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ABSTRACT Model predictive control (MPC) facilitates online optimal resource scheduling in electrical
networks, thermal systems, water networks, process industry to name a few. In electrical systems, the
capability of MPC can be used not only to minimise operating costs but also to improve renewable energy
utilisation and energy storage system degradation. This work assesses the application of MPC for energy
management in an islanded microgrid with PV generation and hybrid storage system composed of battery,
supercapacitor and regenerative fuel cell. The objective is to improve the utilisation of renewable generation,
the operational efficiency of the microgrid and the reduction in rate of degradation of storage systems. The
improvements in energy scheduling, achievedwithMPC, are highlighted through comparisonwith a heuristic
based method, like Fuzzy inference. Simulated behaviour of an islanded microgrid with the MPC and fuzzy
based energy management schemes will be studied for the same. Apart from this, the study also carries out
an analysis of the computational demand resulting from the use of MPC in the energy management stage.
It is concluded that, compared to heuristic methods, MPC ensures improved performance in an islanded
microgrid.

INDEX TERMS Energy management, model predictive control, fuzzy systems, energy storage systems,
degradation reduction, islanded microgrid.

I. INTRODUCTION
Renewable energy sources (RES) are increasingly integrated
into electric grids to replace the fossil fuel based sources.
Though RES provide a clean energy alternative, they are
non-dispatchable and intermittent in nature. These character-
istics of RES have resulted in issues pertaining to stability,
voltage regulation and power quality in the grids [1], [2].
The addition of energy storage systems (ESS), in the grid,
is currently considered to overcome these issues and aid the
increased integration of RES [3], [4].

A single type of ESS cannot provide an effective solu-
tion to the different problems arising from RES integration.
The ESS have different physical attributes which are suited
for different scenarios and a hybrid combination provides
an effective solution. The hybrid ESS also enables optimal
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sizing of the different ESS [5]. In this context, hybrid ESS
combination of high power and energy density storages are
widely used in electrical systems [6]. The high energy density
ESS are capable of storing large amount of energy but have
slow response time due to physical constraints. These include
Pumped hydro storage, Fuel cells (FC)-electrolyser systems
(regenerative FC), batteries. These ESS provide dispatchable
energy reserves that allows deferral of RES power consump-
tion and facilitates energy arbitrage [4], [7]. The high power
density ESS can provide or absorb large amount of power,
albeit for a short duration due to their lower energy capac-
ity. These include supercapacitors (SC), flywheel to name a
few. These ESS have fast response capability which makes
them suited for ensuring stability and power quality (voltage,
frequency regulation) in grid [3], [8].

The RES integration has resulted in a shift from centralised
to distributed generation [9]. This has enabled the concept
of microgrids which can manage locally, the energy from
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RES and load demand by forming subsections in the larger
grid. The microgrids are capable of operating in grid con-
nected or islanded mode. The islanded mode was tradition-
ally employed during fault events in the main grid or in
isolated areas, where drawing long lines connecting to main
grid is physically and economically not viable. Traditionally,
intentional islanding was not allowed to avert any risk to
maintenance operations [10]. However, new standards like
IEEE Std 1547.4 [11] provide guidelines for intentional
islanding operation.

The microgrid control is achieved using a hierarchical
scheme, with a lower-level power and a higher-level energy
management stage [12]. The two stages are differentiated by
the functions they carry out and the time scales in which
they operate. The power management stage ensures real-time
stable operation of microgrid under disturbances (variations
in load or generation) and the power quality. This stage is
characterised by small sampling times (ms-s) and fast control
actions. The energy management stage is responsible for
managing the energy among the different units (ESS) in the
microgrid such that the operation of microgrid is optimised
based on a pre-defined criteria. The sampling times of this
stage tend to be larger (minutes - hours) and control actions
are slower, in comparison to the power management stage
[13], [14]. The functionalities and sampling times at each
level in the hierarchical control scheme is shown in Fig.1.
The inputs to each stage and flow of control action is also
highlighted in the above figure.

FIGURE 1. Control architecture for renewable energy based microgrid
employing ESS.

The focus of this work is on the energy management
stage. The decision making at the energy management level,
in microgrids, is carried out either heuristically (rule based
[15], [16], fuzzy inference methods [17]) or analytically

(non-heuristically) using optimisation based techniques
[18]–[26]. The decision making in heuristic methods are
typically based on some deterministic rules and do not require
explicit modelling of the system. As a result, the decision
making process is not computationally intensive. The ana-
lytical methods, on the other hand, rely on system models,
forecast of generation and load profiles in its decision mak-
ing. The decisionmaking in analytical methods is achieved by
solving an optimisation problem. This guarantees optimality
of the solution unlike heuristic methods, which also require
a prior in depth understanding of the system behaviour to
formulate optimal rules. As the analytical methods makes
decisions by solving an optimisation problem, the required,
ideal, system behaviour can be defined implicitly through
the cost function of the optimisation problem. In compari-
son, the heuristic methods require that the required system
behaviour need to be defined explicitly. Finally, analytical
methods allow an easy incorporation of forecast information
in the decision making process, through proper formulation
of the optimisation problem. The forecast provides more
insight into future system behaviour and enables better deci-
sion making. However, in heuristic methods incorporating
forecast information is tedious. The rules for decision making
in heuristic methods, when using forecast data, need to be
stated explicitly. In this scenario, integrating the forecast
information leads to complex rules formulation and requires
a comprehensive, prior, understanding of system behaviour.

