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ABSTRACT Recent advances in deep learning, coupled with the onslaught of unlabelled medical data have
drawn ever-increasing research interests by discovering multiple levels of distributed representations and
solving complex medical related problems. Malaria disease detection in early stage requires an accurate and
precise diagnosis in order to achieve successful patient remission. This paper proposes a comprehensive
computer-aided diagnosis (CAD) scheme for identifying the presence of malaria parasites in thick blood
smear images. The parameters of the scheme are pre-trained by functional link artificial neural network
followed by sparse stacked autoencoder. The optimum size of the CAD scheme used in this research is 12500-
2500-100-50-2, where the input layer has 12500 nodes and Softmax classifier output layer has 2 nodes.
Moreover, the 10- fold cross validation reflects that the classification is reliable and is applicable to new
patient blood smear images. The proposed CAD scheme has been evaluated using malaria blood smear
image data set, achieving a detection accuracy of 89.10%, a sensitivity of 93.90% and specificity of 83.10%.
The extensive comparative experiment suggests that the proposed CAD scheme provides richer effectiveness
and efficiency for malaria data set compared to other deep learning techniques for better diagnosis decision
and management. This work implements a novel approach to fast processing and will be a beneficial tool in
disease identification.

INDEX TERMS Computer-aided diagnosis (CAD), Deep learning, malaria parasite detection, microscopic
blood smear images, digital pathology, K-fold cross-validation.

I. INTRODUCTION

Malaria is a deadly disease and major cause of infection
worldwide. This epidemic disease has been recorded in every
period of history due to its rapid demand and leading death
rate. Malaria, is a fatal parasitic disease, with 212 million
cases and 4,29,000 related death cases in 2015 are estimated
worldwide. It is a life-threatening disease to pregnant women
and children under five, as estimated around 3,03,000 chil-
dren lost lives in 2015 [1]. Despite these statistics, the mor-
tality rate due to malaria can be reduced by early fast and
reliable diagnosis. The growth in malaria cases and unnatural
geographical distribution are not stable because of various
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reasons, like lack of highly trained expertise in rural areas,
mismanagement of data, widespread of false and duplicate
medicines, availability of low-cost diagnostic tools, global
warming and much more [2]. This communicable disease
is a complex rapidly growing disease and has become a
challenge to handle due to the count of malaria parasites.
Malaria detection is difficult and is too hard to differentiate
parasite and non-parasite infected from the enormous density
of blood smear microscopic images. The key to the accurate
result of identification of infected parasites with minimum
time, cost and effort is a challenge for the research expertizes.
In this last few decades, the concept of visual inspection has
emerged in the computer-aided diagnosis field, like a novel
assistive software approach in clinical medical imaging and
decision support. But, visual inspection of this global disease
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is subjective, time-consuming and erroneous in nature. The
visual procedure of characterizing and identifying of malaria
parasite is one of the renowned fundamental problems to
differentiate between stained blood smear microscopic image
components. The traditional process of detecting malaria in
the clinic is a manually tedious and time taking job with less
chance of delivering an accurate result [2]. The increase in
the number of malaria cases with the environment and the
workload on a pathologist increases significantly, resulting
in poor health-care services. Considering the above notable
challenges, computer-aided diagnosis (CAD) has paved the
way for better objective assessment for personalized health-
care and diagnosis task. The development of CAD has suc-
cessfully filled up the gap between the discriminative local
appearances and the global image context with proper man-
agement of time series. The introduction of CAD may have a
major impact on all subjects and imaging modalities by anno-
tating imaging data sets and detecting abnormalities under a
varying set of environmental conditions. The differences in
size, shape and intensity variations in imaging protocol of
cell components in blood smear microscopic images are some
challenges faced by CAD [2]. However, the complexity of the
malaria parasite detection through blood smear microscopic
images and anisotropic voxel size with the large volume of
unlabeled datasets generated by clinical procedures make the
development of CAD model for malaria detection an exigent
task in the vision community [3]—[5]. The limited availability
of annotated malaria image data and large unlabelled static
and dynamic samples is an extremely harder issue to handle
[2]. Here, therefore the idea of Deep learning comes to light
with record leading clever tricks on algorithms that can help
to detect malaria parasites in an image no matter where they
are located [3], [4], and [6]-[8].

The structure of this manuscript is systematically orga-
nized as follows. Section I introduces the concept of detection
of malaria disease in blood microscopic image and CAD
scheme. Section II briefly reviews the related works and the
motivation. Section III promisingly discuss in detail the pro-
posed CAD scheme step by step. Section IV defines the data
set collection and methodology. Section V represents the
experiments and results based on comparative performance
of proposed model with other estimated deep learning
techniques. Section VI presents concluding remarks of
this paper.

