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ABSTRACT Spacecraft that rely on self-localization based on optical terrain images require suitable
landmark information along their flight paths. When navigating within the vicinity of the moon, a lunar
crater is an intuitive choice. However, in highland areas or regions having low solar altitudes, craters are
less reliable because of heavy shadowing, which results in infrequent and unpredictable crater detections.
This paper, therefore, presents a method for suggesting navigation landmarks that are usable, even with
unfavorable illumination and rough terrain, and it provides a procedure for applying this method to a
lunar flight plan. To determine a good landmark, a convolutional neural network (CNN)-based object
detector is trained to distinguish likely landmark candidates under varying lighting geometries and to predict
landmark detection probabilities along flight paths attributable to various dates. Dates having more favorable
detection probabilities can be determined in advance, providing a useful tool for mission planning. Numerical
experiments show that the proposed landmark detector generates usable navigation information at sun
elevations of less than 1.8° in highland areas.

INDEX TERMS Convolutional neural network, deep learning, lunar landmark, lunar spacecraft, optical
image-based navigation, template matching, terrain-referenced absolute navigation, vision-based navigation.

I. INTRODUCTION
A landmark is a perceptually distinctive geographical feature
of interest at a particular location and date [1]. In terms
of navigation, a landmark can be defined as a recognizable
natural or artificial feature. For space flight, an observed topo-
graphical feature on an object’s surface during navigation is
often the means of landmark localization far outside the range
of the earth’s Global Navigation Satellite System (GNSS).
Historically, all past lunar landers (i.e., Luna, Ranger, Sur-
veyor, Apollo 11, 12, 14, 15, 16, and 17 (at 23°N, 23°S,
17°S, 4°N, 15°S, and 31°N, respectively), and Chang’e
3 and 4 (at 44°N, 45°S, respectively) arrived at low lati-
tudes of less than approximately 45° [2]. Most landed around
large flat plains (e.g., maria and basins). Such environ-
ments at low-latitude areas provide a wide range of visibility
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and solar-altitude angles. Easy visibility allows a probe to
obtain its own absolute position directly from the earth’s
ground-tracking station or from additional tracking space-
craft, such as the Queqiao satellite in a Lissajous orbit around
earth-moon Lagrange point 2 [3]. Additionally, the range of
choices of solar elevation angle can be used to ensure the
best illumination conditions for maximizing position esti-
mation performance via optical camera landmark recogni-
tion. Intuitively, impact craters on the moon are identifiable
natural landmarks. Thus, a variety of studies have focused
on how to accurately detect abundantly distributed craters
via template imaging for self-localization purposes. Some
of these advancements resulted in segmentation-based crater
detection algorithms [4], region pairing method [5], and
Hough Transform-based method [6] to achieve geometrical
matching by comparing detected craters with an onboard
map [7]-[10]. However, crater-based methods have critical
limitations, owing to the assumption that well-shaped craters
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will be present in the imagery and that a minimum number of
craters will be obtained under good illumination conditions.

Recently, regions of interest on the moon have shifted
toward the shadowy highlands around the poles. In particular,
there has been a growing interest in creating sustainable
human habitats on the moon. For example, NASA is prepar-
ing to send the first female astronaut to the lunar south pole
in 2024 via the Artemis program [11] to help establish of
sustainable human presence on the moon. The program incor-
porates a construction plan for the first lunar space station,
the Gateway [12], which will orbit the moon. Furthermore,
regions of permanent shadow created by rough terrain and
low solar altitude around the poles, where cold traps with
water ice are present, have been located and are considered
to be suitable places for a lunar base with human habi-
tation [13]-[16]. However, such areas can adversely affect
onboard self-localization functions that require visual land-
marks. Unfortunately, there have been no relevant studies or
practical applications for these purposes.

For a Mars landing, Mourikis er al. conducted a study
to adapt a space-proven algorithm of image-based velocity
estimation [17] to an experimental application of position
estimation [18] for all types of terrain, regardless of the
type of landmark or illumination condition. This was based
on template matching (TM), which measures the similarity
between a template image and the same sized area on the map.
The goal of the TM method is to find landmarks distributed
on the surface in template images expressed as unit-image
fragments for comparison. When starting the TM process,
configuration work for the template is required to determine
its size, shape, and the number candidate landmark areas.
In [18], the sizes and total numbers of small templates were
initially set 50 - 100 and 15 x 15 pixels for searching a given
map. If the number of unnecessary target landmarks could be
reduced while maintaining performance, the computational
burden could be alleviated.

Motivated by such research, we propose a landmark selec-
tion method based on deep learning. The idea is to search for
landmark alternatives of specific sizes using a trained deep
neural network (DNN). Research into excellent DNN object
detection capabilities that can recognize individual objects in
an image having severe noise and environmental changes has
enjoyed tremendous progress [19]-[21]. Thus, the selection
of highly rated landmarks among many, according to a flight
plan, will make possible the use of optical navigation systems
under the worst of conditions. To obtain such landmarks,
a massive dataset based on real lunar-surface data is used
to train a DNN to maximize the discrimination between
local areas of the moon. Next, candidate local regions are
scored using the DNN, which demonstrates significantly
higher recognition performance than other methods. Finally,
the performance for each local area is arranged according
to the position of the sun during the year. The performance
summary provides selection recommendations for good tem-
plates within the flight path according to the flight scenario
and the movements of the moon and the sun. The validity of
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this approach is verified using the numerical results of flight
simulations with highly ranked templates.