Analytical methods can be implemented either offline
[18]–[20] or online using techniques like model predictive
control (MPC) [21]–[27]. The offline methods are usually
employed when the system under consideration is large,
distributed [18] or when complex non-linear optimisation
problems have to be solved [19], [20]. In either case, the com-
putation time can be very large which makes an online imple-
mentation infeasible. The offline nature of implementation
can result in the decisions being farther away from optimum,
as the actual system behaviour (generation, load) can deviate
from that considered during the decision making process
(forecast). In online methods, like MPC, the decisions at any
instant are made using the current system state and updated
forecast at that time. This utilisation of current system value
for decision making ensure that performance with online
methods are closer to the optimum. In smaller systems like
microgrids, due to the limited number of decision variables
online methods, like MPC, can be easily implemented.

Energy scheduling in electrical system with MPC has
been explored before. In [22], MPC was used in battery
management for smoothing the output from a wind power
plant. In [26], MPC was used for managing a regenerative
FC in a microgrid with PV and wind power to increase the
operational efficiency of FC system. In [23], the MPC was
used to improve economic benefit from energy arbitrage in
a microgrid with battery storage. The works in [21], [25]
also use MPC for energy arbitrage. In [21], a microgrid with
tri-hybrid storage was considered whereas in [25], thermal
storage was also considered. In [24], MPC was applied to an
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isolated power grid with battery storage for reducing oper-
ating costs of the grid. Finally, the work in [27] uses MPC
to improve demand response capabilities in a microgrid to
improve the PV power utilisation. Recent works pertaining
to application of MPC in electric systems, have focussed
on implementing them in large scale networks, using online
distributed optimisation techniques to reduce operational
costs [28], [29].

The previous works focussed mainly on utilising MPC
for grid connected systems, with the objective of economic
optimisation (operating cost or energy arbitrage). However,
the capability of the MPC can be extended beyond this.
Islanded microgrids present an interesting and relevant appli-
cation for MPC based energy management, considering the
increasing probability of such operation in future grids. The
management of islanded microgrid is challenging due to the
lack of an infinite energy reservoir in the form of main grid,
to handle imbalance power that cannot be catered by the
ESS and load. This requires power curtailment capability
and dispatchable generators to ensure reliable operation.
Islanded microgrids also require hybrid ESS of high energy
and power density to sustain the islanded operation. In this
context, MPC can be utilised in islanded microgrids beyond
the domain of economic optimisation. The availability of
forecast information can be used for reducing degradation in
ESS by altering their charge discharge cycle. The forecast
information can also be used for increasing the utilisation
of renewable source by reducing power curtailment while
ensuring uninterrupted operation.

Recently machine learning (ML) based approaches, like
Q-learning, have been employed for scheduling in microgrids
[30], [31]. Thesemethods utilise reinforcement learning tech-
niques [32] to train an ML system so as to facilitate optimal
battery scheduling in microgrids. The decision making with
ML system can be considered akin to heuristic methods.
Thesemethods do not solve an analytical equation for its deci-
sion making. Instead, they automatically develop an in-depth
understanding of the optimal system behaviour in the train-
ing process that aids the decision making process. However,
ML system uses only current system state for its decision
making [30], [31]. Incorporating forecast information, which
is beneficial for reducing ESS degradation and increased
utilisation of renewable sources, can lead to complex and
computationally intensive training process. In this context,
analytical methods that enable easy integration of forecast
information in its decision making can perform better when
the objective of ESS degradation minimisation and maximis-
ing RES utilisation is considered.

Considering the above mentioned reasons, the main objec-
tive of this paper will be to develop an MPC based energy
management system for an islanded microgrid. The islanded
grid will have RES generation with PV system, dispatchable
generation and hybrid ESS. The proposed MPC will man-
age the energy among the different ESS to minimise their
degradation, increase the consumption of RES power in the
microgrid and improve operational efficiency in microgrid.

In order to demonstrate the improvement with MPC schedul-
ing, the work also carries out a comparative analysis with a
fuzzy based energy scheduling scheme. The computational
demand arising from the utilisation of MPC at energy man-
agement stage will be assessed. Therefore, the contributions
of this work involve developing an MPC based energy man-
agement system that a) ensures uninterrupted operation of an
autonomous islanded microgrid with ability for RES power
curtailment b) manages energy among the hybrid ESS such
that degradation of ESS is reduced and operating efficiency
is maximised c) manages ESS and dispatchable generators
to ensure increased utilisation of renewable generation and
d) provides improved performance over multiple objectives
compared to heuristic scheduling schemes. As far as the
authors knowledge goes such an application of MPC in
islanded microgrids, to achieve the above mentioned out-
comes, have not been proposed before. A deterministic MPC,
where the future generation and load demand is known with
certainty, will be used in this work, demonstrate the above
outcomes.

The rest of the paper is organised as follows. Section II
provides an overview of the islanded microgrid under con-
sideration. Section III provides an overview of the MPC and
Fuzzy inference based energy management schemes consid-
ered in this work and their formulation. Section IV presents
the results of MPC scheduling in islanded microgrid and
its comparison with the fuzzy inference scheme. Finally the
work is concluded in Section V.

II. SYSTEM DESCRIPTION
The DC microgrid under consideration for the unit com-
mitment problem is shown in Fig.2. This is an aggregated
representation of the system. The microgrid has RES genera-
tion from PV arrays, dispatchable generators and hybrid ESS
comprising of batteries, regenerative FC and SC. Considering
the islanded operation, to ensure reliable grid functioning,
dispatchable sources in the form of fast acting generating
units is considered here. Load following reserves capable
of fast responses and very little start up time like, diesel
or gas engine generators will be considered as dispatchable
units [33].