Il. RELATED WORK AND OUR MOTIVATION

In recent years, several artificial neural networks with multi-
ple layers have been proposed for a variety of health diagnosis
using microscopic images, however, Razzak et al. [3] pro-
posed a powerful model named Deep learning in 2006 which
again brought the concept from 1989. Deep learning is a
broad family and a subfield of machine learning with hier-
archical learning deep image architecture which learns high-
level features from the given pixel intensities. Deep learning
techniques have many success stories for CAD tasks because
they solve many tedious problems reducing the task of new
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parameters that they can calculate an accurate output param-
eter [3]. The deep neural network (DNN) architecture carries
many multiple hidden layers and so the network is called
deep, not only in classification tasks but also in regression.
DNN is an emerging approach to excellent performance in
various variants, such as dimensionality reduction, object seg-
mentation, modeling textures, modeling motion, information
retrieval, robotics, natural language processing, collaborative
filtering, so on. Shen et al. [5] used Convolutional neural net-
work (CNN) as medical image classifier in order to address
two specific CAD problems, like thoracoabdominal lymph
node (LN) estimation and interstitial lung disease (ILD) clas-
sification. The overall CNN model analysis and extensive
empirical evaluation help to design high performance with
good accuracy CAD model for medical image tasks. Many
CAD studies focused on monitoring the prognosis and direct
differentiation of malaria parasites and non-parasites [3], [8],
[9]. Das et al. [6] used SVM and Naive Bayes machine
learning classifier to achieve accuracies of 84% and 83.5%
for building automated diagnostic system for malaria detec-
tion. Ross et al. [4] designed a three-layer neural network
as a classifier for automated malaria diagnosis on thin blood
smears at an accuracy of 85%. Li and Orchard [10] proposed
an Edge Directed Predictor (EDP) in order to structure an
improvised detection model using Least Square based adap-
tation. Besides this popular method, there is a huge range
of lossless compression techniques that are fully mathemat-
ical optimized frameworks for different [7] and [11]-[13]
overviewed a comprehensive comparison of feature selection
based machine learning algorithms for automated optimiza-
tion of malarial cell recognition in detail. These machine
learning methods yet need good improvisation for feature
extraction because it still requires trained skilled experts to
handle data and smart techniques for calculating the prog-
nosis of the disease [13]. Furthermore, recent observations
have revealed that the accedence rates among the researchers
and pathologists for the identification of this plague have
alarmingly decreased [14]. Referring to the above concern,
some faced challenges can be summarized together to build a
new CAD scheme.

