same SOC, voltage and temperature map to different posi-
tions in the vector space; in the different SOC, the distribution
of voltage and temperature in vector space is fused with
each other; in the same coordinate space region, there are
voltage and temperature under different SOC. This indicates
that SOC of LIBs is affected by state information such as
temperature and voltage.

B. THE MULTI-CHANNEL EXTENDED CONVOLUTIONAL
NEURAL NETWORKS-BASED FEATURE EXTRACTION
MODEL
In this section, the operation steps of the CNNs-based feature
extraction model are shown below. Firstly, a feature extrac-
tion model is constructed. Secondly, benefiting from the per-
formance characteristic of CNNs, the training operation of
the model is performed to accurately predict LIBs SOC.

1) THE INTRODUCTION OF CONVOLUTIONAL NEURAL
NETWORKS
CNNs are a kind of feed-forward neural networks, which are
equipped with convolution layers interleaved with pooling
layers. Convolution layers include a number of computation
units, and every unit takes small region vectors as input.
The nonlinear activation function be applied to every vector
component. This study makes use of Rectified Linear Unit
(namely, ReLU). CNNs with ReLU train several times faster
than its equivalents with sigmoid.

Pooling layers take convolution layers’ output as input.
In order to make top layer obtain more abstract and more
global feature vectors, pooling layers substantially reduce

FIGURE 3. The first batch of LIBs data space mapping.
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FIGURE 4. Multi-channel extended CNNs-based feature extraction model.

dimensions of input by incorporating neighboring region vec-
tors. Pooling layers are composed of a number of pooling
units, and every pooling unit has a connection with small
region vectors. Top layer makes use of these feature vectors
to make prediction [29], [30], and then the output layer of
networks exports results.

Different from most neural networks, CNNs are marked
by local connection [31], weight sharing [32] and pooling
[33]. Firstly, local connection decreases parameters of hidden
layers and simplifies the complexity of the model. Secondly,
weight sharing is another striking feature of CNNs, which
makes the model obtain translation invariance and enhances
the generalization ability. In addition, weight sharing also
reduces parameters of hidden layers. Thirdly, pooling is
another important concept of CNNs. The goal of the pool-
ing operation is to condense a certain dimension of fea-
ture vectors into a feature vector. Existing pooling methods
are divided into average pooling method and max pooling
method, which respectively calculates mean value and maxi-
mum value of each region feature vector [34], [35].

2) THE FEATURE EXTRACTION MODEL
The feature extraction model based on CNNs is composed
of three parts: training module, validation module and test
module, as shown in Alg. 1. In order to fully extract feature
information, the model transmits the well-trained vectors by
multiple channels, which realizes the accurate prediction of
LIBs SOC, as shown in FIGURE 4.
In the prediction model, the convolution operation uses

single-step convolution, and the pooling operation uses aver-
age pooling. The implementation details of the prediction
model are shown in FIGURE 4. The inner representation of
the convolutional operation is given by

temp = I ⊗ KA (3)

Algorithm 1 The Training Algorithm Based on CNNs
Input:

training set TS, validation set VS and test set ES
Output:

mean absolute errorMAE
1. set a threshold h̄;
2. input training set TS;
3. while mean absolute errorMAE ≥ h̄ do
4. input training set TS;
5. for convolution layers in CNNs do
6. filters perform convolution operations

on the input matrix;
7. obtain feature in different dimensions;
8. end for
9. for pooling layers in CNNs do
10. perform max pooling operations;
11. generate n× 1 dimension of feature vectors

Un×1;
12. end for
13. for fully connection layer in CNNs do
14. Un×1 is used to make prediction;
15. end for
16. return training resultsMAE ,

as shown in FIGURE 5;
17. end while
18. input validation set VS, and then adjust parameters,

as shown in FIGURE 6;
19. input test set ES, and then test the prediction

capacity of the model, as shown in FIGURE 8.

where temp represents the convolutional operation, I is input
of the convolutional layer, and KA is the convolution kernel
of the convolutional layer. C represents output of the convo-
lutional layer, with C defined as follows

C = f (η × temp+ b1) (4)

where f is an activation function (eg., tanh, sigmoid or
ReLU), η is the learning rate, and b1 is a bias vector. Pool
represents the pooling operation, and Pool is computed as
follows

Pool = Pooling(C) (5)

Having computed Pool, then S can be computed as follows

S = f (η × Pool + b2) (6)

where S is output of the pooling layer, and b2 is a bias vector.
SOC is the output label, the dimension of which is n × 1.