It should be noted that in the islanded grid two ESS with
high energy density, battery and regenerative FC, are used.
This is because in islanded operation, due to the absence of
the main grid, a large storage capacity is needed to ensure
maximum utilisation of the excess PV power generated. The
battery is a system that stores energy internally (in the form
of chemical energy) and in order to store large amount of
energy, a large capacity battery should be used. This is not
economically beneficial; as the battery has very high storage
costs [34]. This means that larger the battery capacity, larger
the capital investment needed. In comparison, the FC system
stores energy externally in the form of hydrogen (in tanks).
As a result, increasing energy storage capability of FC system
is not expensive. This is confirmed by the fact that the storage
costs of an FC system, with hydrogen, is 0.005 times the
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FIGURE 2. Schematic of the proposed microgrid under consideration.

battery’s cost [34]. However, as mentioned before the
regenerative FC suffers from poor operational efficiency.
Therefore, both battery and regenerative FC is considered in
the islanded microgrid, as a trade off, considering economic
factors and operational efficiency.

A. ESS
The tri-hybrid ESS considered here comprises of both high
power and high energy density ESS. The SC is the high
power density ESS, whereas the battery and regenerative
FC form the high energy density ESS. The SC provides
a degree of inertia to the system through fast response to
sudden power imbalances, thus arresting the large deviations
in system parameters (voltage, frequency). In this context,
the SC operation can be considered analogous to the inertial
response from conventional synchronous generator. The bat-
tery and regenerative FC system follow the imbalance power
in the system (difference of renewable generation and load)
ensuring long term energy balance.

The operation of SC is mostly controlled by the low-level
controllers (power management stage), tasked with maintain-
ing the stability of the grid. The energymanagement level will
ensure that sufficient energy reserves are maintained in the
SC at any instant so that it can respond to unexpected events
in the grid. The battery and regenerative FC will be managed
by the energy management stage.

A discrete-time model of the ESS showing the evolution of
stored energy during ESS operation will be used here. This
simple ESS model using State of Charge (SOC) for battery,
SC and Level of hydrogen (LOH) for regenerative FC is given
by

xα(i+ 1) = xα(i)−
Ts
Cα
· pα(i) (1)

where x = {SOC,LOH}, α = {bat, SC,FC}, Ts is the
sampling time, pα(i) is the power set point and Cα is the
capacity of respective ESS. The above equation does not
account for the effect of the interfacing converters and the
round cycle efficiency of the ESS. The converters usually
have high efficiency (>95%). Nevertheless, ESS like the FC
have poor round cycle efficiency (∼50%) [8] which can-
not be captured effectively with (1). Under such a scenario,

hybrid models accounting for ESS efficiency can provide a
better representation of the ESS behaviour. This model is
given by

xα(i+ 1) =


xα(i)−

Ts · ηα
Cα

· pα(i) if pα ≤ 0

xα(i)−
Ts

ηα · Cα
· pα(i) if pα > 0

(2)

where ηα is a combination of the power converter and round
cycle efficiency of the ESS.

B. PV SYSTEM
The PV system is considered as the renewable energy source
in the islanded microgrid. One of the objective of the energy
management system is to ensure that there is maximum utili-
sation of the PV power possible. The widely used method in
PV systems to ensure that maximum power (for a particular
irradiation level) is generated from the PV array, is the maxi-
mum power point tracking (MPPT) strategy [35]. The MPPT
is implemented at the PV converter control, thus forming part
of the low level control system. This ensures that the PV
array is generating themaximum power (ppvm) possible at any
instant. In islanded operation, using MPPT in the PV systems
can lead to instances where the load and ESS may not be
able to meet the maximum PV power generated. This requires
that the power is curtailed to ensure reliable grid operation.
This curtailment can be implemented using the modified
MPPT strategy with constant power generation (CPG) [36]
capability. In this method, the PV array generates maximum
power in normal condition but if the power generated cannot
be met by the load or ESS the PV array output is curtailed
to a constant power value. The PV array output (ppv) in the
MPPT with CPG scheme is given by

ppv =

{
ppvm No curtailement
ppvm − pcurr Under power curtailemt

(3)

where pcurr is the amount of power to be curtailed by the PV
system. The decision on the amount of pcurr will be made by
the energy scheduling system.

In this work, the PV system and the load will be emulated
using the data measured from a test case microgrid from
Lindenberg, Germany [37]. The data is available for one
year. The value of maximum PV power (ppvm) that can be
generated by the arrays for the irradiation levels occurring in
the year is obtained from this data. A detailed discussion on
the MPPT or MPPT with CPG strategies are not provided in
this work, as they have been widely researched [35], [36] and
is beyond the scope of this work. The objective of this work
will be determining an optimal value of pcurr.

C. GRID
The grid is modelled, under all instances, as a static system
using power balance equation given by:

psc(i)+ pbat(i)+ pfc(i)+ ppvm(i)+ pgen(i)

− pload(i)− pcurr(i) = 0 (4)
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where pbat, psc, pfc are the power set points for the ESS
while pload is the load demand and pgen is the set point for
dispatchable generation unit.

A detailed modelling of dispatchable generation unit is not
done here, especially with regards to ramping rate limitation.
Instead it is considered only as a decision variable in this
problem. The reason behind the same is that the dispatchable
generating unit considered here is a fast acting system (as
mentioned before) which is brought into operation quickly
with minimum delay. The power imbalances created by the
small delay in deployment will be compensated by the SC
under the control action generated by the low level controller.

III. ENERGY MANAGEMENT SYSTEM
A. MODEL PREDICTIVE CONTROL BASED ENERGY
SCHEDULING
In this work the receding horizon MPC is considered. In the
MPC framework, at any instant k , the state of hybrid
ESS, the sampled value of generation and load demand at
that instant and their forecast for N points into the future
(k+1, k+2, . . . , k+N ) are given as inputs. This window for
which the forecast is provided is called the prediction horizon.
The predicted values are then utilised to evaluate how the sys-
tem state evolves for different set points in the horizon. The
set points that define the optimal trajectory, based on some
optimisation problem will then be generated. Considering the
size of prediction horizon, N+ 1 set points will be generated
at any sampling instant k . These set points are defined as,
u0|k ,u1|k ,u2|k . . . uN |k where ui|k = u(k+i)∀i = 0, 1, . . .N .
Among the N+ 1 set points the first one, u0|k , will be applied
to the system. This process will be repeated at every sampling
instance, thus allowing for the MPC to make decisions based
on current system state and ensure some feedback [38].

