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ABSTRACT Hybrid active power filter (HAPF) has been widely used to suppress harmonics in the electric
power system. However, selecting HAPF parameters accurately remains a primary challenge faced by
researchers. To optimize HAPF parameters and reduce the harmonic pollution, this paper proposes an
improved teaching-learning-based optimization algorithm, namelyHTLBO. InHTLBO, a self-study strategy
based on Lévy-Flight is developed to avoid the population falling into local optima. Furthermore, in the
teaching phase, all learners are divided into three hierarchies according to their learning ability, and learners
at different hierarchies learn from different teachers respectively. While in the learning phase, each learner
learns not only from a better individual but also from a worse individual. The above hierarchical teaching
strategy and improved learning strategy effectively balance the exploration tendency and exploitation
tendency of the algorithm. In addition, a competitive mechanism based on dynamic clustering is proposed
to ensure the vitality of the entire population. The performance of HTLBO is verified by identifying the
parameters of two classical HAPF topologies. Experimental results present that compared with the other
nine well-established meta-heuristics algorithms, HTLBO achieves outstanding performance, especially in
terms of accuracy and reliability.

INDEX TERMS Hybrid active power filter (HAPF), harmonic pollution (HP), hierarchical learning, meta-
heuristics, teaching-learning-based optimization (TLBO).

I. INTRODUCTION
The electric power system is part of the most important
foundations for the construction of modern society. How-
ever, with the rapid development of the global economy and
the improvement of living standards, the global demand for
electricity is drastically increasing. Non-linear power elec-
tronic equipment is extensively used in various industries
and produced substantial harmonic pollution (HP). The level
of harmonic distortion in the distribution network has risen
significantly, caused distortions in the voltage and current
waveforms, and brought great harm to the electric power
system. Thus, harmonic pollution has become one of the
major problems that needed to be solved urgently.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

Recently, a considerable literature has grown up around
the theme of harmonic suppression [1]–[5]. The methods of
harmonic suppression in literature could be mainly classi-
fied into two categories: active harmonic control and pas-
sive harmonic suppression. The first type of method is to
optimize the power electronic equipment which produces
harmonics and tries to produce as little or even no harmon-
ics as possible. The second type of method is to remove
harmonics by installing some filtering devices in the power
system. The former is difficult to realize because of its
high cost and difficult operation. Thus, the main measure
for harmonic suppression in the power grid is to install
filters [6].

There are three types of filters commonly used to har-
monic suppression: Passive Power Filter (PPF), Active Power
Filter (APF), and Hybrid Active Power Filter (HAPF).
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Among them, PPF has been a feasible way since its low
cost, simple structure, and easy implementation. But unfor-
tunately, the performance of PPF is vulnerable to the power
grid impedance. Besides, the PPF is easy to resonate with the
system, and the filtering effect is not as perfect as APF. On the
contrary, APF is flexible in control and fast in response, it can
overcome the shortcomings of traditional PPF, but it is still
difficult to be widely used because of its small capacity and
high cost. Therefore, how to balance the performance and
cost has long been a controversial topic in wide range fields
of filter design. Recently, researchers have shown enormous
interest in HAPF. HAPF adequately combines the advantages
of APF and PPF, it filters out the main low-order harmonics
through the passive branch, while the remaining few high-
order harmonics are processed by APF. Due to its low cost
and significant filtering effect, a growing body of literature
has recognized the importance of HAPF [7]–[9].

All three types of filters are applied to the treatment
of harmonic pollution. Furthermore, it is worth mention-
ing that meta-heuristic technology plays a vital role in the
design of the filters described above. In 2005, F. Cupertino
proposed a new technique based on Genetic Algorithm (GA)
to optimize the simulation model parameters of a par-
allel active power filter system, and the overall perfor-
mance of the system is improved greatly [10]. In 2009,
Y.-P. Chang et al. designed a large-scale passive harmonic
filter under rich harmonic current sources by using the non-
linear time-varying evolution particle swarm optimization
technique (PSO-NTVENN) [11]. In 2011, D. Rachid and
S. Slimane applied the ant colony optimization (ACO)
algorithm to research the passive filters sizing issue in
an electric network and achieved satisfactory results [12].
Besides, W. Jian et al. tried to the optimization applica-
tion of the GA in switch harmonic filter and experimental
results show that switching harmonics can be effectively sup-
pressed [13]. In 2015, a modified bat algorithm is developed
by N.-C. Yang et al. to solve PPF design problems, which
availably suppressed critical harmonics and improved power
factor [14]. In 2016, A. K. Tiwari et al. applied the ACO to the
HAPF design, and the results indicate that theHAPF designed
by the ACO algorithm is feasible [15].