The rest of this paper is organized as follows. Sections II
and III provide a brief overview of the related work and
background, respectively. The proposed method is described
in Section IV. In Section V we provide descriptions and
results of the performed experiments. Conclusions are finally
presented in Section VI.

Il. RELATED WORK

There have been few related studies about locating geo-
graphically distinctive landmarks prior to an extraterrestrial
flight. On earth, where position information can be readily
computed with the help of GNSS, there have been related
studies for indoor navigation. Alt et al. [22] proposed a
template selection method for indoor object tracking using a
support vector machine. However, it did not address the issue
of landmark selection, nor did it consider natural character-
istics and environmental changes. Penate—Sanchez et al. [23]
used a neural network to predict the matchability of a template
for solving a panorama-stitching problem of natural scenery.

For nearby navigation of asteroids and comets, land-
mark characterization approaches have been developed for
whole-landmark maps, such as the L map method [24],
the silhouette-carving method [25] and Maplet [26], which
have been tested and implemented with a combination
of stereophotoclinometry and stereophotogrammetry tech-
niques. In their cases, the asteroids and comets were small
such that the entire image model was reconstructed from the
earth by taking images covering the entire surface rather than
by selecting landmarks.

Johnson [27] studied landmark selection to recommend
efficient areas having low rates of incorrect matching before
a flight. The core of the algorithm was the spin-image gen-
eration method of representing landmarks. However, it was
based on 3D data from a highly accurate laser rangefinder
rather than an optical camera. Shilane and Funkhouser [28]
explored a selection method of the most important regions of
an object’s surface based on the harmonic shape descriptor.

The commonalities of the aforementioned methods intu-
itively suggest the existence of a metric or a method of
maximizing distinctions among image regions. Nevertheless,
it is difficult to apply such things to the lunar highlands at
extremely low elevations. This study orders the relatively
distinguishable landmarks that appear in this template.

Ill. CHARACTERISTICS OF LUNAR SURFACE

Images captured by optical cameras are directly affected by
natural factors, such as the roughness state of the physical
surface of the moon, the ephemeris of the sun, etc. Unlike the
earth’s soil, the moon, which has a surface of fine dust [29]
(i.e., lunar regolith) can affect measured images. Noticeably
different from the earth, the topography in the highlands
of the moon is rough and steep with large differences of
elevation [30]. Statistical analysis of the roughness of the
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lunar surface of the moon was performed in [31], resulting
in synthesized Lunar Orbiter Laser Altimeter (LOLA) data.

The median slope of the highlands covering most of the
moon accounts for 7.5°, and the maria covering less than
20% of the surface is in a smooth region having a median
slope of 2.0°. This means that more than 80% of the entire
surface is rough highland terrains. Moreover, the slope of
the southern pole area in the highlands is characterized by
a sharp terrain of up to 7.6°. Thus, the steep slopes create
an irregularly shadow-casting terrains that cause complex
factors for landmark recognition.

The area containing the most maria at the near-side of the
moon tends to have relatively large and smooth plains with a
high crater density. This area widely covers the nearside of the
moon and provides geological benefits for the TM method,
which uses craters as landmarks. L-1 and L-2 in Fig. 1 are
images taken by cameras mounted on the Chang’e 3 and 4
landers, respectively. They were moving toward their landing
targets when the pictures were taken. The craters in both
images indicate that appropriate shadowing around the rim
caused by the angle of incidence of light at approximately 45°
aided crater recognition. On the other hand, it can be seen that
it was not easy to distinguish between small image areas in a
monotonously flat plain having few craters. For this reason,
past studies concentrated on well-located and well-lit craters
under appropriate lighting and distribution conditions.

Latitude Date (UTC)
44°N 2013-12-14 HI13
45°S  2019-01-03 H02
81°S  2018-04-09 HO1
81°S  2018-07-26 H23
80°S ~ South Pole ( A)

FIGURE 1. Real and rendered images of lunar maria and highlands
(L-1 [32] and L-2 [33]) from landing camera in Chang'3 and 4 landers,
respectively. H-1 [Product ID: M1277876331R] [34] and H-2 [Product ID:
M1287285876L] [34] from LROC NAC camera. H-3 [35].

For the highland areas near the poles, the altitude of the
sun is too low to enable the extraction of navigational infor-
mation from a dark image, because the angle of the lunar
obliquity to the ecliptic plane is less than 1.543°. This small
angle results in increasing difficulties in designating explicit
landmarks. H-1 and H-2 show that the image texture in the
same region can be significantly different according to the
azimuth angle of the sun. Additionally, the situation cyclically
produces large shadows of hundreds of kilometers, as shown
in H-3, rendered using LOLA data from aboard the Lunar
Reconnaissance Orbiter (LRO).
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In summary, the polar regions of the moon have the worst
conditions for determining or screening locations and sizes of
natural landmarks via template imaging.