The entire process of MPC scheduling discussed above is
schematically represented by Fig.3. In the islandedmicrogrid,
considered in this work, the input to theMPCwill be sampled
state of all ESS, PV generation and load demand values at

FIGURE 3. Schematic representation of the MPC scheduling process in
islanded microgrid.

the instant k . Along with the sampled values, the forecast of
PV and load demand for the prediction window will also be
provided as input. The output from the MPC will be the set
points for the ESS converters, the dispatchable generator and
the PV power curtailment value. The u0|k comprises of all the
above mentioned outputs.

Finally, it should be noted that the application of MPC
can also be extended to multi-carrier system where, as the
name suggests, multiple carriers are used to handle energy
like electric, gas to name a few. MPC can used in the energy
management of these systems as well [39], [40]. The formula-
tion of the optimisation problem used in theMPC is discussed
next.

B. COST FUNCTION
In this work MPC is tasked with maximising operating effi-
ciency, renewable energy utilisation and minimising ESS
degradation. In this context, the multi objective cost function
for the optimisation problem considered in MPC is chosen as

J =
k+N∑
i=k

[Jbat(i)+ Jfc(i)+ Jsc(i)+ Jbal(i)] (5)

where Jbat, Jfc, Jsc are the cost terms pertaining to battery,
FC, SC while Jbal pertains to cost of using dispatchable
generation and imposing power curtailment in the microgrid.

1) BATTERY COST FUNCTION
The battery cost term Jbat is selected as

Jbat(i) = λsoc · SOCbat(i)2

+ λdbat · (SOCbat(i+ 1)− SOCbat(i))2 (6)

where λsoc, λdbat are weighting factors for each term in Jbat
and SOCbat is the SOC of battery.

The cost function for the battery does not explicitly
penalise the battery power, pbat. As there is no explicit penal-
isation of pbat the surplus power from PV system will be
readily stored in the battery for later use. This promotes an
increased utilisation of battery. In terms of operating effi-
ciency, the increased utilisation of battery presents a better
choice as the round cycle efficiency of battery is higher
than 90% [41].

Nevertheless, battery degradation rate should beminimised
as much as possible during the operation. This is achieved
with cost function in (6). The battery degradation arises from
calender and cycling ageing [42]. The former is a result of
the increased dwell times at high SOC levels in the battery.
Penalising SOCbat in (6) will limit high SOC dwell times
whenever possible and reduces calender ageing. The second
term in (6) penalises the battery cycling. Excessive
charge-discharge cycles have been found to accelerate
cycling ageing mechanism in Li-ion battery [42]. The penali-
sation in (6) can limit the ageing arising from this phenomena.
Though (6) appears to penalise the SOC of battery, indirectly
it is the pbat that is being modified to ensure minimisation
of (6). The forecast based scheduling inMPC allows for better
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reduction in battery degradation, especially calender ageing.
The utilisation of forecast allows MPC to have information
of future generation and load profile. This facilitates altering
the battery charge-discharge cycle such that the battery is not
kept in a charged state for longer duration, thereby reducing
the calender ageing.

It should be noted that explicit utilisation of the battery
degradation equation was not considered here as it is non
linear. This can result in optimisation problems that are more
complex and computationally intensive [43] to solve. In order
avoid this, the cost function is kept quadratic, as in (6), which
will result in a quadratic programming (QP) problem that can
be solved efficiently [44].

2) REGENERATIVE FUEL CELL COST FUNCTION
The fuel cell cost term Jfc is given by

Jfc(i) = λfc ·
pfc(i)
pmaxfc

2
+ λrate · (pfc(i+ 1)− pfc(i))2 (7)

where λfc, λrate are the weighting factors and pmaxfc is the
maximum power that can be delivered by FC. The regener-
ative FC is characterised by poor round cycle efficiency [41].
Therefore, in order tomaintain high operational efficiency the
utilisation of FC should be minimised as much as possible by
penalising the same, as shown in (7). Penalising the FC power
by using a high value for λfc ensures that the FC utilisation
happens only after the battery is either fully charged or dis-
charged, thereby increasing operating efficiency.

Regarding the ageing mechanism of FC, a major cause is
the degradation of the electrocatalyst layer under fuel star-
vation. The fuel starvation arises when there is a sudden
change in the power set point applied to the FC system.
As the FC system tries to increase the power output there
is higher consumption of fuel at the electrodes. In the event
of sudden increase in power output, the consumed fuel is
not replenished at the same rate by the fuel delivery system,
which has a slower response time. This leads to fuel starvation
and irreversible damage at the electrodes [45]. The second
term in (7) limits the sudden set point change thereby limiting
this degradation mechanism. The availability of forecast of
generation and load demand allows the MPC to control the
FC profile, such that the rate of change of set points are
minimised.

3) SUPERCAPACITOR COST FUNCTION
In the case of SC, the objective of the energy management
system is to ensure that sufficient reserves are maintained in
the SC at all instances. This allows the SC to meet the sudden
imbalances arising in the grid and maintain system stability.
To this extent the Jsc penalises the deviation of SOCsc from a
nominal value (SOCnom). The Jsc is chosen as

Jsc(i) = λsc(SOCsc(i)− SOCnom)2 (8)

where λsc is theweighting factor. The SOCnom is kept at 0.5 so
that there is always half the SC capacity available.