ANN architectures based CAD schemes consist of many
levels and layers of non-linearities complex mappings. The
layerwise network of multiple hidden layers creates a com-
plex environment with gradient-based optimization getting
stuck in poor outputs [15]. To overcome this bottleneck
situation, a greedy layer-wise training method by unsuper-
vised pretraining and back-propagating one layer at a time is
applied. The better representation of high dimensional data
to low-dimensional encoding space is done by the unsu-
pervised pre-training phase of each layer resulting in poor
local optima to more sparse feature learning. The deep belief
network (DBN) addressed by Arel er al. [15] carries an
advantage of the systematic layer by layer greedy learning
strategy, and fine tuning all of the weights together with the
crave output. Nair and Hinton [16] introduced a modified
two-layer DBN where the first layer learns local, oriented,
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edge filters and the next layer comprises of a variety of
contour corners and junctions, aiming to form a robust model.
Nigam et al. [17] constructed a deep energy model (DEM)
of a single level of stochastic hidden layers for effec-
tive qualitative and quantitative improvements done using
Hybrid Monte Carlo (HMC) over greedy layer-wise train-
ing. Dahl et al. [18] proposed a new DNN that combines
DBN with a Mean-Covariance RBM for feature extraction
and addresses the inefficiency in terms of this limitations of
phone recognition. Phone recognition helps to detect who
is speaking in the phone. Liou et al. [19] defined a proper
special type of autoencoder approach for learning efficient
encodings to remove the problem of getting stuck in local
optima is to pre-train the network layers with initial updated
weights. A neural network comprises of the high dimension
of features, resulting in the issue of overfitting. The multiple
layers in ANN, result in low performance and mismanage-
ment of update weights, which leads the whole network
prone to overfitting [20]. To solve it, a common way is the
introduction of dropout method and use of equal weights for
all parameters by supervised training. The concept of dropout
was proposed by [21] and demonstrated in depth by [22].
Dropout is an extremely functional ensemble learning which
further improved by [20] and [23]. Thompson et al. [24]
added a Spatial drop out layer to the existing CNN model
of Mann et al. [25] to improve the precision of the spatial
localization accuracy and reuse the hidden layer convolution
features. In order, to make the learning space more stable
and robust, many researchers [26], [27] have depicted many
variations of autoencoder making the various classes more
separable. Masci et al. [28] defined a convolutional autoen-
coder for hierarchical feature representation to preserve spa-
tial locality using dropout method efficiently. Hu et al. [29]
measured a deep autoencoder combined with a softmax clas-
sifier to detect Alzheimer’s disease from MRI image data
sets.This approach shows that the proposed method works
well as compared to other traditional handcrafted methods.
Shan and Li [30] introduced a stacked sparse autoencoder for
learning high-dimensional microaneurysms detection from
fundus images. Thus, we can say that the deep learning
method outperforms classical CAD architectures, largely due
to the noise tolerance and dominated medical image appli-
cations. Autoencoder with drop out is called as Denoising
Autoencoder (Noise tolerance), deterministic deep learning
approach, has a high level compressed representation of input
distinguish features automatically based on pixel intensities.
Chen et al. [31] modeled a new type of CAD framework
that can outline pulmonary nodules with different annotated
degrees of the 9 semantic features. Vincent et al. [32] pro-
posed a denoising autoencoder (DAE) model to recover the
exact input from a suborn version. The designed model recon-
structs each image pixel from the corresponding dense and
noisy background region. Rifai et al. [33] proposed contrac-
tive autoencoder motivated with learning robust representa-
tions followed by adding an advantage to the reconstruction
error function. Both DAE and CAE work successfully well
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in the Unsupervised and Transfer Learning Challenge [33].
Zhang et al. [34] and Asl et al. [35] demonstrated apart based
deep learning representation using sparse auto-encoders to
gain high reconstructed quality decompose data as compared
with the traditional autoencoder. It also demonstrates how
to get a useful representation from data that perceive the
hidden layer of high-dimensional human brain data based
on autoencoders. Sparse autoencoders have various potential
advantages just like SVM, the high-dimensional enhances
the likelihood that various stages will be easily separable.
Sparse autoencoder framework interprets the whole structure
into a number of parts for better representations; biomedical
researchers gain interest in using sparse auto-encoders due to
its best results in biological vision areas. Another challenge is
the process of saliency estimation of weighting features. Shen
and Wu [36] utilized the mid-level and high-level param-
eters gathered from salient regions to represented a multi-
layer network with a linear SVM [37] highlighting the clear
visible semantic feature objects. To overcome the problem
of saliency estimation detection, [38] computed the central
patch with its neighboring patches using sparse reconstruc-
tion deep networks. To pop out the challenge of salient detec-
tion, many computational models have been proposed using
traditional parameters like intensity, color, gist [39], integra-
tion theory [40], orientation [41], symmetry [42], and local
steering kernel [43] for estimating saliency. Zhao et al. [44]
presented a comprehensive survey on different learning based
salient estimation algorithms which can be useful to many
computer-aided diagnosis researchers. Although the learning
based salient detection techniques provide an outstanding
performance, but maximum of them are fully dependent on
labeled trained datasets. Unfortunately, a gap gets created
due to unavailability of the costly tools and poor manage-
ment of data resulting in a key problem between data and
saliency. DNN has emerged as specific object categories, and
lead to many success stories in a wide variety of tasks [38]
and [45]-[49]. To address this challenge, CNN has been
used with remarkable results for determining the contribution
of weight features along with the increasing interest of the
expansion of feature dimension by Li and Yu et al. [50].
The popularity and recent success of supervised learn-
ing have obscured unsupervised learning in many fields.
DNN model like Restricted Boltzmann Machine(RBM) and
Autoencoder(AE) have emerged from pixel level information
processing to the patch based comparison, the prediction
quality is greatly improved. AE, a fully connected framework
which aims in lower reconstruction error at each layer, deliv-
ers a better initialization of layer parameters. This learning
algorithm imposes a limitation on parameters with a com-
pressed representation of encoder and decoder representation
[51]. In medical field of diagnosis, the AE represents the abil-
ity of the proposed model to predict the probability of disease
treatment for a patient. This early prediction in health care
could be directly proportional to saving patients lives. The
first stage of AE model is compression and feature extraction
of selective statistical or geometric features in medical data
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to achieve the best low dimensional vector. The second stage
of compression leads to the decoder stage where the task
is to reconstruct an identical version of the input image by
going through many operations. This feedforward neural net-
work inspires globally through its data reconstruction ability
and robustness against noise measurement (Sparse autoen-
coder) [52]. The introduction of part-based representation by
Asl et al. [35] demonstrates a meaningful data representation
for improving the ability to untwine the hidden layers and lev-
els of unlabelled data in the human brain using deep autoen-
coders. The prediction performance of the proposed DNN
method [35] gives a better result as compared to other tech-
niques. The whole workflow is done on the MNIST dataset,
ORL data set, NORB dataset and REUTERS-21578 text data
set. The hierarchical layers of visual cortex data structured
by part based decomposition give an expensive fast improved
DNN of optimization. As a result, the new CAD method is a
quite challenging approach for quantitative image diagnosis
and classification.