However, to the best of our knowledge, there is still much
less research about the application of meta-heuristic technol-
ogy in HAPF design in contrast to PPF and APF. What’s
more, in these few studies, most of the optimal design mod-
els of HAPF are expressed by multiple objectives [6], [15].
Obviously, it increased the computational difficulty and cost.
Under these circumstances, P. P. Biswas et al. proposed a sin-
gle objective function based on the analysis of two commonly
used HAPF topologies, consisting of total voltage harmonic
distortion (VTHD) and total current harmonic distortion
(ITHD), which reduced the difficulty of HAPF design [16].
However, according to the theory of no free lunch [17],
no algorithm can solve all optimization problems. Therefore,
it is necessary to develop a new meta-heuristic algorithm for
this scheme to obtain the optimal HAPF parameters.

Teaching-Learning-Based Optimization (TLBO) is a novel
algorithm proposed by Rao et al. [18]. The algorithm has two
phases: teaching phase and learning phase, and it finds the
optimal solution by simulating the teaching process between
the teacher and students in the class. In the teaching phase,
all students follow the teacher to learn while students dis-
cuss with each other in the learning phase. Because of its
advantages of simple structure and few control parameters,
TLBO algorithm is extensively used in scientific research and
industry, such as economic dispatch [19], robot design [20],
plasma arc cutting [21], iris recognition [22], trajectory plan-
ning [23], fuzzy clustering [24], generation control [25], fault
detection [26], and shop scheduling [27].

Nevertheless, as a young algorithm, there is still much
room for improvement especially in terms of global search
capability and accuracy. Considering this situation, some
scholars have improved TLBO according to different
strategies. J. Liu et al. introduced the competition-based ini-
tialization strategy, preview process, and remedial training
strategy into the original TLBO algorithm, which improved
the convergence speed of the algorithm [28]. S. Li et al. pro-
posed a new teaching strategy and a new learning strategy to
achieve better performance in terms of accuracy and reliabil-
ity [29]. Besides, X. Qu et al. effectively enhanced the search
ability of standard TLBO by introducing an adaptive teaching
factor, a multi-meme learning strategy, and the conservation
of information incentive operators [30].

Unfortunately, as far as we know, the TLBO algorithm
and its proposed variants still fail to accurately identify
the parameters of the two HAPF topologies. In this case,
a Hierarchical Teaching-Learning-Based Optimization algo-
rithm (HTLBO) is proposed in this paper, which aims to
take advantage of meta-heuristics into the design of HAPF.
In the original TLBO algorithm, all learners only learn from
the best individual, that is, the teacher. On the one hand,
it improves the exploitation ability of the algorithm. But on
the other hand, it will cause the population vulnerable to fall
into local optimal solutions. Thus, HTLBO adopts a novel
self-study mechanism based on Lévy-Flight, this mechanism
can generate the self-learners. The self-learners do not receive
outside information and thus are not affected by the teacher.
When learners stagnate in local optima, self-learners can
guide them to escape from the local optima in time. Further-
more, according to the learning ability of different learners,
HTLBO adopts different hierarchical teaching strategies to
teach the learners. The learners at each hierarchy learn from
different teachers, which further balances the exploitation
and exploration trend. Similarly, we have also improved the
original learning strategy in the learning phase. Thus, each
learner not only learns from a better individual but also learns
from a worse individual, which aims to make full use of the
knowledge of the whole population and improve the overall
knowledge level. Besides, the whole population is divided
into the teaching-learning group and the self-study group.
The teaching-learning group is divided into three hierarchies:
good, medium, and poor. Before the iterative process, the
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hierarchy of all individuals is dynamically adjusted according
to their objective function values. This competitive mecha-
nism ensures the vitality and sustainability of the entire popu-
lation. Through the above strategies, the overall performance
of HTLBO is effectively improved.

The proposed HTLBO algorithm aims to accurately and
reliably extract the parameters of HAPF and minimize har-
monic pollution. To verify the effectiveness of the algorithm,
we compared the HTLBO with nine other well-known meta-
heuristics algorithms. Comprehensive experimental results
indicate that HTLBO shows great competitiveness in terms
of accuracy and reliability.

The main contributions of this work are described below:
1) A self-study mechanism based on Lévy-Flight is intro-

duced into the original TLBO algorithm to improve the global
search capability.

2) Both teaching and learning strategies in the original
TLBO algorithm have been improved. In the teaching phase,
a hierarchical learning mechanism is proposed to improve
teaching efficiency. Besides, each learner learns from individ-
uals with different levels in the learning phase. It efficiently
promotes the balance between global exploration and local
exploitation.

3) A new cluster strategy is proposed for dynamically
adjusting the hierarchy of all individuals according to the
objective function values, ensuring the vitality of the entire
population.

4) The effectiveness of HTLBO is extensively evaluated
on two typical HAPF topologies to accurately identify the
corresponding parameters.

5) By comparing with other well-established meta-
heuristics algorithms, the performance of the HTLBO algo-
rithm is verified. That means HTLBO can be an excellent
alternative to parameter selection in HAPF design.