The basic assumption underlying this study is that the natu-
ral characteristics of each region can show unique differences,
similar to human fingerprints, when arbitrarily dividing the
area of the lunar surface without artificially planned roads
and milestones. The local surface might be unique from place
to place, because there have been no weathering processes,
no crustal movements, no active volcanos, no water erosion,
and no anthropomorphic alterations to the surface. Infrequent
meteorites and lunar probes make small but insignificant
changes, however. Furthermore, when the geometric position
relationship between the moon and the sun changes, the land-
marks in the template image reflect cyclical shadow changes.

The features of undesirable landmark areas on the moon
are described below:

(a) Landmarks in large monotonous areas: uniform sur-
faces, such as flatlands, lead to difficult discrimination.

(b) Landmarks large dark or white areas: the lack of infor-
mation about landmark features and low contrasts lead
to difficult discrimination for variances of noise and
illumination.

(c) Landmarks in similar landforms: it is difficult to dis-
criminate when parts of the natural terrain are similarly
continuous.

IV. PROBLEM FORMULATION

In this paper, it is assumed that the results of evaluating
performance of a landmark in a template image depends
primarily on the inherent geographical characteristics of the
region within the field of view of the camera, the position and
attitude of the spacecraft, and the illumination environment of
the lunar surface at a specific time. Therefore, any candidate
area can be placed at any position on the map, because the
position of the best landmark is not known in advance.

A. CONSTRUCTION OF CANDIDATE LANDMARK

To find mutually distinguishable areas within image
templates, it is necessary to describe the geometrical rep-
resentation of those regions. A candidate for a regional
object (CRO) is defined as an image object (i.e., a block of
pixels). Such a block is likely to contain landmark data that
can be compared using the TM method. Coordinate systems,
as shown in Fig. 2, are introduced to describe the geometrical
relationship between the CRO, the moon, the sun, and a
lunar probe having a mounted camera: the moon-centered
moon-fixed frame {F}, the surface local frame {N}, the lan-
der’s body frame {B}, the camera frame {C} and the
image-centered frame {I}. The selenographic coordinate on
the global moon for the regional object (CRO), as shown in
the left of Fig, 2, is used for preparing experimental image
data that refer to specific latitudes and longitudes. Unlike the
earth, the moon’s prime meridian lies in the mean direction
of the central axis between the moon’s and the earth’s centers
(i.e., the mean earth/polar axis lunar referencing system [36].
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FIGURE 3. Experimental layout and metric of CROs.

CROs can be represented in the frame {I}, as shown
in Fig. 3, and can be located within the i image. In this paper,
the CRO is a landmark in a lunar surface image, as shown
in (1).

(x,t) €D,
VCROy € image; € X,
k€{1,~-~,M},i€{1,-~-,N}, (1)
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where D is a collection of observed imagery datasets consist-
ing of training images x and its ground truth t. The images
denotes the i image. M is the total number of CROs in an
image. NV is the total number of CROs in an image. CROy
is the k" potential region of landmark, where k is the index
number of the CRO corresponding to each absolute position
having a specified region size in an area of the moon. ¥ DCRO;
indicates the known position of CROy in the {F'} frame. If any
particular CRO turns out to be the most distinctive one, it will
be relatively easy for it to be identified in the landmark map.
Then, the ultimate position of the lunar probe, PBody Will
be obtained by (2), using the recognized position in the {C}
frame, the its alignment angles, its range to the landmark
surface, and the attitude knowledge.

FpCamera = FPCROk - éqCPCROky
Fx
FPBody = Fy = FpCamera - BpCameraa 2)
FZ Body

where gq is a quaternion from the {C} to the {F'} frame.

The left side of Fig. 3 shows an example of CRO con-
figuration expressed in the image frame {/}, assuming that
the CROs will rank as landmarks via each distinguishing
score against other scores. The shape of CRO is defined as a
circular form to simply express the property of each without
overlapping another. In particular, CRO7¢ occupies the largest
area, including those of the other CROs. It is added for
comparison with others. It is assumed that the CRO would be
the most recognizable with its rich texture and large surface.
The 69 small CROs are evenly spaced without crossing each
other.

B. PERFORMANCE METRIC OF CRO RECOGNITION

The final recognition performance of a CRO should be
expressed as a value that can be distinguished from other
CROs for quantitative comparison. For evaluating CRO
recognition performance, classification performance, which
reflects the detection rate, and regression performance, which
indicates the position accuracy of the detected ones, are used.
The right side of Fig. 3 shows that the CRO metric is defined
by its radius and size for the performance evaluation. For a
regression measure, the L norm is used in (3) for expressing
the error of the localized position.

o' €[0,D.,1
Aplcrok = |Plcrok _plcrak|’
A(Slcrok = |chrok - dér0k|’ 3

where Pimk and pémk denote the positions of the true and
a detected CROy, respectively, and D, and d’_ are the

croy, crog
radii of the true and a detected CROy, respectively. o, is
the tolerant size error of a detected CROk, and Apg,, and

Asimk are the position and size errors of a detected CROy,
respectively. For a classification measure, an fi-score (or an

f-measure) is used to evaluate the rate of correct prediction
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FIGURE 4. CNN-based CRO discriminator (LunarNet).

of CRO’s index, k. This performance determines whether the
region of the CRO is matched with a landmark, which is more
critical than the regression performance that quantifies how
close it is. The fi-score [37] considers both the recall, indi-
cating detection performance, and the precision, indicating
the correctness of the true-positive decision. As shown in (6),
the f1-score represents the harmonic average of the precision
and recall in (4) and (6), respectively.