In this paper, a novel alternate work has been done
harmoniously using Functional Link Artificial Neural Net-
work (FLANN) and Stacked Sparse Autoencoder (SSAE)
techniques for malaria parasite detection. This proposed work
binds an original SSAE with the FLANN based on trigono-
metric polynomials introducing an unsupervised information,
to achieve a meaningful detection from high dimensional
data. Inspired by the dimensionality reduction detection
approaches and successful application of DNN, we have
designed a multi-objective architecture to explore a new novel
computationally CAD scheme offering an unprecedented
power and efficiency automatically. This CAD scheme offers
a promising strategy to investigate the malaria infection
and a tool to handle large image dataset with less recon-
struction error. In this study, we have bound the FLANN
in the first section with the SSAE followed by a Softmax
Classifier, which introduces unsupervised data, to make use
of the unlabelled images well. Finally, the low dimensional,
high-level parameters were eventually fed into a Softmax
Classifier (SMC) for categorizing malaria parasites from non-
parasites within an independent testing set. The proposed
CAD scheme is a deep learning architecture established
for simultaneous feature extraction and classification with
drastically less computational complexity.

The major contributions of this proposed deep learning
CAD scheme can be summarized in three folds. FLANN,
which is the first stage of CAD scheme, is the process
of the single layer structure and is used for the nonlin-
ear dynamic system, determining whether the thick blood
smear microscopic image is malarial infected or non-infected
using the popular back-propagation algorithm. The back
propagation algorithm uses the method of gradient descent
with multi-layer perceptrons and sigmoidal nonlinearities
for minimizing the error function in the weight space. The
back propagation algorithm improves its convergence process
along with the recognized patterns superiorly. Using FLANN
enables faster convergence rate and less computational load
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than other traditional neural network methods [53]. The first
stage includes the functional expansion of the input infor-
mation with no hidden layers, resulting in a simple network
of identification of complex nonlinear functions. This way
of expansion helps in providing greater discrimination capa-
bility in the input space and learning becomes faster.Finding
the proper correct preprocessing, normalization or change of
input data can be challenging before the training process. So,
the introduction of FLANN in this CAD scheme acts as a pre-
processing savior to select an optimal set of hyperparameters
for the significant training process. The second contribution
lies in the novelty of SSAE model which is able to impose
a limitation on features (dimension, hidden layers), further
discovering the latent structure of data in a high dimensional
space [54]. The proper pre-training of each layer initializa-
tion in autoencoder helps in better representation and over-
coming vanishing gradient-based optimization problem. The
autoencoder is a deterministic feed-forward neural network
which improves the CAD scheme prediction performance
with better layer-wise initialization computing saliency [55].
Third, a Softmax classifier (SMC) [56] is added to effectively
differentiate malaria-infected and non-infected blood smear
microscopic images. As the autoencoder learning process
is unsupervised, the model accepts high-level data as input
and reconstructs an output that is similar to the input. This
reconstructed output maps between the input and the class
labels fed to the supervised model of SMC produces a
practical solution of value 0 and 1, that can be interpreted
as malaria-infected or non-infected thick blood smear micro-
scopic image. As a result, the weights of the entire CAD
scheme are trained referring to fine tuning, producing an
effective model for malaria parasite monitoring [57], [S8].

To sum up the entire work, training of the CAD scheme
framework is done to plot a learning model automatically
processing the high-level features associated with parasite
detection in malaria diagnosis. Our approach aims to execute
an accurate and robust machine learning model and is com-
pared with some neuron crafted features like original Auto-
encoder (AE), Stacked Auto-encoder (SAE) and Restricted
Boltzmann Machine (RBM) in terms of accuracy of perfor-
mance on blood smear microscopic images datasets.

IlIl. PROPOSED CAD SCHEME

In this section, we reinforced a trained model using FLANN
and SSAE for malaria parasite detection in thick blood
smear microscopic images. For malaria parasite detection,
we trained a CAD model to differentiate the malaria parasites
from the normal blood components. The CAD scheme is a
neural network consisting of multiple layers of FLANN and
SSAE as seen from Figure 1 learning models, in which the
output parameters of each layer are wired to the input and
are trained layer by layer. This scheme network can be used
not only for dimensionality reduction but also for decreas-
ing the computational complexity. This model is mainly
focused on two phases of learning for better malaria par-
asite detection in blood smear microscopic images. In this
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FIGURE 1. Structure of a proposed computer-aided diagnostic CAD
scheme.

model, we use thick blood smear microscopic images, which
is 20-40 times more fragile than thin blood smear micro-
scopic for screening malaria parasites, with a detection limit
of 10-50 trophozoites/uL [59]. To extract the image fea-
tures, the thick blood smear was stained using Field stain
at x 1000 magnification followed by segmenting the stained
objects using level set method [60]. In this study, we illustrate
the training of 2 stage of Chebyshev FLANN [53] and the
usage of the subsequent SSAE [54] for the feature extraction
of stained objects through a classification using Softmax.