SOCn×1 is defined as follows

SOCn×1 = f (η ×WS + b3) (7)

where W is a weight vector, S is output of the pooling layer,
and b3 is a bias vector.
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3) TRAINING FEATURE EXTRACTION MODEL
The rich vector representation learned during RNNs training
facilitates further training of CNNs. In the training process
of CNNs, firstly, the residual is calculated layer by layer, and
then the layer error is inversely derived. Next, combined with
the learning rate, the weight and the bias of each layer are
updated by the derivative of the activation function. Finally,
model training is realized.

The specific training process is as follows: firstly, the resid-
ual of the output layer is calculated as follows

δn×1 = tarSOCn×1 − SOCn×1 (8)

where, δn×1 is the residual of the output layer, tarSOCn×1 is
the target output (namely, the true measured SOC value), and
SOCn×1 is the actual output of the prediction model. Let the
jth submatrix of the lth layer be

δlj =

(
a b
c d

)
(9)

where, a, b, c and d are elements inside the matrix. Set the
size of the pooling area to 2× 2, upsample the above matrix,
and expand each row and column of the matrix by 1 where
the matrix is filled with 0. Obtain the following new matrix

0 0 0 0
0 a b 0
0 c d 0
0 0 0 0

 (10)

In this paper, average pooling is adopted to average the
pooled area (namely 2× 2), and the new matrix is expressed
as 

a
/
4 a

/
4 b

/
4 b

/
4

a
/
4 a

/
4 b

/
4 b

/
4

c
/
4 c

/
4 d

/
4 d

/
4

c
/
4 c

/
4 d

/
4 d

/
4

 (11)

These above formulas (9) (10) (11) are upsample pro-
cesses. After the pooling operation, the formula for calculat-
ing the feedback error of the network is described by

J l =
((
ωl+1

)T
J l+1

)
⊗ σ

(
Input l

)
(12)

where J is the error, ω is a weight vector, σ is an activation
function, and Input l is the lth input. Hence, the network can
obtain the first reverse input of convolution. Then, in the
backpropagation process, the formula solving the convolu-
tional error is expressed as

J l−1 = J l × rot180(ωl)⊗ σ ′(Input l−1) (13)

where, rot180 represents rotating the shared matrix ω

180 degrees, σ ′ represents the derivative of the activation
function, and Input l−1 represents the (l − 1)th input. Finally,
the gradient descent algorithm is used to continuously update
parameters to obtain the optimal solution of the error func-
tion. Gradients of the shared weight ω and the bias term b are
calculated by the error function, and then the weight and the

bias term are updated. In this way, the error function J (ω, b)
updates parameters as follows

ω′k = ωk − η
∂J (ω, b)
∂ωk

(14)

b′l = bl − η
∂J (ω, b)
∂bl

(15)

where ωk is a weight of the kth neuron, ω′k is the updated
weight of the kth neuron, η is the learning rate,

∂J(ω,b)
∂ωk

means
that the error function takes the partial derivative of the
weight. Similarly, bl is a bias of the lth neuron, b′l is the
updated bias of the lth neuron, ∂J(ω,b)

∂bl
means that the error

function takes the partial derivative of the bias. Equation (14)
and Equation (15) represent the process of one-time updated
parameters, which require loop iterations until the objective
function converges on the optimal value.

In this section, TV indicates that the model takes the raw
data of the temperature and the voltage (namely, X2×1 =[
T
V

]
) as input, TVC indicates that the model takes the

raw data of the temperature, the voltage and the current

(namely, X3×1 =

 TV
C

) as input, TV − Vec indicates that

the model uses vectors of temperature and voltage (namely,

Y2×m =
[
t1, t2, . . . , ti, . . . , tm
v1, v2, . . . , vi, . . . , vm

]
) as input, and TVC − Vec

indicates that the model uses vectors of temperature, voltage

and current (namely, Y3×m =

 t1, t2, . . . , ti, . . . , tmv1, v2, . . . , vi, . . . , vm
c1, c2, . . . , ci, . . . , cm

) as
input. According to different types of input data, the multi-
channel extended CNN-based model completed 900 itera-
tions, and the same training process was repeated 50 times.
The three-dimensional spatial relation diagram of error rate,
the number of iterations and training times (namely, epoches)
was obtained, as shown in FIGURE 5.