4) POWER BALANCE ENSURING COST FUNCTION
As discussed in Section II-B, the energy management stage
determines the optimal value of pcurr. The higher curtailment
of PV power leads to reduced operation of the PV array in
the MPPT mode, thus reducing the PV power utilisation.
Therefore, the objective of the MPC will be to minimise the
pcurr for increasing the PV power utilisation. The same is
applied to pgen. The higher utilisation of dispatchable gen-
erator means more load is being catered by them and lesser
utilisation of PV power. Nevertheless, these two variable are
also essential to ensure the reliable grid operation according
to (4). Minimising the value of pcurr, pgen can be achieved
using the cost function

Jbal(i) = λgen ·
pgen(i)
pmaxgen

2

+ λcurr ·
pcurr(i)
pmaxpv

2
(9)

where λcurr, λgen are the weighting factors, pmaxgen is the
maximum power rating of the generator and pmaxpv is
the maximum power rating of the PV array. In order to ensure
maximum utilisation of renewable generation the weighting
factors λcurr, λgen are chosen to be greater than that of battery
and FC cost function.

The use of forecast information in the decision making
of MPC allows better utilisation of PV power through mini-
mal curtailment and reliance on dispatchable generation. The
forecast information enables the MPC to alter ESS utilisation
such that ESS capacity will be available as much as possible
to cater the PV power. This will be demonstrated through the
results in Section IV.

C. CONSTRAINTS
The constraints address physical and electrical operating lim-
its of ESS and associated power converters. The physical
limits on the ESS are expressed through

x lα ≤ xα(i) ≤ x
u
α|α={bat,sc,FC} (10)

where x lα , x
u
α are the upper, lower bounds for ESS stor-

age capacity. The lower bound on SOC also prevents deep
discharge which can degrade the batteries. Hard constraints
introduced as in (10) can result in infeasibility of solution
in MPC. In order to ensure convergence, soft constraints are
introduced for (10). This allows for the violation of bounds
but at the cost of heavy penalisation [46]. The soft constraints
are given by

x lα − εα ≤ xα(i) ≤ x
u
α + εα|α={bat,sc,FC} (11)

where εα ∈ R3 is the slack variable that represents the extent
of violation on the original bounds (10). In order to ensure that
this violation is minimal a penalisation term has to be added
to the cost function in (5). This additional term is chosen as

Jslack = ρT · ε2α (12)

where ρ ∈ R3 represents the penalising factor for the slack
variables.
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Constraints on the power delivery capability of interfacing
power converters and dispatchable generator are introduced
through

pminα ≤ pα(i) ≤ pmaxα |α={bat,sc,fc}

0 ≤ pgen(i) ≤ pmaxgen (13)

where pminα , pmaxα are the minimum, maximum power ratings
of interfacing converters and pmaxgen is the rated power of the
generator unit. These are maintained as hard constraints,
as violation of the same can result in irreversible damage to
power electronic and generator systems.

1) MLD CONSTRAINTS
The hybrid dynamical model of (2) represents a system
behaviour that varies depending on the nature of the power
flow in ESS (charging or discharging). Such models cannot
be directly used in a conventional optimisation problem.
The hybrid dynamical model needs to be converted into a
mixed logical dynamic (MLD) model comprising of boolean
and auxiliary variables as explained in [47]. The MLD for-
mulation of the ESS model in (2) and constraint (13) is
given by

xα(i+ 1) = xα(i)+
Ts
Cα
· zα(i) · (ηα −

1
ηα

)

−
Ts · ηα
Cα

· pα(i) (14)

−pminα · δα(i) ≤ pα(i)− pminα
−pmaxα · δα(i) ≤ −pα(i)

zα(i) ≤ pmaxα · δα(i)

zα(i) ≥ pminα · δα(i)

zα(i) ≤ pα(i)+ pmaxα · (1− δα(i))

zα(i) ≥ pα(i)+ pminα · (1− δα(i))

∀x = {SOC,LOH}, α = {bat, SC, fc} (15)

where δ(i) ∈ {0, 1} such that [δ(i) = 1] ↔ [pα ≥ 0]
and zα(i) = δ(i) · pα . The δα, zα are the boolean and aux-
iliary variables respectively. The boolean variable indicates
whether the ESS is in a charging or discharging state (in
this case δα = 1 is discharging). The auxiliary variable has
been introduced to avoid the multiplicative term (δα · pα) so
as to avoid non-linear formulations. It was also necessary to
redefine (13) to complete the MLD formulation, so that the
appropriate constraint based on the charging or discharging
state, of ESS, is enforced.

The use of MLD constraints in optimisation problems with
quadratic cost results in a Mixed integer quadratic program-
ming (MIQP) problem. Solvers like Gurobi [48] use algo-
rithms like branch and bound (BB) [49], to solve these type
of problems.

Representing the manipulated inputs (
[
pα, pgen, pcurr, εα

]
)

to the microgrid as u, the optimisation problem considered in

MPC is given by

min
u

[
J (u, xα) ,

k+N−1∑
i=k

[Jbat (i)+ Jfc(i)+ Jsc(i)

+ Jbal(i)+ Jslack(i)]
]

(16)

subject to

ESS model (14) in variable xα
Grid model (4)

Constraints (11), (13), (15). (17)

Finally, it should be noted thatMPC is formulated such that
the operational efficiency is not only improved by limiting the
use of regenerative FC to periods where the battery cannot
cater imbalance power. The use of MLD models for ESS,
accounting for their efficiencies, and use of QP in optimisa-
tion problem ensures that the energy conversion processes in
microgrid are minimised. These conversions from renewable
to stored energy in ESS or between different ESS always
results in losses. As the MPC identifies the optimal trajectory
(for converter set points) in terms of operational efficiency,
the information regarding ESS efficiencies allow the MPC to
ensure that unwanted conversion of energy is minimised, thus
maximising operational efficiency.