A. EXPANSION OF INPUT DATA

The first-stage learning functional approximation is a single
layer model consisting of one input and one output layer
based on trigonometric expansion. Using the functionally
expanded features, FLANN overcomes the high computa-
tional complexity of the nonlinear problems. The single layer
FLANN is easy to train and effectively increases the dimen-
sionality of the input parameters providing a broad discrimi-
nation capability on the input pattern space. The first stage of
expansion of input data of CAD algorithm is shown below,

Step 1: Initialize a training pattern by {I;, J;} and weight
matrix by W, (¢). The discrete-time index ¢ is given by t =
t+ AT fort =1,2,3,...Tand A =0,1,2,3...7T, where
T is the total number of training patterns.

Step 2: As " an instant, the n-dimensional input pattern
and the m-dimensional FLANN output are given by [/, =
p1(t), p2(), ... p,,(t)]U respectively. Its corresponding target
pattern is represented by [J; = q1(¢), g2(1), . .. qm(t)]U.

Step3: The dimension of the input pattern increases
from n to N by a basis function i given by ¥ (l;) =
(W1, vl ... YD1

Step 4: The (m x N)-dimensional weight is given by
We(t) = [We1 (1), Wea (). .. ng(t)]U where W,;(t) is the
weight vector associated with j* output and is given by
Wei(t) = [vj1(®), via(t) ... vin(®)]. The j’h output nonlinear
function is formed by multiplying with a set of random
initialized weights applied with patterns summed to produce
estimated output. The j” output of the FLANN is given by,

N
gj(t) = p(z vitOVily) = pUj(t)y 1;)) (1)
i=1
forj=1,2,3...m
Step 5: The error associated with j* output node is given
by E(t) = ¢;(t) — g;(t)
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Step 6: Using the BP algorithm, weights of the FLANN
can be updated as,

We(t + 1) = [We(®) + nAQ@) + y At — 1) 2)
A() = v UNY 3)

where,
8(1) = [81(182(18m(N]Y, 8j(1) = (1 = GF(1)Ej(1)), ju and
y are learning

B. COMPRESSION OF INPUT DATA
The output of the functional expansion gets into the stacked
sparse autoencoder as an input with two hidden layer feature
representation in the second stage.

Step 7: The g;(t) is the output of the learning algorithm gets
adjusted and goes p;as pt as input, where the pe[0, 1]¢ input
vector and the hidden representation is ge[0, 1]9.

q=rfp) = Se(Wep + B) 4
with 6 = {Wg, B}

1
S0 = 1o 5)

r = ho(q) = Sg(Wg1q + B') (6)

with 0’ = {(Wer, B’} '

Step 8: p® is mapping to the corresponding q?. The basic
idea here is to construct the mapping p® — ¢ reflects
essential structure with the reconstruction of p and r®.

Step 9: Weight matrix W, may optionally be constrained

—wT

by W =W, .
PLURPS p(i) @)
P = q® ®)

Step 10: 9 and 6’ of the second stage of the CAD scheme
are optimized to minimize the avg. reconstruction error.

1 L
(9*’ 9/* = argﬁﬂ/min;Z?:lLs(p(l)’ q(’)))
1 ; :
argg_’g/mm’—z Z?=1Ls(p(’), he (0DY) 9)

Step 11: Encoder f and decoder &

f:I—=A (10)
h:A->T (11)
A =1 (Wep + B) (12)
P = 0(WeA +B) (13)

Zis an element-wise activation function such as sigmoid or
rule.

Step 12: The second stage of the model can be trained to
minimize reconstruction error (such as sum of squared errors)

Ls(p.p) =l p =P/ I’=I p — 2(Wi(ei(Wep + B) + B) |I?
(14)
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C. CLASSIFICATION
Step 13: The third stage of the whole CAD scheme involves
Softmax Classifier which generalizes the logistic regression
as

1

—a7 (15)
1+ exp(Wf)Tr)

T =

where f,, ) represents the sigmoid function with W® param-
eters. The input r of the classifier is a high-level representa-
tion of nuclear structures with W parameters. By studying
the overall CAD scheme with W via accuracy and detection
time is recorded.

Step 14: Considering, the whole model the total error
associated with the CAD scheme is given by

E = Ej(t) + Ly(p. p) (16)

IV. DATA COLLECTION AND METHODOLOGY

A. DATASET

A set of 1182 Field-stained malaria-infected blood smear
microscopic images are obtained from Android smartphone
to a Brunel SP150 microscope by a group of data scientists
from the Al research group at Makerere University, as part
of the collaborative research on automated malaria infection
diagnosis. The blood cell images are RGB color images with
a 750 x 750 pixel resolution [59]. The Field-stained malaria
blood smear slides are scanned and captured into 3D-printed
phone adapters, at 1000x optical magnification.