2 tp;

precision, = Z / 4)

Z 1tp]+Z] lfp]
ZA_/ tpj

Z 1tPj+Z lfn]

—1
recall=! + precision !
fi-score, = ( v HP - ) , 6)

2
where tp;, fp;, and fn; denote the true positive, true negative,
and false negative for each CRO, respectively.

&)

recall, =

C. DNN-BASED CRO DISCRIMINATOR

To identify CROs that are likely to be good landmarks,
we develop an object detector (i.e., LunarNet) based on a
convolutional neural network (CNN).

Fig. 4 shows LunarNet’s architecture, whose backbone
is based on a widely used detector (i.e., YOLO9000 [38]),
which uses a modified GoogleNet architecture. The Lunar-
Net can be trained using images and known CRO positions via
supervised learning. This consequently reduces losses, so that
results will be closer to the highly discriminated state. The
general loss function can be expressed as in (7).

L©O) = e(fox"), 1), N

where L is a loss function for evaluating the LunarNet given
th sub-datasets of the training data, x”, and the ground-truth
data, t"*. For a sub-dataset, fp is the predicted output of the
LunarNet with hyperparamter 6 consisting of weights and
biases.
The loss function of YOLO9000, which embodies £, con-
sists of five sub-items for the rectangular shape surround-
ing the object. Considering that the CRO’s form is circular,
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the first two items are modified to be concise using (8)
and (9).

52
Z ]Ifrircle Z (pm(CROg |circle) — py,(CROy |Cil"Cl€))2, ®)
m=0 keZ

SZ
1 2
e S TR,

m=0 n=0

Acoord Z Z ]Icmle(\/ dérom crom (9)

m=0 n=0

where S is the size of grid of an input 1mage B is the total
number of circles to be predicted i 1n a cell, I, % is the value
of 1 if a circle i 1s detected at the m' cell Otherwise, it takes
a value of 0. ]I is the value of 1 if a n” circle appears in a
m™ cell. Otherw1se, it takes a value of 0. p,,(CROy |circle) is
the conditional CRO probability for CROy, in m™ cell. Acoord
is the weight for the loss in the CRO errors.

D. LANDMARK SELECTION METHOD

Fig. 5 illustrates the process from the training setup to the
landmark alternative selection among CROy. A visual map
is defined as the summarized performance of the CRO to
be used for exploring the complex relationships between
the various aspects of the CRO. To simplify the problem of
landmark selection within the highlands on the moon, it is
assumed that the main drivers impacting the performance are
the azimuth and elevation angles of the sun and the pose of
the camera.

1) CRO CONFIGURATION & LABELING (CCL) PROCESS

This step is a process for the deployment and image prepa-
ration of CROs leading to ultimately massive image data as
inputs to LunarNet learning. The size and shape of each CRO,
the placement of all CROs, and the ephemerides of the sun
and a camera are configured as the main factors affecting the
final selection of the CRO as a landmark. Initially, the CRO is
set to a fixed shape and position within the image frame, and
the image itself can be prepared as either real and/or synthe-
sized images having sampling intervals within the dynamic
ranges of the camera and the sun. The position of the sun
depends on its natural ephemeris, corresponding to the range
of flight time. The position and attitude of the camera depend
on a flight trajectory of the lunar probe upon which the cam-
era is mounted. Therefore, image datasets should be prepared
to cover the range of the sun and camera movement as much
as possible. A large amount of image data can be divided into
three datasets: training, validation, and test. These comprise
a combination of the image and its truth information. In other
words, all images are tagged with true CRO information,
including size, position, and index number.

2) CRO DISCRIMINATOR LEARNING (CDL) PROCESS
This step is the main process of the entire procedure. The
process consists of training the LunarNet to discriminate a

VOLUME 8, 2020



H. Lee et al.: DNN-Based Landmark Selection Method for Optical Navigation on Lunar Highlands

IEEE Access

C) : Key Drivers of Performances

CRO Configuration & Labeling (CCL) Process

L ST
|
(——==— ———» Shape

|
Narrow the data sampling interval }HH:

405N
911011712 \\ ;
3041516171819 20 21N

[ 2230405 2627282930 |
[[[Configure > 3132 3334 3536 a7.38. 30 “ﬂ Validation Set -
1 140414243 4445 46 4748 |