The remainder of this paper is organized as follows.
In Section II, two popular HAPF topologies and their objec-
tive function are given. Section III introduces the origi-
nal TLBO and Lévy-Flight algorithms. Section IV develops
the HTLBO algorithm in detail. Section V discusses the
case studies of HAPF. Section VI discusses the comparison
and analysis results of HTLBO with the other nine algo-
rithms. Finally, the conclusion and future work are provided
in Section VII.

II. HYBRID ACTIVE POWER FILTERS MODEL
In the literature [16], two popular HAPF topologies are stud-
ied. In addition, a single objective function is formulated
to minimize harmonic pollution in a system consisting of a
non-linear source and non-linear loads. They are respectively
described as follows.

A. CIRCUIT ANALYSIS
‘APF in series with shunt passive filter’ (series topology
structure) and ‘combined series APF and shunt passive filter’
(parallel topology structure) are two popular HAPF topolo-
gies in the electric power system, the configuration legends

FIGURE 1. APF in series with shunt passive filter (series topology
structure).

FIGURE 2. Combined series APF and shunt passive filter (parallel
topology structure).

without indicating the interface transformer are shown
in Fig. 1 and Fig. 2 respectively. In the first configuration,
harmonic currents are injected into the passive filter by the
active filter to cancel load harmonics. Besides, the fundamen-
tal source voltage is applied to the shunt passive filter, thus
reducing the voltage rating of the APF [31]. In the second
configuration, series APF supplies harmonics by offering
high impedance, and the harmonic current is forced to flow
to the passive filter, thus allowing reduce the current rating of
the APF. In both two types of HAPF structures, the passive
filter consists of a set of tuned filters or a single tuned filter
that meets the system requirements. The symbols XL and XC
denote inductance and capacitance reactance respectively,
to represent the passive filters. Moreover, the point of com-
mon coupling (PCC) is defined as the point where linear loads
are connected to the power system.

143532 VOLUME 8, 2020



Z. Cui et al.: Hierarchical TLBO Algorithm for Optimal Design of HAPF

FIGURE 3. Single-phase equivalent circuit at fundamental frequency
(H = 1).

FIGURE 4. Single-phase equivalent circuit for series topology structure at
harmonic frequencies (H > 2).

FIGURE 5. Single-phase equivalent circuit for parallel topology structure
at harmonic frequencies (H > 2).

Fig. 3 shows the single-phase equivalent circuit applica-
ble for both two HAPF configurations at fundamental fre-
quency [32]. Here the index ‘1’ of the parameter indicates
the parameter value at the fundamental frequency. As can
be seen from Fig. 4 and Fig. 5, the single-phase equivalent
circuits of the two configurations are different in harmonic
frequency. Because the position of APF and its response to the
supply harmonics are different. Generally, APF is deemed as
a controlled voltage source (VAF ) and here VAF = kISH , what
this means is that the voltage harmonic waveform injected
at its terminals is proportional to the harmonic component
of the supply current (ISH ). k is the filter gain, it provides
zero impedance at fundamental frequency, which means
that the active filter component uses as a virtual harmonic
resistor [33].

This study set out to reduce harmonic pollution by opti-
mizing the three parameters i.e. k , XL and XC when both
source and load are non-linearities. Current non-linearities
and source harmonic voltage are accounted in ISH and VSH
respectively, and those of load are accounted in ILH and VLH .

In the literature [33], the Thevenin voltage sources repre-
senting the utility supply voltage and the harmonic current
source representing the nonlinear load are expressed as:

vS (t) =
∑

H
vSH (t) (1)

iL(t) =
∑

H
iLH (t) (2)

The H -th harmonic source impedance is:

ZSH = RSH + jXSH (3)

The H -th harmonic load impedance is:

ZLH = RLH + jXLH (4)

The load admittance is:

YLH = GLH − jBLH (5)

Analysis of the equivalent circuit in Fig. 4 for the series
topology structure, yields following equations for compen-
sated utility supply current and load voltage respectively at
harmonic ‘H>2’.

ISH =
A+ jB
C + jD

(6)

VLH =
E + jF
C + jD

(7)

Analysis of the equivalent circuit in Fig. 5 for the parallel
topology structure, yields the following equations for com-
pensated utility supply current and load voltage respectively
at harmonic ‘H>2’.