B. OTHER COMPARATIVE DEEP LEARNING

BASED MODELS

1) AE + SMC BASED MALARIA PARASITE

DETECTION METHOD

The original autoencoder is a single layer feedforward net-
work of deterministic approach consisting of an input layer,
one hidden layer, and an output layer. The input and hidden
layer together form the encoder part and the hidden layer
and output layer combines to form a decoder part, as shown
in Figure 2. The hidden layer is smaller in size than the
input layer, as the autoencoder compresses the information
and focuses on useful extracted features for the effective
performance of the model [54].

2) SAE + SMC BASED MALARIA PARASITE

DETECTION METHOD

In this model, the input feature learned of SMC classifier via
the use of two hidden layers of stack autoencoder from an
input malaria blood smear microscopic image [54]. In the
SAE + SMC network architecture (Figure. 3), the features
extracted by SAE are feed as input to SMC [54] for classify-
ing the infected and non-infected malaria.

3) TAE + SMC BASED MALARIA PARASITE

DETECTION METHOD

Three-layer Sparse Autoencoder (TAE) is three hidden layers
based autoencoder which is also known as deeply stacked
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FIGURE 2. Basic autoencoder (AE) plus softmax (SMC) architecture.
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FIGURE 3. 2 layers sparse autoencoder (SAE) + softmax (SMC)
architecture.

autoencoder [54]. In order to handle high dimension input
data, a single hidden layer of original autoencoder may not
be suitable, therefore stacked based deep third autoencoder is
used as shown in Figure 4.

4) RBM + SMC BASED MALARIA PARASITE

DETECTION METHOD

Restricted Boltzmann Machine (RBM) is a variant of the
stochastic recurrent neural network. It is a probability dis-
tribution ‘P’ of observed input data (visible units) as the
primary layer and the second layer consists of latent variables
(hidden units). The observed input data units and hidden
units together are associated with symmetric weights, and
the visible and hidden units are pointed by bias weights
[61]. RBM is used for fine-tuning the deep neural network
with minimum reconstruction error (Figure 5). For each
example, let’s define, ‘V’ is the visible units and ‘H’ is the
hidden unit which together is restricted to form a bipartite
graph allowing implementation of more efficient training
algorithms.

(P(HV) = P(H; V1)P(Hy V1) ... P(H, V1))
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FIGURE 4. 3 layers sparse autoencoder (TAE) + softmax (SMC)
architecture.

SMC
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FIGURE 5. RBM plus Softmax (SMC) architecture.

The energy function of the model is given by [5].
v H
EV.HO==3 > WunVuHy

Y BV Y AuHy)

where 6 = {W, B, A} is the model parameter, A,,,, and B,
are the biases of the hidden and visible units, respectively.

C. EVALUATION METRICS
For performance evaluation, we have considered three evalu-
ation metrics namely:
1) K-Fold cross-validation: The proposed CAD scheme
performance is validated using K-Fold cross-validation.
2) Class Performance: Effectiveness of the proposed
model is measured in terms of mean square error level
and ROC curve.
3) Baselines for Comparisons: The proposed CAD
scheme is compared with well-known deep learning
techniques in terms of accuracy and detection time.

V. EXPERIMENTS AND RESULTS

A. COMPUTATIONAL CONSIDERATION

Our experiments carried out on a server with Intel Core
i5 CPU with 16 GB of RAM with software implementa-
tion being performed using MATLAB 2016 b. The size of
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each normalized image was 50 x 50 pixels perfect square.
The proposed CAD scheme is compared against four other
benchmarked deep learning based algorithms for computa-
tional efficiency under a similar environment of computa-
tional consideration. In terms of detection time and accu-
racy, the proposed CAD scheme was actually more efficient
compared to the four other benchmarked deep learning-based
algorithms.

B. K-FOLD CROSS VALIDATION

The malaria images are split using K-Fold cross-validation
into two subgroups for K subset as testing and the other is
K-1 subsets as training. This way of randomly dividing the
data set is otherwise named as K rotation estimation. The goal
of this validation is to use each data point in order to test the
set exactly once and then train the set K-1 times to reduce
the problem of over-fitting. Figure 6. reports the performance
gradient on detection and classification on a 10-fold cross-
validation.

(Yo}
o

Accurancy
0 o]
()] ]

) ;

[
=
I

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9
10 folds

FIGURE 6. Graph for performance of the proposed CAD scheme.