=m»{ Camera Pose

|
v

Training Set |————— 1

1
; |
| \ 49505152 535455 5657 / A
| . 385960 6162 63 64 7 : |
g! 6566676869 | !
E=1) S~ - 70 |
= e S —— | |
£l i
2 v v
g1 CRO Discriminator Learning (CDL) Process
51
& —
| Validation Set
|
| N
| €, heading for "}
: LunarNet Network Discrimination Loss:
| {x"} (CRO Discrimination)
Mini- . N .
: Training Set Batches—p Backpropagation Epoch Time
: Hyperparameters,d.
|
| t
e __NO

CRO Performance Mapping (CPM) Process

CP : fi-score
RP : position error
[ Start H Test Set }_, LunarNet Network Evaluated Results CRO Performance
i (Trained CRO Discriminator) (CP and RP) Map (CPM) per CRO
_ Flight Rank Mapsin |
! Date [, Descending Order |q— — —
| 1 -
| ! - © CRO \CRO
| M

| F g
| NO CROKs CP and RP ! : s TP 2. CROY cro §( CrO
[ > Thresholds, ! R 02 59 16 «——
! 0,0, : /Q ‘q‘ —
' crof cro

YES ! —
: | 28\ 33
| |
' |

Rescheduling Select the CROk

| as landmark
: alternative i3
| |
! 30 ¢
|
|
I 1\19 Total Number of CROk v

< Threshold, R, 51 54 5174

5859 6263

FIGURE 5. Procedure of landmark selection.

CRO from others via the supervised learning method. Lunar-
Net learns the difference between CROs and can make correct
predictions in a training set. The validation set is used to
tune hyperparameters. At first, the loss value computed using
the loss function of (8) and (9) is large. However, LunarNet
adjusts the hyperparameter values by using a finite training
set and dozens of learning iterations until its inference capa-
bility of distinguishing between CROs is maximized. Thus,
LunarNet is forced to apply minimum epochs of learning iter-
ations such that all CROs can be sufficiently categorized, and
their positions can be predicted after satisfying the minimum
performance for the validation set. However, if the LunarNet
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diverges or if its loss value is not met, the configurations of
CRO and data-sampling intervals are reconfigured to demand
an additionally larger dataset in the level of details using the
CCL process in a loop.

3) CRO PERFORMANCE MAPPING (CPM) PROCESS

This step is the final process of preparing the performance
map and determining favorable landmark alternatives. Via
the trained LunarNet, as the result of the CDL process,
the final score per each CRO is evaluated using the test dataset
independently of the training and validation sets. However,
its purpose is not to tune the hyperparameters, but it is to
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TABLE 1. Parameters for landing trajectory.

Simulation parameters Value

‘Wet mass (kg) 550

Initial / final altitude (km) 15.24/0.0
Initial / final longitude (deg)  74.958°S /89.98°E

Final vertical velocity (m/s) -1.6

Isp (sec) / max. thrust (N) 296 /1,220
157 T ; ; 4
q ,if\
— T (@)
—i 10f \“’\(b) 1
g \8\((:)
£ AN (d)
= b
< 5f \
ﬂk\(e)
b
0 . - R
0 100 200 30 400 500
0 Down range [km]

FIGURE 6. Flight trajectory and image acquisition.

measure the final performances of classification and regres-
sion, as described in (4) and (6). At the end of testing, both
performances of each CRO are summarized and visualized in
the CPM. Then, the CPM can be utilized for the configuration
of target landmarks during the TM design phase. Finally,
each CRO can be sorted by rank at a specified flight date,
and the required CROs can be selected among the highly
ranked list. However, if there are not enough CROs to become
alternatives to landmarks, repetitive operations are performed
after changing the flight time.

V. NUMERICAL SIMULATION

A. TEST CONFIGURATION

This section defines a practical example of the problem
wherein a lunar lander operates via a navigation camera. The
exemplary scenario is set such that a lander descends over
the highland areas on the moon. The flight direction is polar,
so that the lowest altitude of the sun is seen from the lunar
surface makes the worst environment for landmark-based
navigation. The flight trajectory during the descent phase is
computed to minimize the fuel consumption while taking into
consideration the lander’s six degrees-of-freedom dynam-
ics equations. The mass property, the thruster’s efficiency,
and the start and end conditions of the flight are described
in Table 1.

The flight trajectory is depicted as the relationship between
the altitude and the range with regard to the landing site,
which presents a parabolic shape, as shown in 6. An exper-
imental image acquisition plan is initially set, considering
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the cumulative error rate of the system. In this flight track,
the areas to be observed are denoted as A, B, C, D, and E,
passing through flight points a, b, ¢, d, and e, respectively,
at an altitude of 3 km or more. In the CCL process of Fig. 5,
a total of 70 CROs are placed within the camera’s field of
view. This arrangement applies equally to the five regions.