ISH =
A+ jB
C + jD′

(8)

VLH =
E + jF ′

C + jD′
(9)

where,

A = VSHRLH − ILHXLH

(
HXL −

XC
H

)
(10)

B=VSH

(
XLH+HXL−

XC
H

)
+ILHRLH

(
HXL−

XC
H

)
(11)

C = RTLH + kRLH − (XLH + XSH )
(
HXL −

XC
H

)
(12)

RTLH =RSHRLH − XSHXLH (13)

D = XTLH + kXLH + (RLH + RSH )
(
HXL −

XC
H

)
(14)

XTLH =RLHXSH + RSHXLH (15)

E = VSH

[
kRLH − XLH

(
HXL −

XC
H

)]
+ ILHXTLH

(
HXL −

XC
H

)
(16)

F = VSH

[
kXLH + RLH

(
HXL −

XC
H

)]
− ILHRTLH

(
HXL −

XC
H

)
(17)
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D′=XTLH+kXLH+(k+RLH+RSH )
(
HXL−

XC
H

)
(18)

F ′ = VSH

[
kXLH + (k + RLH )

(
HXL −

XC
H

)]
− ILHRTLH (HXL −

XC
H

) (19)

A further review of equations (6) and (8) indicates that
compensated utility supply harmonic current, and ISH is
inversely related to gain k . For the active filter, on the one
hand, it acts as an ‘obstructing resistor’ which impedes the
harmonic current produced by source non-linearities VSH .
On the other hand, it also acts as a ‘damping resistor’ to
harmonic current ILH , and can totally attenuate the resonance
between the source impedance and the shunt passive fil-
ter [32]. Besides, Other system parameters are shown below:

DPF =
PL1
VL1IS1

=
GL1VL1
IS1

(20)

PF =
PL
VLIS
=

GL1VL1+
∑

H≥2 GLHV
2
LH√(

I2S1+
∑

H≥2I
2
SH

)(
V 2
L1+

∑
H≥2V

2
LH

) (21)

where DPF and PF represent the compensated load dis-
placement power factor and compensated load power factor,
respectively. Besides, the subscript ‘1’ in this formula repre-
sents the power factor.

PLOSS = I2S1RS1 +
∑

H≥2
I2SHRSH (22)

where PLOSS is transmission loss and the transmission
efficiency can be calculated as:

η =
PL

PL + PLOSS
(23)

Compensated voltage and compensated utility supply current
are given by:

VTHD =

√∑
H≥2 V

2
LH

VL1
(24)

ITHD =

√∑
H≥2 I

2
SH

IS1
(25)

Finally, the formula for calculating harmonic pollution is as
follows:

HP =
√
VTHD2 + ITHD2 (26)

B. OBJECTIVE FUNCTION
This article optimizes the HAPF design from the perspective
of selecting three best parameters: k , XC , and XL to reduce
harmonic pollution. The range of these parameters can be
shown: 

0 ≤ k ≤ 20
0 ≤ XC ≤ 20
0 ≤ XL ≤ 1

(27)

Moreover, considering compliance with IEEE Standard
519-2014 [34] based on system voltage level and system short

circuit ratio. The allowable ranges for VTHD and ITHD are
respectively as follows:{

VTHD ≤ VTHDlim
ITHD ≤ ITHDlim

(28)

where VTHDlim = limitation on VTHD and ITHDlim = lim-
itation on ITHD as per IEEE 519-2014. Thus, the objective
function complying with the above conditions is given as:

HPAPP = abs(VTHDlim − VTHD)+ abs (ITHDlim − ITHD)

(29)

While meeting IEEE standards for individual harmonics,
the optimization objective is formulated as:

Maximize ‘HPAPP’ subject to PF = PFgoal ± ε

where PFgoal is the desired power factor, and it is set to 95%
in this work. To facilitate the iterative process, a small error
value ε is introduced, and its value is set to 1%. Note that
the objective function input to be minimized is ‘−HPAPP’.
In addition, the algorithm can evaluate the objective function
value only when all harmonic levels meet the limitations.
Otherwise, this set of experimental data will be considered
unqualified and the objective function value will be set to 100.

III. RELATED WORKS
A. ORIGINAL TLBO ALGORITHM
At present, teaching-learning-based optimization (TLBO)
has received considerable interest because of its simple struc-
ture and fast convergence rate [18]. This algorithm finds
the optimal solution by simulating the teaching process of
teachers and the communication process between students.
The best individual in the population is called the teacher,
and the other individuals are called learners.

In the teaching phase, the new value of the i-th learner
(xnewi ) is updated as follows:

xnewi = x ti + rand(0, 1) · (xT − TF · x
t
M ) (30)

x tM =
1
Np

∑Np

i=1
x ti (31)

where Np represents the number of learners in the class, xT is
the best learner regarded as the teacher, and x tM is the average
of all individuals at t-th iteration. TF is a teaching factor and
its value is set to either 1 or 2. Besides, rand(r1, r2) denotes
a random number between r1 and r2.

It should be noted that after each iteration, the value of
each learner needs to be finally determined according to the
following formula:

x t+1i =

{
x ti , if f (x ti ) < f (xnewi )
xnewi , if f (x ti ) ≥ f (x

new
i )

(32)

where f (x) represents the objective function value of x.
In other words, choose the better one between x ti and xnewi
to keep it after each iteration.