At each time, nine-fold is considered for training and the
left portion for testing. We perform 10 fold cross validation
repeatedly for statistical analysis and to overcome the prob-
lem of over-fitting. Here, the classification performance of
our proposed CAD scheme over 10 runs of 10- fold cross
validation is represented in Figure 6. The 10 fold cross vali-
dation presents an evaluation study of results using statistical
metrics via sensitivity, specificity, accuracy and detection
time to note the effectiveness of the proposed scheme. The
experiment presents the performance across each fold. In Fig-
ure 6. we observe that the CAD scheme provides the highest
accuracy in fold 4-6, while is lower only in fold 7 which has
an imbalance in the distribution of subcategories of infected
and non-infected cases. The output results obtained from the
proposed scheme indicated that the extracted features were
informative. The k value decreases in fold 3 and fold 7,
due to the instability of the training sets and smaller sample
sizes. In this situation, we mainly focus on folds with better
distribution of training and testing sets and repeat runs for a
better approach.

C. CLASS PERFORMANCE
The remarkable quantitative performance of the CAD scheme
and its comparison with different models is seen from
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FIGURE 7. ROC curve on the malaria dataset using the proposed CAD
scheme representing the noninfected blood smear as Class1 and infected
as Class2.

Table 1 and is analyzed using True Positive, False Positive and
Accuracy metrics. These quantitative volumetric measures
are widely utilized in several studies [62]. The ultimate goal
of any novel CAD scheme for a deep learning method is
to achieve better generalization performance. In this paper,
the correct detection of malaria parasites of blood smear
microscopic images TP (true positives) was identified and FP,
FN refers as false positive rate and the false negative rate is
identified, respectively. After computing the TP, FP, FN and
the absolute errors, the performance of the proposed CAD
scheme is represented in an area under the receiver oper-
ating characteristic (ROC) curve and performance gradient
in Figure 7 and Figure 8 respectively.

TABLE 1. Accuracies of broadly used deep learning techniques and the
proposed method for AE + SMC, SAE + SMC, TAE + SMC, RBM, and
proposed CAD scheme.

Deep Learning Techniques Accuracy(%)
AE+ SMC 78.20
SAE+ SMC 80.70
TAE+ SMC 85.89
RBM 82.50
Proposed CAD Scheme 89.10

In this paper, it is experimentally demonstrated for the
malaria blood smear microscopic image data set, where
class I achieves infected and class II as non-infected repre-
sented in the ROC curve in Figure 7. In order to overcome
the Intra expert and inter-expert variability and reduce the
burden of clinical experts for identifying malaria parasite in
microscopic images, it is desirable to use an automatic CAD
scheme.

VOLUME 8, 2020

D. BASELINES FOR COMPARISONS

In order to discuss the effectiveness of our proposed CAD
model, the model is compared against four other deep learn-
ing models [54] as shown in Table 1. for identifying malaria
blood smear microscopic images from the dataset.

The proposed CAD network architecture has successfully
achieved an accuracy of 89.10 % on the test set using a
Softmax classifier in the malaria parasite detection task. The
performance analysis of the trained CAD scheme is evaluated
in comparison to several popular deep learning algorithms
as given in Table 1. The comparison shows CAD scheme
can detect the malaria-infected parasite microscopic images
more efficiently without removing important features. The
results in Table 1 and Table 2 toes the mark with other
researchers. Patra et al. [38] found FLANN algorithm as the
most suitable pre-processing savior to select an optimal set
of hyperparameters for the significant result. It requires less
computational time and works superior to that of Multilayer
preceptor. Madabhushi et al. [54] proved SSAE gives better
performance in automated nuclei detection of breast cancer
histopathology than other beach marked deep learning algo-
rithms. Considering the reviews, it confirms the effectiveness
of the CAD scheme.

TABLE 2. The execution time of AE + SMC, SAE + SMC, TAE + SMC, RBM,
and proposed CAD scheme when evaluated on test image of dimensions
750 x 750 pixels.

Deep Learning Techniques Detection Time (in minutes)
AE+ SMC 00:08:43
SAE+ SMC 00:12:06
TAE+ SMC 00:14:28
RBM 00:12:15
Proposed CAD Scheme 00:03:24

In Table 1, AE + SMC based malaria parasite detec-
tion method is one of the most widely used deep learning
method which puts an accuracy of 78.20% in thick malaria
blood smear microscopic image data set, with a specificity
of 87.67% and sensitivity of 67.89%. SAE + SMC is a
two hidden layered based deep learning technique provid-
ing an accuracy of 80.70% with a specificity of 79.50%
and sensitivity of 81.90%. TAE + SMC method delivers an
accuracy of 85.89% and 87.88% of specificity. The other
deep learning technique named RBM provides an accuracy
of 82.50%, a sensitivity measure of 78.60% and specificity
of 85.20%. It can be noted that there is a significant differ-
ence in order of the statistical metrics between the proposed
scheme and deep learning based benchmarked algorithms.
The Table 2 illustrates, the malaria parasite detection time for
each of these deep learning techniques. The detection time is
the time needed to finish all tasks in the workflow of the CAD
scheme, making easier detection and less time-consuming.