FIGURE 5 (a) and FIGURE 5 (c) are relation diagrams
among the error rate, the number of iterations and training
times in the training process. Compared with FIGURE 5 (c),
FIGURE 5 (a) has smaller error fluctuation, in which the
error is lower in most cases. Clearly, increasing current
parameters does not improve model performance when raw
data is used as input. Moreover, neither of them is strictly
monotonous, and the error is relatively high which is all
above 0.6. Thus, the model which is trained directly with the
raw data cannot meet the effective SOC prediction. Besides,
FIGURE 5 (b) and FIGURE 5 (d) are relation diagrams of
the error rate, the number of iterations and training times
in the training process. In order to obtain feature vectors
(namely, TV − Vec and TVC − Vec), the raw battery data is
trained by RNNs. Then, the learned vectors are integrated into
the CNN-based prediction model. From FIGURE 5 (b) and
FIGURE 5 (d), the error is less than 0.02. In the case of adding
a current parameter, the model needs to be iterated 500 times
approximately to converge the optimal value, as shown
in FIGURE 5 (d). Why does the excess current parameter
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FIGURE 5. The training process of SOC prediction model based on CNNs.

TABLE 1. Comparison experiment.

increase the number of iterations? The reason is that adding
the current parameter increases computational complexity,
which in turn increases computational resource consumption.
In addition, the consumption of computing resources affects
the logical reasoning ability of DNNs model, which in turn
affects the prediction performance of the model to some
extent.

In TABLE 1, we note that in the vector space
(namely TV − Vec or TVC − Vec), mean absolute error is
0.019 or 0.037; nevertheless, in the non-vector space (namely
TV or TVC), mean absolute error is 0.109 or 0.139. Based on
these observations, we find that the prediction ability in the
vector space is obviously stronger than that in the non-vector
space. Mean absolute error in the non-vector space is greater
than 0.13 (such as 0.139), which is difficult to meet prediction
requirements of LIBs SOC. Comparedwith non-vector space,
simulation results demonstrate that vector space improves
12% in prediction performance. In addition, training time of
TVC is more than that of TV . Analogously, training time of
TVC − Vec is more than that of TV − Vec. The reason is

that the additional current data adds computational burden of
the computer, wastes computational resources and leads to
impaired model performance ultimately. Moreover, training
time in the vector space is obviously greater than that in the
non-vector space. The reason is that the data dimension in
vector space is larger, which means the data representation is
more complex, so the model needs more time to train. It is
worth mentioning that in both vector space and non-vector
space, the number of iterations is 900.

The whole data set can be randomly divided into training
set (70%), validation set (10%) and testing set(20%). Training
set is used to update weights and biases; validation set is able
to adjust hyperparameters; testing set is employed to evalu-
ate model performance. In terms of hyper-parameter setting,
batch-size and hidden layers of CNNs are optimized manu-
ally through 50-fold cross-validation. Keeping other parame-
ters unchanged, CNNs runs 50 epoches setting batch-size to
256, 512, 1024, 2048, 4096 and 8192. The average loss func-
tion values of each batch-size during 50 epoches are regarded
as the evaluating indicators. FIGURE 6 (a) shows that the
loss function value of batch-size=2048 is lower than that of
other batch-size; hence batch-size of CNNs to be optimized
is set as 2048. Then, keeping batch-size=2048 and remaining
parameters unchanged, the setting of hidden layer number is
given as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. FIGURE 6 (b) indicates the
best setting of hidden layers is 7 under the condition of batch-
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FIGURE 6. Loss rate (%) of CNNs during 50-fold cross-validation.

size=2048. We find that the depth of hidden layers improves
model performance. The reason is that the more hidden layers
is, the more feature information the model extracts. However,
as the number of hidden layers increases, the model becomes
more and more complex, which adds computational burden
of the computer, wastes computational resources and leads to
impaired model performance ultimately. Note that since the
loss function was convergent during 60 epoches, epoches are
set as 50. In addition, dropout remains to be 0.1 because there
is no overfitting phenomenon in the training process.

V. SIMULATION RESULTS
In this section, simulation is conducted to illustrate validity
of the proposed SOC prediction algorithm.