In the learning phase, each learner can communicate with
the learner x tj that is randomly selected from the class, which
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can improve their own knowledge level. The update formula
for each learner is as follows:

xnewi =

x
t
i+rand (0, 1) ·

(
x ti − x

t
j

)
, if f (x ti ) < f (x tj )

x ti+rand (0, 1) ·
(
x tj − x

t
i

)
, if f (x ti ) ≥ f (x

t
j )

(33)

Like the teaching phase, the value of each learner is finally
determined by the formula (32).

B. LÉVY-FLIGHT ALGORITHM
Lévy-Flight strategy is a stochastic search mode proposed by
Lévy [35], and it is based on the foraging behavior of animals
in nature. In most cases, Lévy-Flight moves a short distance.
But occasionally, long-distance jumps are performed, which
improves the ability to escape from the local optimal solution.
The Lévy-Flight distribution can be defined as:

Lévy (x) = 0.01 ·
rand (0, 1) · σ

|rand (0, 1)|
1
β

(34)

σ =

 0 (1+ β) · sin
(
πβ
2

)
0
(
1+β
2

)
· β · 2

(
β−1
2

)


1
β

(35)

0(x) = (x − 1)! (36)

where β is a constant, which is taken as 1.5 in this
paper. Besides, rand (0, 1) represents a random number
between 0 and 1.

IV. HTLBO ALGORITHM
Extensive research has shown that TLBO has a strong
exploitation ability, but its performance in exploration is not
satisfactory, especially on the issue of HAPF design in this
work. It still faces the challenges of poor global exploration
ability and is easily trapped in local optima. In the itera-
tive process of TLBO, all learners are gradually attracted
to the teacher (xT ) in the teaching phase. With the number
of iterations increasing, a great number of individuals will
cluster together around the teacher. Further, the positions of
all individuals are very close so that the value of x ti −x

t
j tends

to 0. The difference between xT and x tM is negligibly small.
That is to say, the distance all individuals move during the
iteration is almost negligible. Once a substantial number of
learners are trapped into local optima, it will be difficult to
escape from the local optima, making all individuals gather
at one point. In other words, if there is a deviation in the
knowledge disseminated by the teacher at the beginning,
it will cause all learners to learn in the wrong direction. At the
same time, there are no other better teachers to guide them, all
learners will learn the erroneous knowledge. Besides, in the
learning phase, the information exchange between learners
further accelerates the dissemination of wrong information.
In the end, all learners and the teacher have the same level of
knowledge, but can hardly learn better knowledge.

In view of the above analysis, this paper proposes a novel
HTLBO algorithm to balance the global exploration and local
exploitation capability of TLBO.

A. DYNAMIC CLUSTERING MECHANISM
In the original TLBO, all learners learn from the best individ-
ual (Teacher xT ) and population mean value x tM . However, as
we all know, different people have different learning abilities,
even part of people can acquire knowledge by self-study.
Therefore, teaching students in accordance with their aptitude
may be a better choice.

Based on the above considerations, we divide all Np
individuals into two groups, the first group is called the
teaching-learning group, and the second group is called
the self-study group. The teaching-learning group uses an
improved hierarchical teaching strategy and improved learn-
ing strategy to update individuals’ positions, focusing on
local exploitation processes, and seeking better solutions
near the current optimal solution. Correspondingly, the self-
study group uses the Lévy-Flight strategy to update posi-
tions and concentrating on global exploration. Specifically,
the individual in the teaching-learning group is called the
learner, and the individual in the self-study group is called the
self-learner.

For the individuals in the self-study group and the
teaching-learning group, their identity is not fixed at each
iteration but dynamically adjusted according to their objec-
tive function values, which ensures the vitality of the
population. For the two groups, the individual numbers are
divided as: 

NTL =
2
3
Np

NSS =
1
3
Np

(37)

where NTL and NSS represent the number of individuals in
the teaching-learning group and the self-study group, respec-
tively. Note that all individuals are sorted by objective func-
tion value before iteration, the first two-thirds are elected
to the teaching-learning group and the latter one-third are
elected to the self-study group.

B. HIERARCHICAL TEACHING STRATEGY
To further balance the exploration and exploitation tendencies
of the algorithm, different learners adopt different methods to
learn in the teaching phase. All learners are divided into three
hierarchies i.e. good, medium, and poor according to their
objective function values, and learners at different hierarchy
follow different three teachers to learn. These three teachers
are from the highest-level individuals in the three hierarchies
respectively. In general, most students have an average learn-
ing ability. Thus, the number of learners in each hierarchy is
as follows: 