D. FUZZY INFERENCE BASED ENERGY SCHEDULING
Fuzzy inference is a method of mapping input variables to
output decision variables using a defined procedure that is
heuristic in nature. In fuzzy inferencing the space of each
input is divided into fuzzy sets [50]. Each fuzzy set will be
associatedwith amembership functionwhich can take a value
between 0 to 1 and defines the degree of membership of an
input variable to each set. The first step of the inferencing
process is fuzzification of the inputs. This is the process of
identifying the degree of membership of each input, based
on its value, to a fuzzy set using the membership function.
The next step involves fuzzy implication where fuzzy rules
are used to map the fuzzified inputs to an output. Simple
if-then rules are considered which are defined based on the
designers prior knowledge of the system. The if part of the
rule is the antecedent which are combined through AND/
OR logical operators for the different inputs. The consequent
is the then part of the rule which defines to which fuzzy
set of the output variable the antecedent is mapped. The
implication process also defines the degree of membership
of the output variable to an output fuzzy set. The final
step is aggregation and defuzzification. At any instant, for
a given input value, multiple rules can be active resulting
in outputs with varying degree of membership to multiple
output fuzzy sets. In the aggregation process these outputs are
aggregated and using defuzzificationmethods like centroid or
bisector or middle of maximum, converted to a crisp output
value. For a detailed exposition on fuzzy systems and infer-
encing process interested readers are directed to [51], [52].
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Through proper selection of fuzzy sets and membership func-
tions, fuzzy inferencing have been proved to provide a rea-
sonable approximation of an optimal input-output mapping in
the decision making problem [53], hence the same has been
considered in this work. It should be noted that the capability
of fuzzy inference system to ensure an approximation of the
optimal input-output mapping depends extensively on prior
understanding of system behaviour and resulting rule formu-
lation from the designer. This can be difficult in complex
system like electrical networks.

The input/output mapping of the fuzzy inference based
energy management system is shown in Fig.4. The inputs for
the energy management system are the states of the ESS, and
the imbalance power, pdef = ppv − pload, in the grid. The
outputs are set points for the psc, pfc and pgen. Mamdani fuzzy
inference methodology [54] is employed here with 34 rules
mapping the inputs to the outputs.

FIGURE 4. Fuzzy inference scheme for the energy management in
autonomous microgrid operation.

The fuzzy sets for the input, output variables and the
associated membership functions are shown in Fig. 5. The
range of fuzzy sets and the membership function shapes

FIGURE 5. Fuzzy sets for the input variables and their membership
functions.

were defined using an iterative procedure to obtain the best
results. The N,Z,P define the categorizing of the associated
input variable value as negative, zero and positive by the
fuzzy sets. Similarly, NS, NM, NB define negative small,
negative medium and negative big categorization of input
value. Finally, the PS, PM, PB defines the positive small,
positive medium and positive big categorization. The under-
lying objective in defining the rules for fuzzy based energy
scheduling is to ensure maximum operational efficiency and
utilisation of renewable source. In this context, the rules were
defined such that any imbalance power in the grid will be
catered by the battery and when the SOCbat reaches its limits
the regenerative FC is utilised. The SC rules were formulated
such that any deviation from nominal SOC value (0.5) will
result in charging or discharging just like in MPC. The Fig.6
shows outputs from fuzzy system and their dependency on
relevant inputs as a surface plot. In comparison to MPC, it is
difficult to address the degradation issues with fuzzy infer-
ence. This requires incorporating future generation and load
values to calculate SOCbat and 1SOCbat . Even if this can be
achieved, incorporating them as inputs and defining explicit
rules so that battery degradation is minimised is complex.

FIGURE 6. The different fuzzy inference output surfaces showing the
correlation between (a) psc with LOHfc and SOCsc, (b) pgen with LOHfc
and SOCbat and (c) pfc with SOCbat and pdef.

In the fuzzy system it can be noticed that pbat is not
considered as one of the output variables. This has been
left as a free variable and the value was decided outside the
fuzzy system to ensure the power balance in the grid. It is
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difficult to incorporate the power balance constraint inside
the fuzzy system. The decision process for pbat is shown
in Fig.7. The decision on power curtailment and modification
of dispatchable generator set points, to ensure power balance,
is also made outside the fuzzy system as shown in Fig.7.

FIGURE 7. Flow chart of fuzzy inference base energy management for the
autonomous microgrid operation.

IV. RESULTS
The capacities of hybrid ESS, dispatchable generating unit,
the parameters and the penalisation weight values used in
the MPC are listed in Table 1. The optimisation problems
in MPC were solved using Gurobi (version 8) [48] with
YALMIP as the parser in the MATLAB environment. The
fuzzy inference scheme was realised using the Fuzzy Logic
Designer tool from Matlab (version 2018b). All the algo-
rithms were run in an Intel i7 2 core, 2.5 GHz processor and
8 GB RAMmachine. The microgrid emulated in this work is
based on the data obtained from a test case microgrid based
in Lindenberg, Germany [37]. The sampling interval for the

TABLE 1. System parameters and their values used.

data from Lindenberg was 5 min. As mentioned before, since
the deterministic MPC is considered the forecast to the MPC,
at any sampling instant, will be the actual generation and load
demand for that prediction horizon.

A. ESS SIZING
Prior to discussing the results, a short discussion is provided
explaining the rationale behind sizing of ESS. The problem
of sizing the ESS is not the main focus of this work and as
such an in depth analysis of the same will not be provided.
The work in [55] provides an interesting approach for sizing
grid connected batteries, considering annual PV generation
and load demand. The similar approach was undertaken in
this work to determine the battery capacity. If the total energy
annually generated by PV system (Epv) is higher than the
annual energy demanded by load (Eload ) then battery capac-
ity is determined based on load demand

Cbat = 0.5 · Eload (18)

whereas if annual PV power generated (Epv) is less than load
demand then

Cbat = 0.5 · Epv. (19)

This sizing criteria ensures that there is a trade off between
economic factors and battery degradation [55]. The regener-
ative FC’s hydrogen storage capacity was chosen such that
it can cater to at least one week operation. This ensures
energy sufficiency for a week’s islanded operation. Typically
intentional islanded operation is enforced for a short duration
ranging from days to weeks, hence one week’s energy suffi-
ciency is considered for islanded operation.