A. DATASET
Dataset collected by relevant scholars is derived from Red
Star X1 electric vehicles, which are produced by Do - Flu-
oride Chemicals Co., Ltd. The electric vehicle uses LIBs
as the power battery. Battery specification is 111V, 192Ah,
battery capacity is 21.3Kwh, energy density is greater than
120 wh/kg, and maximum mileage is 190Km. 20 cell
monomers, which are the same capacity (namely CI ), are
connected in series. The temperature and voltage of 20 cell
monomers, the total current and the true measured SOC value
(that is, twenty temperature values, twenty voltage values,
one total current value and one true measured SOC value)
are collected in one batch.

In order to collect LIBs SOC in the dataset, firstly, the stan-
dard charging method is adopted to charge the lithium
battery with constant current, so that SOC of the lithium bat-
tery is 100%. Then, the lithium battery is discharged, and the
current is taken once every 5 seconds with a high-precision
current meter. Finally, SOC is calculated by Ah counting
method. The formula for calculating SOC by Ah counting
method can be expressed as

SOCk+1 = SOCk −

∫ k+5
k idt

CI
(16)

=
Crk
CI
−

∫ k+5
k idt

CI
(17)

=
Crk −

∫ k+5
k idt

CI
(18)

=
Crk+1
CI

(19)

where SOCk+1 represents the SOC value at time k+1, which
is also the SOC value to be calculated; SOCk represents the
SOC value at time k; CI represents the capacity of the battery
when it is discharged at a constant current I ; i represents
current;

∫ k+5
k idt is the integral of current i over time t (Note

that owing to small fluctuations in the current, it is collected
by a high-precision current meter every 5 seconds.); Crk
denotes the remaining capacity of the battery at time k; Crk+1
denotes the remaining capacity of the battery at time k + 1.
The true measured SOC value in the dataset is compared

with the predictive SOC value of the proposedmodel to verify
the predictive ability of the proposed model. Note that when
cell monomers with the same capacity are connected in series,
the voltage increases, but the capacity remains the same
(namely CI ). In addition, since the remaining capacity of the
battery (namely Cr ) can be obtained by Ah counting method,
SOC for a LIBs pack can be obtained as well. Sampling
period is 15 seconds, sampling time is 24 hours, and total
acquisition batches are 60. Thus, 24×3600÷15×42×60 =
14515200 pieces of data were collected, which is regarded as
a corpus to make simulation.

Taking the first batch of data as an example, the data
space composed of voltage, temperature, current and SOC
of 20 cell monomers is shown in FIGURE7. In FIGURE7 (a),
the temperature of LIBs varies complicated during the col-
lection period, and the temperature of each cell monomer is
different. This indicates that the working environment of the
electric vehicle is complex, and the temperature change of
LIBs is affected by the running state of the electric vehicle.
In FIGURE 7 (b), the current appears to break out in a steady
state. Due to the small number of sudden changes in thewhole
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FIGURE 7. State information data space of LIBs.

collection cycle, it could be the high current generated by
electric cars when they start. In FIGURE 7 (c), the voltage
of LIBs shows a trend of decreasing step by step during
the collection period. In addition, the voltage of each cell
monomer is inconsistent at the same time. In FIGURE 7 (d),
given the spatial relationship between current, temperature
and voltage, it can be seen that the relationship between them
is complicated. In FIGURE 7 (e), SOC decreases with the
increase of collecting time. In FIGURE 7 (f), the lower the
voltage is, the less SOC of LIBs is, but the overall is neither in
direct proportion nor a smooth surface, thus the temperature
has some influence on SOC.

B. PERFORMANCE EVALUATION
The prediction model based on CNNs is applied to LIBs
SOC prediction. From above training models, the model
with the least error is selected for SOC prediction. In FIG-
URE 8, the true value is represented by the red curve, and
the predicted output value is represented by the blue curve.
During the test process, the true value is represented by
the red ‘‘o’’, and the predicted output value is represented
by the blue ‘‘*’’. Observing the distance between the red
‘‘o’’ and the blue ‘‘*’’ during the test process, the predic-
tive performance of the model can be obtained, as shown
in FIGURE 8. FIGURE 8 shows predicted performance of
different types of input data. In FIGURE 8 (a), the raw data

of the temperature and the voltage is used for model input.
Compared with FIGURE 8 (a), FIGURE 8 (c) increases
the current input. In FIGURE 8 (b), feature vectors of the
temperature and the voltage are used for model input. Com-
pared with FIGURE 8 (b), FIGURE 8 (d) increases current
input. As previously mentioned, adding the current parameter
will waste computing resources. In addition, compared with
FIGURE 8 (a), FIGURE 8 (b) has better predictive per-
formance. Analogously, compared with FIGURE 8 (c),
FIGURE 8 (d) has better predictive performance. The reason
is that in FIGURE 8 (b) and FIGURE 8 (d), the input of the
model is feature vectors which are adequately represented
by establishing the RNNs-based vector representation model.
That is, the prediction ability in the vector space is obviously
stronger than that in the non-vector space.