NGood =
1
4
NTL

NMedium =
1
2
NTL

NPoor =
1
4
NTL

(38)
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FIGURE 6. The flowchart of HTLBO.
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Algorithm 1 ‘‘HTLBO Algorithm’’
1: Initialize HTLBO parameters;
2: Randomly generate initial population;
3: Calculate and sort the objective function values of the

initial population;
4: While (termination criteria does not hold) do

/∗ Dynamic clustering mechanism ∗/
5: Divide individuals with objective function values at the

top two-thirds into the teaching-learning group, and
the rest are assigned to self-study groups;

6: Divide the teaching-learning group into three
hierarchies: good hierarchy, medium hierarchy, and
poor hierarchy according to the objective function
values;
/∗ Teaching-learning group ∗/

7: for i = 1 : Np ∗ (2/3)
/∗ Improved teaching strategy ∗/

8: Choose three teachers according to (40) and
calculate the value of x tM ;

9: Update the learner’s position according to (39);
10: Use (43) to modify the location of individuals out of

range;
11: Evaluate objective function values and determine

whether to update the position;
/∗ Improved learning strategy ∗/

12: Select parameters xa, xb randomly;
13: Update the learner’s position according to (41);
14: Use (43) to modify the location of individuals out of

range;
15: Evaluate objective function values and determine

whether to update the position;
16: End for
17: Reordering and grouping according to individual’s

objective function value;
/∗ Self-study group ∗/

18: for i = Np ∗ (2/3)+ 1 : Np
19: Calculate the value of Lévy (x);
20: Update the individual’s position according to (42);
21: Use (43) to modify the location of individuals out of

range;
22: Evaluate objective function values;
23: End for
24: NFE = NFE+ 1;
25: End while

where NGood , NMedium, and NPoor represent the number of
learners with good, medium, and poor learning abilities,
respectively. Since theNp is taken to be 30 in this work,NGood
and NPoor equals 5, NMedium equals 10.

Before each iteration, we sort all 30 individuals according
to the objective function value fromworst to best, then the top
20 were assigned to the teaching-learning group. In addition,
the i-th learner during the t-th iteration uses x ti to express.

The improved teacher process is given as:

xnewi =


x ti+rand(0, 1) ·

(
xTGood − TF · x tM

)
, 1 ≤ i ≤ 5

x ti+rand(0, 1)·
(
xTMedium−TF ·x tM

)
, 6 ≤ i ≤ 15

x ti+rand(0, 1) ·
(
xTPoor − TF · x tM

)
, 16 ≤ i ≤ 20

(39)

where xTGood , xTMedium and xTPoor are teachers of three hier-
archies. Their values are as follows:

xTGood = x t1
xTMedium = x t6
xTPoor = x t16

(40)

Unlike the original TLBO algorithm, TF equals 1 or 2. In the
proposed algorithm, TF is a random number between 0 and 2
to improve population diversity. At the same time, in order
to avoid all individuals gathering in local optimal, for the
latter half of the learners, whether the newly created position
is better or worse, they are updated. On the contrary, for the
first half of the learners, like the original TLBO algorithm,
it is updated only when the newly generated position is better,
that is, using formula (32) for judgment. On the one hand, this
measuremakes thewhole group escape from the local optimal
solution when the teacher’s guidance is wrong, on the other
hand, it can keep the current optimum solution.

C. IMPROVED LEARNING STRATEGY
During the learning phase of the TLBO algorithm, each
learner learns only from another individual randomly. In order
to enable learners to communicate with each other more
deeply, in the improved teaching phase, each learner ran-
domly learns from an individual better than it and an
individual worse than it. The improved learning process is
formulated as follows:

xnewi = x ti + 0.5 · rand (0, 1) ·
(
xa − x ti

)
+ 0.5 · rand (0, 1) ·

(
x ti − xb

)
(41)

where xa means that among all Np individuals, a randomly
selected individual whose objective function value is lower
than or equal to x ti , and the objective function value of xb
is higher than x ti . Through the learning phase, the teaching-
learning group can obtain useful information from the outside
world (self-study group), thus avoiding falling into local
optima. Besides, like the learning phase, for the first ten
individuals, if xnewi is better than x ti , then accept it. But for
the last ten individuals, all individuals update their positions.

D. SELF-STUDY STRATEGY
For all individuals in the self-study group, i.e. self-learners,
using the Lévy-Flight strategy, that is, formula (34) and (42)
to update the positions. Guiding individuals to move in a
promising direction, and effectively preventing the teaching-
learning group from falling into local optima.

xnewi = xnewi + Lévy (x) (42)
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TABLE 1. Case studies of an industrial plant.

In addition, for all the above strategies, if individuals
exceed the boundary, the HTLBO algorithm processes as
follows:

x ti,j =

xjmin , x
t
i,j < x

jmin
xjmax , x

t
i,j > x

jmax

(43)

where x ti,j indicates the value of the j-th dimension of the
individual. xjmax and xjmin represent the upper and lower
boundaries of the corresponding dimension, respectively.