A large set of image data for each CRO are required for
LunarNet learning. A digital elevation model derived from
LRO’s LOLA instrument data [39] is used to render the mas-
sive images. The parameters for the image production for the
experiment are summarized in Table 2. The solar conditions
are set in a range of the azimuth and elevation angles that
assume the worst case. The azimuth and elevation angles are
divided into 15 and 20 intervals, respectively. The numbers
are determined at the stop condition of the CCL and CDL
process loop shown in Fig. 5. All images applied to training,
validation, and testing are assigned at a ratio of 10:3:160. The
test set consists of eight sets of 92,160 images per CRO. For
each test set, the position of the CRO viewed by the center
line in the camera’s field of view is built with Gaussian noise
by setting the mean position and variance.

TABLE 2. Parameters for image production.

Simulation parameters Value
4 m resolution of DEM¥
Hapke model’s 5 parameters
{0.3625, 0.875, 0.012, 0.006, 6}
A, B, C,D and E areas
- latitudes (deg) {85.39, 86.71, 87.81, 88.66, 89.25}
Camera altitudes (km) {12.419, 10.515, 8.234, 5.877, 3.753}
Camera FOV(°) / Aspect ratio 80/1
CRO diameter: 2D{,.,, (pix) 22.6274
Camera resolution (pix 2): 416 x 416
[0° 360°] with 15 intervals
[0° 360°] with 15 intervals
[0.330° 1.898°] with 20 intervals
11,520 images

Base terrain data
Reflectance model
-w, BO, h, L, scale

Image measurement target

Camera yaw ¢ (deg):
Sun azimuth v (deg):
Sun elevation 0 (deg):
Training set, {zf""}
Validation set, {zv®!d}
j-th Test set, {ztest} 92,160 images
Translational blur FPe ise ~ NG (1j, o‘?),j €[18]
Range of mean value pj € [—17.32% 17.32%)] - Pl mera
Rotational noise Fuwi oo ~N(7.5°,02)

TDEM source : NASA LRO LOLA Data file
(LDEM_80S_40M.IMG [39])

3,456 images

B. LunarNet LEARNING FOR DISCRIMINATION

The well-trained LunarNet yields a smaller loss in the next
epoch (or iteration) from every back-propagation task. Ulti-
mately, the LunarNet stabilizes at the minimum loss value,
and the CROs in a given training set are clearly distinguished
via the CDL process. The graphs in Fig. 7 show the variation
in the loss values of the learning time for the five regions.
The criteria for stopping LunarNet learning adopt 0.1 as the
limit of the loss values reliably converged in the 15-epoch
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FIGURE 7. Training states of LunarNet in CDL process and a sample of
training image for five areas and one comparison area (Cf. 87.36°S 0.80°E
at an altitude of 100.0 km with the same conditions of camera).

time of sufficient learning for the area Cf. with rich texture
in the upper left of the figure. All values of validation loss
are successfully stabilized at a target value of 0.1 or less.
Thus, it is judged that the hyperparameter space of LunarNet
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is successfully searched such that its distinction from CROs is
as high as possible. The solid line represents the training loss
before the back-propagation task of the mini-batch, and the
dotted line represents the interpolation curve of the validation
loss values, calculated at each epoch.

While traveling from 85.39° to the polar region, images
from the five regions show shadows from extremely low sun
altitudes, including monotonous and rough shapes. In partic-
ular, the loss curves for A and B areas show that the vali-
dation losses vary exceptionally during the learning process.
A visual analysis of the images from each region show that
the effects of such fluctuations are caused by environmental
impacts in the area. The level of fluctuations during the
learning process is related to the geographical characteristics
that suddenly darken the entire region or make the surface
monotonous. In other words, some CROs placed in the image
may have strong similarities with other CROs, making a
distinction difficult.

Figure 8 shows the performance results with respect to
the position of the sun, particularly at a detailed interval in
region A. As shown in the graph on the left side, the effect
of the sun’s azimuth on two performances result in a unique
feature of region A. When the sun’s azimuth is between 130°
and 270°, many areas of region A are covered by shadows,
indicating poor performance. The black dots represent the
top-five solar positions in the average performance of all
CROs. In contrast, the increase in the sun’s altitude leads
to a monotonous increase in performance. It can be seen
that the position and identification performance of the CRO
changes by approximately 0.78% when the angle changes by
up to 1.568°.
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FIGURE 8. Recognition performances for area A with respect to the Sun’s
position.

C. CRO PERFORMANCE MAP

Each CRO in the test set was detected or/and identified using
LunarNet. The test results can be expressed using a 3D matrix
by mapping with respect to the sun’s azimuth and elevation
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angles. Ultimately, the matrix can be visualized as a CPM to
make it easier to characterize the regional features for image
recognition performance.