TABLE 2 shows the relationship between mean absolute
error and resource allocation in the prediction process. (Note
that, in TABLE 2, the input length is represented by N and
MAE means mean absolute error.) In the case of using the
raw data as input, mean absolute error is relatively high
(e.g., 0.135), which cannot meet accuracy requirement of the
prediction model. However, under the vector space, mean
absolute error is less than 0.036. Analogously, adding cur-
rent parameters increases memory consumption and over-
head of computing resources (namely CPU), which affects
model performance. In a nutshell, using feature vectors of the
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FIGURE 8. Testing the SOC prediction model based on CNNs.

TABLE 2. Contrast test of SOC prediction model based on Recursive-NNs + CNNs.

temperature and voltage as input (namely TV − Vector) can
obtain better prediction performance where the optimal value
is 0.009. The simulation results demonstrate that, compared
with the non-vector space (namely TV and TVC), the vector
space (namely TV −Vec and TVC −Vec) improves 12.6% in
prediction performance.

C. PERFORMANCE RESULTS OF DIFFERENT ALGORITHMS
TABLE 3 shows mean absolute error of our model in com-
parison with baseline methods. The first thing to note is that
the best-performing recursive-NNs+CNNs method outper-
forms baseline methods on all dataset, which demonstrates

effectiveness of our method. After affirming effectiveness of
our model in comparison with Ah counting method [8], OCV
method [10], recurrent neural networks [12] and CNNs [36],
TABLE 3 summarizes experimental results of different algo-
rithms. (Note that in TABLE 3, t represents time, OCV
represents open-circuit voltage, Recurrent − NNs represents
recurrent neural networks, and our scheme represents recur-
sive neural networks + CNNs.) When input of DNNs-based
methods (such as recurrent neural networks and CNNs) is
the raw data (namely TV and TVC), Ah counting method
and OCV method outperform DNNs-based methods. How-
ever, compared with Ah counting method and OCV method,
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TABLE 3. Mean absolute error.

performance of DNNs-based methods is greatly improved
on vector space (namely TV − Vector and TVC − Vector).
Moreover, our scheme outperforms recurrent neural networks
and CNNs on all dataset, which demonstrates effectiveness
of our method. Simulation results demonstrate that, in terms
of mean absolute error, our proposed method improves 4.3%
compared with recurrent neural networks. By comparision
with classical methods such as Ah counting method, our
proposed method improves 11.3% in terms of mean absolute
error.

VI. CONCLUSION AND FUTURE WORK
To improve battery data representation and extract suffi-
cient feature information hidden in battery vector, a novel
DNNs-based method is proposed, which aims to improve
the prediction performance of LIBs SOC. To be more spe-
cific, a RNNs-based data representation model is designed
to obtain the appropriate vector representation of battery
data, and then a multi-channel extended CNNs-based model,
which is fed with the well-trained battery vector, is proposed.
By integrating these well-trained vectors into multi-channel
extended CNNs, it is proved that this practice can improve
battery’s SOC prediction performance obviously. Extensive
simulation over real dataset is conducted, and our method
is compared with some state-of-the-art methods. Simulation
results demonstrate that our method improves prediction
performance of 4.3% and 11.3% compared with recurrent
neural networks and Ah counting method, respectively. With
the development of Edge Computing, it is possible for our
proposed RNNs-CNNs method to work in a real-time envi-
ronment. In real-time environment, battery information is col-
lected and sent to the edge platform where high-performance
servers are deployed for our algorithm strategy, and then the
calculation results are returned to the vehicle platform. In the
implementation of the real-time environment, how to ensure
the timely upload of data and how to upload large amounts of
data withminimal resource overhead remain an open question
that we hope to pursue in our further work.
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