B. RESULTS AND ANALYSIS OF MPC BASED ENERGY
MANAGEMENT
The selection of weights, used in the optimisation problem
of MPC, was done intuitively such that the utilisation of PV
power is maximised. In this context, it was always ensured
that λgen, λcurr was kept higher than the penalising weights of
ESS. Another important criteria in the weight selection was to
keep λsoc low. A high value for the same will force the battery
to keep its SOC at a low value throughout islanded operation.
This leads to under utilisation of battery and subsequent over
utilisation of regenerative FC, resulting in lower operational
efficiency.

The Fig.8 and Fig. 9 show one week scheduling results for
the islanded microgrid with MPC and Fuzzy based energy
management schemes respectively. TheMPC is operatedwith
a prediction horizon of 24 hours, considering daily periodicity
of generation and load profiles. The results correspond to
the second week of April. The obvious advantage of MPC,
over the fuzzy scheduler, stems from the fact that the MPC
utilises forecast of generation, load profile in its decision
making. The effect of the same can be observed by comparing
the ESS behaviour with the two scheduling techniques.

This is highlighted with Fig.10, which illustrates typical
daily battery power and SOC profile with MPC and Fuzzy
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FIGURE 8. Scheduling results with MPC in microgrid (a) Imbalance power
to be managed by the ESS and generating unit, (b) SOC evolution of the
ESS, (c) Power profile of ESS, generating unit and power curtailment.

FIGURE 9. Scheduling results with fuzzy scheduler in microgrid for the
same imbalance power profile as in Fig.8 (a) SOC evolution of the ESS,
(b) Power profile of ESS, generating unit and power curtailment.

FIGURE 10. Typical daily battery power and SOC profile comparison with
MPC and fuzzy based scheduler along with PV power profile for the
considered day.

schemes. The profile in Fig.10 is that of the first day shown
in Fig.8 and Fig. 9. The major difference between the two
schemes is in temporal behaviour of the battery charging

TABLE 2. Curtailed and generated energy with different scheduling
methods.

profile. As discussed before, the fuzzy scheduler rules are
defined to ensure high operational efficiency. As there is no
information regarding the predicted generation or load, this
results in battery being charged earlier in the day whenever
surplus power is available, to ensure most of the energy is
handled by the battery. This is highlighted in Fig.10. The
charging of the regenerative FC will happen after the full
charge of the battery, as evident in Fig.9. The early charging
leads to battery being kept in fully charged state for a longer
time as also shown in Fig.10. This increased dwell time at
high SOC is detrimental to battery as it leads to calender
ageing.

In comparison, the battery charging with MPC is shifted
to the period of high PV generation rather than early in the
day. The availability of generation and load forecast allow the
MPC to make its decision not only considering operational
efficiency but also battery degradation. The shifting of battery
charging to peak generation period ensures that the battery
is fully charged later in the day, as seen in Fig.10. As a
result, MPC facilitates a reduction in dwell time at high SOC
levels and calender ageing. Another important aspect is that,
since the forecast is available the MPC knows in advance
the load demand for the day and the battery will be charged
considering the same. This ensures that later in the day,
when the battery caters the load demand the stored charge
gets completely utilised leaving the battery with no residual
charge at the end of the day. This again reduces the dwell time
at charged level of the battery. This is also shown in Fig.10.

The lower dwell times at high SOC levels achieved with
MPC is demonstrated effectively with the bar graph of Fig.11.
The amount of time the battery spends in highly charged
state (>0.8) is significantly higher in the case of Fuzzy based

FIGURE 11. Comparison of the dwell times at different SOC levels in the
battery for MPC and Fuzzy based scheme.
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scheduling. This is a general issue with all heuristics based
scheduling schemes, as they make the decision based on cur-
rent sampled values unlike forecast based analytical methods
like MPC. The dwell times at high SOC level with fuzzy
scheme can accelerate the calender ageing of the battery.

In the case of regenerative FC, MPC scheduling ensures a
very smooth set point (pfc) variation unlike the Fuzzy scheme
as shown in Fig.8 and Fig. 9. The degradation in the regen-
erative FC system is mainly caused by fuel starvation due to
sudden changes in the FC set points. Preventing these sudden
set point changes can be easily achieved with MPC scheme
through cost function formulation as in (7). Incorporating
the same in the Fuzzy scheduler makes the decision making
process complicated as the control system designer will have
to state explicitly what the optimal set point change should be
in the FC. As a result, incorporating this constraint on the FC
set point change is difficult in fuzzy scheduling. However,
the issue of sudden set point variation can be effectively
addressed in the low-level controllers using rate limiting
techniques which can protect the FC by providing a gradual
set point variation.

C. IMPACT OF PREDICTION HORIZON
The performance of MPC based scheduling is influenced by
the choice of the prediction (control) horizon, which also
affects the computational resources required. The increased
need for computational resources is one of the major draw-
backs with MPC over fuzzy system.