Finally, the flow chart of the proposed HTLBO algorithm
is described in Fig. 6, and the ‘‘HTLBOAlgorithm’’ gives the
pseudo code.

V. CASE STUDIES
We employed the proposed HTLBO to identify the param-
eters of two HAPF configurations discussed in Section II,
and Table. 1 shows the parameters of eight classic cases
in industrial production. The first four cases correspond to
configuration 1, and the last four cases correspond to con-
figuration 2. All these parameters are the same as those in
references [16] and [32]. For case 1 to case 3 and case 5 to
case 7, the inductive three-phase loads are 5100 KW and
4965 KVAR. The 60-cycle supply bus voltage is 4.16 KV
(2400 voltage line-to-neutral). The short-circuit capacity is
80 MVA. For case 4 and case 8, the data come from a factory
with a total three-phase apparent load of (5100+j4965) KVA
at a 4.16 KV line-to-line voltage. The system short-circuit
capacity is also 80 MVA. In addition, it is assumed that the
source and load harmonics are time-invariant in all cases; the
load and source resistance is independent of frequency, that
is, RLH = RL and RSH = RS . It should be noted that, in this
study, PFgoal and ε are selected as 95% and 1% respectively.
Besides, both VTHDlim and ITHDlim are set to 5%.

TABLE 2. Parameter settings of different algorithms.

VI. THE RESULTS AND ANALYSIS OF EXPERIMENT
In this work, Harmonic Pollution (HP) is directly linked to
the objective function. We minimize the objective function
value to obtain the three best HAPF design parameters. The
objective function and the boundary range of the parameters
are given in Section II. In order to verify the performance
of the HTLBO on the issue studied in this paper, nine other
well-established meta-heuristics algorithms are compared in
this section. They are the standard Teaching-Learning-Based
Optimization (TLBO) [18], Improved Teaching-Learning-
Based Optimization (ITLBO) [29], Differential Evolution
(DE) [36], SHADE with a linear population size reduc-
tion method (LSHADE) [16], Moth-Flame Optimization
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TABLE 3. The statistical results of different algorithms for series topology structure.

Algorithm (MFO) [37], Double Evolutionary LearningMoth-
Flame Optimization (DELMFO) [38], Whale Optimization
Algorithm (WOA) [39], Dragonfly Algorithm (DA) [40],
and Salp Swarm Algorithm (SSA) [41]. Note that LSHADE
is a competitive algorithm recently proposed and demon-
strated outstanding performance on the HAPF design issues.
Besides, ITLBO is one of the latest TLBO-based improved
algorithms proposed in 2019. For the above algorithms, their
parameter settings are given in Table. 2. The experiment
was repeated 31 times independently using the MATLAB
software (Version: R2016a) to assure the reliability of our
statistical results. Furthermore, the maximum fitness eval-
uation (FE) number of all algorithms is unified set to

50,000 in each run. All comparative experiments were exe-
cuted on a desktop PC with an Intel Core i5-7300HQ
processor @ 2.50 GHz, 8GB RAM, under the Windows
10 64-bit OS.

A. EXPERIMENTAL RESULT OF SERIES
TOPOLOGY STRUCTURE
The experimental results of all algorithms in series topology
structure are shown in Table. 3, including the minimum HP
values (Min), the mean HP values (Mean), the maximum HP
values (Max), the standard deviation of HP values (Std. dev.),
and pass rate. It is worthwhile to mention that the pass rate
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FIGURE 7. Boxplots of ten algorithms for series topology structure (case 1 to case 4).

FIGURE 8. Convergence curves of ten algorithms for series topology structure (case 1 to case 4).

is calculated based on the number of times an algorithm
has obtained the solution which meets HAPF design require-
ments out of 31 runs. Furthermore, we conduct the Wilcoxon
rank-sum examination at 5% significant level to decide about
the significance of the results. Sign ‘‘+’’ denotes that HTLBO
owns notably better than the compared algorithm, and sign
‘‘≈’’ indicates that HTLBO almost the same as the com-
pared algorithm. In the above evaluation indicators, the Min
represents the accuracy while the Mean denotes the average
accuracy; Std. dev. and pass rate reflect the reliability of the
estimated parameters. For unqualified solutions, note that we
did not include them in the statistical results, except for the
pass rate. Moreover, the overall best results of HP among the
ten algorithms are highlighted in boldface respectively.

From Table. 3, it can be observed that all algorithms
get the minimum HP value in case 1, case 3, and case 4.
However, in case 2, only HTLBO achieves the minimum
HP value among all compared algorithms. For the mean
HP value, HTLBO shows the best performance in all four
cases. Furthermore, with regard to the standard deviation,
the proposed HTLBO algorithm ranks first in case 1, case 3
and case 4, and LSHADE ranks first in case 2. In terms of the
pass rate, all algorithms achieve a 100%pass rate in case 1 and
case 2. But it is a pity that WOA has only about three quarters
pass in case 3; only HTLBO, TLBO, DE, and DELMFO have
a 100% pass rate in case 4. From the results ofWilcoxon rank-
sum examination, the advantages of the proposed HTLBO
algorithm are further confirmed.