Figure 9 shows the CPM map for CRO7p in area A.
The CRO has the largest group of pixels among the oth-
ers. Therefore, it is conceivable that it will be recognized
with the best performance under the same configurations,
such as the camera’s field of view and resolution of other
CROs. The thick pink line in the figure represents the sun’s
ephemeris over the performance map in 2020, which can help
determine the time window for planning a flight initiation.
The two performance distributions show a similar pattern
for the position of the sun. Overall, it can be seen that the
performances are more affected by the azimuth than by the
altitude of the sun. Criteria for determining a valid area for
CRO selection among the large areas of the CPM are required.
For example, the minimum selection criterion for fi-score as
the classification performance is set to more than 85% and
the minimum criterion for the position error as the regression
performance is set to less than one-half the size of the CRO as
described in p; and py, respectively in Table 3. It can be seen
that the yellow area on the f-score side and the blue area on
the position-error side can provide a wide range of selections
under the selection constraints. Additionally, to determine the
superiority of the two criteria, the classification performance
is given higher priority as a more important factor than the
regression performance to minimize false detections. Even
if the regression performance is relatively high, such that
the position of the image coordinate is well predicted, it is
useless if the classification performance is too low to detect
a sufficient number of circles or to identify the correct index

85

Sun Elevation [deg]

70

65

)
=]
S

Sun Elevation [deg]
Position Error (m) Ad [1 0 RMSE ]

500

50 100 150 200 250 300 350
Sun Azimuth [deg]

FIGURE 9. CRO performance map (CPM)s for CRO in area A. Time
window.
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TABLE 3. Parameters for CDL and CPM processes.

Parameters Process Value

Min. epoch number, 7 CDL 15

Validation loss threshold, €. CDL 0.1

Selection priority CPM  Classification >Regression
Min. f;-score threshold, p1 CPM > 85%

Min. position error threshold, po  CPM < O.QD};T%
Landing initiation date, t; CPM  2020-03-09 14:50:00 [UTC]
Required min. landmarks CPM 5 among 69 CROs

TUTC: Coordinated Universal Time

number. The weak identification of CRO becomes less robust
to subtle variances of the sun. The larger the size of the
available area, the greater the acceptability of changes in the
position of the sun over time. Thus, the availability of CROs
to changes in flight time increases. Therefore, the CROs
that can be successfully matched with a circular area in an
onboard map during flight is able to be determined by simply
inspecting the performance at a flight time on the pink line in
its CPM map.

As a result, CRO availability in the area A with relatively
high variability in the value of loss during learning is con-
firmed among the five regions, and the unique characteristics
of CROs in the rest of the regions can be identified via each
CPM. If the flight time is specified, the process of selecting
CROs via CPMs can be easily performed visually. For exam-
ple, when 2020-03-09 14:50:00 [UTC] is confirmed as the
landing initiation time, the position of the sun corresponding
to this time can be fixed and displayed with a red triangle on
the line of the CPM. Fig. 10 shows an example of the CPM
in each region based on the type of performance with the
marked date. Specifically, the classification and regression
performances of CRO34 observed in area A are shown to have
an excellent evenness over a wide azimuth range at that time.
However, the classification performance of CRO13 is shown
to be poor within a wide range. This map shows the CROs
that are suitable for use within a year. Apart from the flight
time passing through the blue (fi-score) and yellow (position
error) areas in A, all times can become a flight time window
when using CRO34. In particular, CRO1; in region B shows a
poor performance throughout the year and is highly affected
by the Sun’s altitude. In other words, a good CRO for use as
a template should not only satisfy a performance appropriate
for the flight date of concern, but also cover a wide area over
time to achieve the appropriate performance. Then, according
to certain criteria, some CROs can be selected or rejected,
as indicated by “Accept” and “Reject,” shown in the figure.
After a flight plan changes, the required CROs should be
selected again within the available range after sorting CPMs
repeatedly in descending order.

D. FLIGHT SIMULATION USING TOP-5 LANDMARKS
We verify the effectiveness of the proposed LunarNet
learning and landmark selection algorithm by comparing
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FIGURE 10. Example of selected CROs as landmark alternatives using classification (a), (b) and
regression (c), (d) performances in CPM maps for each CRO region at a specified time.

TABLE 4. CRO list in descending order of performance given selection
conditions: thresholds (o &p,), flight time (2020-03-09 14:50:00 [UTC]),
and classification of higher priority in Table 3.

Area CRO index in top-5 CRO index in bottom-5 Cf.
A 341 512253634425 2lg6 1067 1168 1269 0570 7034
B 591 505 653 584 605 5666 4867 6468 5769 4770 7053
C 071352 163 064 505 3066 5667 5768 2069 2170 7058
D 071592 633 614 625 1266 1167 1368 2269 0570 7065
E 351052263 164 145 4066 4867 3168 3069 6870 7009
tThe blue subscript indicates the selected order as a template.

performances of the top-five landmarks with the bottom-five
during the descent flight. Table 4 shows the CROs enumer-
ated in descending order for all areas at a specific time.
It also shows the results of indexed top-five and bottom-five
CROs by their CPMs. Given the low priority of the regression
performance, the performance’s threshold is only used for
providing the criteria to avoid CROs that produce only the
worst position error, and the classification performance is
used to provide the acceptance criteria of CROs to sequen-
tially select from the performance list. Unexpectedly, CRO7y,
ranked 34, in terms of classification performance, did not
achieve the best results for any performance. Such results
were the same in other areas except for area E. This is because
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a small part of the large CRO easily disappeared from the
camera’s field of view and underwent relatively large area
changes, compared with the other CROs.