1) COMPUTATIONAL COMPLEXITY ANALYSIS
As larger prediction horizons are considered the number
of variables for which the optimisation problem is to be
solved increases. This results in an increase in computa-
tional time needed. Besides, the nature of the optimisation
problem also affect the computational complexity. In this
work the optimisation problem is of MIQP type, as MLD
formulations were used for incorporating the hybrid ESS
models. However, it has been well established that MIQPs are
NP-complete [56]. They are usually solved with algorithms
like Branch and Bound techniques [49], the computational
complexity of which in the worst case scenario is the size
of the entire search space [57]. In the problem considered
here with binary decision variables this isO(23·N ). However,
solvers like Gurobi employs a significantly efficient imple-
mentation of Branch and Bound algorithm which reduces the
computation time complexity significantly. Despite this, as
the length of the prediction horizon increases the algorithm
tend to show a rapid increase in computation times. This
is highlighted in Fig.12 where average computation times
for the MPC is compared for a MIQP and QP optimisation
problem, for varying lengths of prediction horizon. The QP
problem was realised without considering the hybrid model
of the ESS by using (1). Though the QP problem cannot
capture the hybrid behaviour of ESS, this comparison allows
to highlight the exponential increase in computational time

FIGURE 12. Bar graph showing average computation times for MIQP and
QP problem in MPC at constant sampling time, Ts, for various control
horizon lengths. The worst case computation time in the MIQP for
different horizon lengths is also shown.

encountered with MIQP. The QP problems are solved in
polynomial time [44].

The rapid increase in computational time with MPC
(having MIQP) as the prediction horizon increases, highlight
the scalability issues. In a small system, as considered here,
this does not pose a major problem, as the average and the
worst case computation times for solving MIQP (for all hori-
zon lengths) is still less than the sampling interval of 5 min.
However, in larger systems where more ESS are needed to
be represented with hybrid models, the computation time
with MIQP in MPC can reach very high values exceeding
the sampling period. This can make the implementation of
online schedulingwithMPC, using hybridmodel, impractical
in such cases.

In comparison, the heuristic fuzzy inference based system
requires an average computation time of 1 ms for its decision
making.

2) ANALYSIS OF SCHEDULING PERFORMANCE WITH
PREDICTION HORIZON
As discussed above, the larger computation times with
MPC, as length of prediction horizon increases, can make
them impractical for online implementation. In this problem,
as mentioned earlier, the 24 hr prediction horizon was con-
sidered due to the daily periodicity of generation and load
profiles. This ensures that at any instant, the MPC makes it
decision considering entire load demand and generation for
the day. However, if scalability is an issue in larger systems
it will be beneficial to analyse the system performance when
MPC is utilising shorter prediction horizons.

The Fig. 13 and Fig. 14 shows the performance of theMPC
for shorter lengths of prediction horizon (3,6 and12 hours),
in comparison to 24 hour length discussed before. The
performance is assessed based on the battery behaviour,
PV power curtailment and utilisation of the dispatchable
generator unit for the same one week period discussed before.
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FIGURE 13. Comparison of dwell times at various SOC levels for different
lengths of prediction horizon with MPC.

FIGURE 14. Comparison of PV power curtailment and energy from
dispatchable generating units for different lengths of prediction horizon
with MPC.

As the prediction horizon is shortened the MPC will have
to make the scheduling decisions without having the full
information of the generation profile. This can lead to early
battery charging and increased dwell times at high SOC
levels, as in Fuzzy scheduling. This is ascertained through
the results demonstrated in Fig.13, where the battery dwell
time at various SOC levels are compared when using MPC
with different prediction horizon lengths. In the case of 3 hour
prediction horizon the dwell time of the battery at high SOC
levels (>0.8) is comparable to the fuzzy scheme as shown
in Fig.11.

In the case of 6 and 12 hour prediction horizon the MPC
has more information regarding the generation profile. This
allows the shifting of battery charging to peak generation
period and lowering dwell times at high SOC level, as shown
in Fig.13. It should be noted that with the 24 hour prediction
horizon the battery is kept at a highly charged state (0.9)
for more time than in the case of 6 and 12 hours. This is
because, when the prediction horizon is reduced the entire
information of load demand is not available to MPC. As a

result, the battery is charged without accounting for total
load demand. In some cases this can lead to battery not
storing sufficient charge for the meeting entire load demand.
In the 24 hour prediction window this is not the case and
the battery will store higher charge to cater the total load
demand, leading to increased dwell time at higher SOC levels.
This is also clear from Fig.14, where the 6 and 12 hour
prediction window cases has to rely more on the dispatchable
generating unit to cater the load demand in comparison to the
24 hour case.

In terms of PV power curtailment and utilisation of dis-
patchable generator, the performance with shorter prediction
horizons were similar to that of the 24 hour case. In all the
cases (3, 6, 12 hours) the PV curtailment withMPCwas lesser
than that of the fuzzy scheduler system.

This concludes that in shorter prediction horizons of 6 and
12 hours, the MPC performance is similar to the 24 hour
case without undergoing significant deterioration in system
performance, while also reducing computational complexity.
In comparison to the fuzzy scheme, the MPC with shorter
horizon still ensures an improved performance. As a result,
if computational complexity associated with larger systems
is a concern, MPC can be employed with shorter prediction
horizons.

V. CONCLUSION
An MPC based energy scheduling system was developed
for an autonomous islanded microgrid with PV, dispatchable
generator and hybrid ESS. TheMPC based energy scheduling
exhibited improved performance over a fuzzy based heuristic
scheme due to its ability to make decisions accounting for the
future generation and load demand. The improvements with
MPC are summarised as

• Significant reduction in dwell time at high SOC levels
of battery (>0.8) by shifting battery charging to peak
generation period.

• Smoother set-point variation in regenerative FC using
MPC.

• Almost 50% and 80% reduction in PV power curtail-
ment and dispatchable generator use with MPC. This
highlights increased utilisation of PV power.

In terms of computational requirement, MPC was more
demanding in comparison to the fuzzy scheme. Nevertheless
for the islanded microgrid considered in this work, the worst
case computational time encountered with the 24 hour pre-
diction window was significantly lower than the 5 minute
sampling interval used.

Finally, as future work the research should be extended to
asses the performance of MPC when there is uncertainty in
forecast. An important step in this direction will be to develop
uncertainty models, that better describe the real world sce-
nario, which can be used in simulation studies. Stochastic
MPC techniques should also be considered in future
research as means of optimal decision making under forecast
uncertainty.
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