In addition, Fig. 7 gives the boxplots for all compared
algorithms to clearly show the distribution of HP values
in 31 independent runs. The red line represents the average
value and the symbols ‘‘+’’ indicates the outlier. As is evi-
dent, HTLBO demonstrates its distinctive competitive advan-
tages in terms of accuracy and reliability. In case 1, case 3 and

case 4, all HP values obtained by HTLBO aggregate near the
mean. Although in case 2, the HP value fluctuates slightly,
HTLBO can reach the accuracy that other algorithms do not
possess.

Considering the convergence performance, the conver-
gence characteristics curves of ten algorithms are illustrated
in Fig. 8 with the average objective function values. As can be
seen from the figure clearly, HTLBO acquires a satisfactory
convergence speed on all cases.

Compared with nine other competitive algorithms,
the above analysis shows the effectiveness of the proposed
HTLBO in HAPF parameter selection with series topology
structure, especially in terms of accuracy, average accuracy,
and robustness.

Finally, Table. 4 summarizes the best optimization results
of all four cases obtained by HTLBO, including the three-
parameter values and useful harmonic distortion values.
Furthermore, Fig. 9 gives the individual harmonic contents
for the four cases. It is obvious that all harmonics are within
limits (28). Experimental results demonstrate that the higher
the gain is, the better the compensation is when both the
source fundamental impedance and system load without
changing. In addition, asVTHD and ITHD increase, harmonic
pollution shows a significant increasing trend. Higher utility
distortion leads to lower gain K and XL tends to be 0. It indi-
cates that the APF with a low-rated voltage source in series
with the PPF does not need additional switching filters.

B. EXPERIMENTAL RESULT OF PARALLEL
TOPOLOGY STRUCTURE
Table. 5 gives the experimental results of all algorithms in
parallel topology structure. Clearly, the proposed HTLBO
algorithm shows better accuracy, average accuracy, and relia-
bility than the other nine compared algorithms. Moreover, we
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TABLE 4. Results of case studies for series topology structure.

FIGURE 9. Compensated individual harmonic of various cases for series topology structure.

FIGURE 10. Boxplots of ten algorithms for parallel topology structure (case 5 to case 8).

FIGURE 11. Convergence curves of ten algorithms for parallel topology structure (case 5 to case 8).

conduct the comparisons between the ten algorithms on
Wilcoxon rank-sum test, the results further demonstrate that
HTLBO provides the best overall performance.

Boxplots and average convergence curves for each algo-
rithm are given in Fig. 10 and Fig. 11, respectively. Similar
to the results of the series topology structure, the HTLBO
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TABLE 5. The statistical results of different algorithms for parallel topology structure.

FIGURE 12. Compensated individual harmonic for various cases with parallel topology structure.

algorithm achieves competitive results, especially in the
latter two cases, HTLBO reaches a striking convergence
rate.

Finally, Table. 6 summarizes the best optimization results
obtained by HTLBO, including the three-parameter values
and useful harmonic distortion values. Besides, Fig. 12 gives
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TABLE 6. Results of case studies for parallel topology structure.

the individual harmonic contents for all cases, it can be
seen that all harmonics meet HAPF design requirements.
Combining the results of HAPF optimization design for two
topologies, it is worth mentioning that they are very similar.
A reasonable explanation is that both two HAPF topolo-
gies have the same equivalent circuit at the basic frequency.
Although the equivalent circuits at harmonic frequencies are
different, the parameters ISH and VLH play a decisive role
in the two topologies. However, the other HAPF parameters
have less influence.

VII. CONCLUSIONS AND FUTURE WORK
This paper proposes a novel Hierarchical Teaching-Learning-
Based optimization algorithm (HTLBO) to exactly estimate
the parameters of hybrid active power filter (HAPF) with two
different topologies. In HTLBO, all individuals are divided
into the teaching-learning group and the self-study group.
In the teaching-learning group, learners are divided into good,
medium, and poor hierarchies according to the objective func-
tion value; learners with different levels learn from different
teachers in the teaching phase to avoid falling into local
optimal. In the learning phase, all learners learn not only
from a better individual but also from a worse individual.
Furthermore, we also borrow the Lévy-Flight strategy from
the references [35] for the self-study group to improve the
exploration ability. Through these strategies, the exploita-
tion and exploration of the proposed HTLBO are effectively
balanced so that the proposed algorithm can accurately and
reliably identify the best HPAF parameters and significantly
reduce harmonic pollution.

In the future, HTLBO will be used to solve more opti-
mization problems in engineering design and other fields.
In addition, some other strategies will be developed to further
optimize the performance of the proposedHTLBO algorithm.
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