Figure 11 shows successfully specified landmarks in the
top-five CROs. The top-five results for the areas A and C
show that the landmark placement patterns are located mainly
on sides of hills or mountains. The most important landmark
alternatives are found in the rough highland having irregular
shaped craters in area E. Moreover, in case of areas B and
D, the landmarks in the dark images re successfully selected,
even in mostly shadowed environments.

Figure 12 illustrates snapshots of areas B and C to visual-
ize recognition performances on flight simulation using the
top- and bottom-five CROs, respectively. Area B has dark
shadows, and area C has the extreme condition of ridges
and high mountains. A closer look at the detection of the
landmarks in the dark image shows that some of the slightly
illuminated peaks correspond to the locations shown in the
figure. Nevertheless, it is confirmed that the top-five CROs
are well detected in both places, whereas the bottom-five are
located in the complete shadow regions, making it difficult to
detect.

Figure 13 shows performance assessments using the five
selected landmarks for the five areas during the landing. Each
graph (a, b, ¢, d, and e) in the figure indicates the averaged
position errors and the total number of correct identifications
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CRO configuration

$86.6732°H:10585 m

SB8.6404°H5043m - Swaseruarem

AreaD

AreaE

FIGURE 11. Ranked top-5 CRO position for five areas. Adjustments of
contrast and brightness levels for showing image clearly.

for the five best and worst CROs, respectively. For exam-
ple, one of the top-five CROs in graph (a) is detected and
recognized correctly from the 304-km point at the beginning
of the pass over area A, whereas the bottom-five CROs are
shown to have an interval of nearly 10 km, which was not
detected at all. This is an expected result, owing to the high
priority of classification performance, and a sharp difference
in performance is confirmed. For comparison, CRO7¢ has
difficulty maintaining its fully original shape in the camera’s
field of view, as described above, and it can be seen that the
undetected interval extending to the 8-km section appears.
With regard to the position error, there is an interval in
which the mean position error of the top-five is rather higher
than that of the bottom-five, such as with area A, given
the priority order of performance criteria. Furthermore, it is
confirmed via the mean difference of position error, £x)-(b),
in Table 5 between the top- and bottom-five is not large like
areas B and E. It can be seen that area A, compared with other
regions, is difficult to infer with regards to location because
of the unique characteristics from the terrain itself, where the
monotonous plane is widespread. In case of areas B and E,
each &().») shows a small difference between the top- and
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(a-1) Top-5 CROs (a-2) Top-5 CROs

Area B
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FIGURE 12. Detected landmarks using top-5 (a) and bottom-5 CROs (b),
respectively for areas B and C.

TABLE 5. Main performance difference between the top-5 and bottom-5.

Observed areas
A B C D E

Detected P53 15457 16290 13.332 13.820 5516
interval  bottom-5 5510 10214 4747 9.889 4.536
(km) CRO7g  7.625 4684 6.117 5059 3.049

Giopbot 0477 0344 0.621 0399 0.156

Mean  (@top5 3953 2747 1873 164 97.37
position (D) bottom-5  300.4 2692 2425 1468 102.6
CRO7o 2604 1736 2118 1114 88.71

Ea)-(b) 4553 0312 -3.995 1.744 -0.831
Eirop-borl 18 ratio of difference between top-5 and bottom-5

ltop5—bottom3| ¢ - __(a)_(b)
TFOVarea =~ S0 TTFOVareq

error(m)

to instaneous FOV :

bottom-five. However, the value of area E moves close to
CRO79 without much variability, indicating that each local
region in the entire area performs well. This result means that
the E region is suitable for the small regions where the CRO
is located and has unique characteristics. The important point
is the fact that its valid interval is too narrow when using the
bottom-five to obtain required samples of CROs, given that
the speed of the lander is approximately 1.5 km/s.

As aresult, area C is the most beneficial area from the pro-
posed landmark selection and can be applied for an approxi-
mately 13-km interval with low position error while reducing
unnecessary matching time if only the top CROs, such as
the top-five, are selected. Looking at the images of each area
again in Fig. 11, it is easy to discern that the shadow regions
in region C are relatively well distributed, less monotonous,
and have fewer similar or continuous shapes. The relatively
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FIGURE 13. Classification (no. of ture positives) and regression (position error) performances based on top-5 and bottom-5 according to
classification of high priority and CRO;, passing over areas A (a), B (b), C (c) and E (d), respectively.

darker areas of B and D have small values of &) ) and large
values of &jiop-botl. Therefore, the top-five choices are likely
to be very useful.

VI. CONCLUSION

In this paper, we proposed a landmark selection method that
applies a DNN (LunarNet) to characterize unique landmarks
on the moon’s surface. The key part of the proposed method-
ology is the LunarNet learning, which is used for constructing
a visualized performance map for candidate landmarks (i.e.,
CROs). Ultimately, the map broadens the various options of
known landmark alternatives under variable flight conditions.
With a margin and/or availability of a flight planning based
on the map, landmark alternatives were successfully extracted
from the worst dark highlands near the south pole. Numerical
experiments were presented to demonstrate the applicability
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and validity of the landmark selection method by compar-
ing the relative recognition performances of the top- and
bottom-five CROs.
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