In this paper, we have shown an extensive comparison of
several deep learning techniques with promising results of
the proposed CAD scheme on classifying infected and non-
infected malaria parasite classes. CAD scheme is a powerful
tool for image analysis and malaria disease detection because
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FIGURE 8. Performance evaluation of bandwidth and no. of epochs to achieve mean square error level at a different no. of epochs of CAD scheme.

it makes strong and correct adjustments as per specific task,
leading to improving performance. From the Table 1, it is tan-
gible that the proposed CAD scheme outperforms the other
existing deep learning techniques in terms of accuracy. The
proposed CAD scheme has attained an F-measure of 94.50%
with a sensitivity of 93.90% and specificity of 83.10%. How-
ever, the computational complexity of the entire CAD scheme
architecture remains balance as the number of layers and
nodes in each layer increase. The proposed scheme leads
to faster learning and less computational load as seen from
Table 2 with better representation and overcomes various
problems like gradient-based optimization, overfitting, and
salient estimation of weighting features, to some extent. The
proposed model takes the least detection time of 3 minutes
24 seconds than other benchmark deep learning techniques in
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identifying malaria. The CAD scheme can capture high-level
representations of pixel intensity in an unsupervised manner
enabling the SMC classifier to work effectively for detect-
ing malaria infected images from blood smear microscopic
images.

VI. CONCLUSION

This paper addresses a novel comprehensive computer-aided
diagnosis (CAD) scheme using deep learning network to
identify the presence of malaria parasites in thick blood smear
microscopic images. The work implements a novel approach
to fast processing and delivers better results in terms of
accuracy and detection time using microscopic thick blood
smear images. Moreover, the 10- fold cross validation reflects
that the classification is reliable and is applicable to new
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patient blood smear microscopic images. Further, we found
that the CAD scheme performs much better than broadly
used deep learning techniques using the same dataset. Our
experimental results show that the CAD scheme has over-
come the faced challenges to a larger extent as summarized in
this paper and has effectively identified the infected malaria
parasites in thick blood smear microscopic images with an
accuracy of 89.10% and execution time of 3 minutes 24 sec-
onds. For better analysis and deeper classification of blood
smear images, we aim to evolve a novel simplified deep
learning model for classifying the different types of malaria
plasmodium.

REFERENCES

[1]

[2]

3

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

C. Boschi-Pinto, T. R. Dilip, and A. Costello, ““Association between com-
munity management of pneumonia and diarrhoea in high-burden countries
and the decline in under-five mortality rates: An ecological analysis,” BMJ
Open, vol. 7, no. 2, Feb. 2017, Art. no. e012639.

L. Rosado, J. M. Correia da Costa, D. Elias, and J. S. Cardoso, “A review
of automatic malaria parasites detection and segmentation in microscopic
images,” Anti-Infective Agents, vol. 14, no. 1, pp. 11-22, Mar. 2016.

M. I. Razzak, S. Naz, and A. Zaib, “‘Deep learning for medical image pro-
cessing: Overview, challenges and the future,” in Classification in BioApps
(Lecture Notes in Computational Vision and Biomechanics), vol. 26. 2018.
N. E. Ross, C. J. Pritchard, D. M. Rubin, and A. G. Dusé, “Automated
image processing method for the diagnosis and classification of malaria on
thin blood smears,” Med. Biol. Eng. Comput., vol. 44, no. 5, pp. 427-436,
May 2006.

H. Shen, W. David Pan, Y. Dong, and M. Alim, “Lossless compression of
curated erythrocyte images using deep autoencoders for malaria infection
diagnosis,” in Proc. Picture Coding Symp. (PCS), 2016, pp. 1-5.

D. K. Das, R. Mukherjee, and C. Chakraborty, ‘“Computational micro-
scopic imaging for malaria parasite detection: A systematic review,”’
J. Microsc., vol. 260, no. 1, pp. 1-19, Oct. 2015.

L. Itti, “‘Automatic foveation for video compression using a neurobiologi-
cal model of visual attention,” IEEE Trans. Image Process., vol. 13, no. 10,
pp. 1304-1318, Oct. 2004.

F. B. Tek, A. G. Dempster, and A. Kale, ‘“‘Parasite detection and identifica-
tion for automated thin blood film malaria diagnosis,” Comput. Vis. Image
Understand., vol. 114, no. 1, pp. 21-32, Jan. 2010.

S. Raviraja, G. Bajpai, and S. K. Sharma, “Analysis of detecting the
malarial parasite infected blood images using statistical based approach,”
in Proc. 3rd Int. Conf. Biomed. Eng. 2007, pp. 502-505.

X. Liand M. T. Orchard, “New edge-directed interpolation,” IEEE Trans.
Image Process., vol. 10, no. 10, pp. 1521-1527, Apr. 2001.

R. M. Slone, D. H. Foos, B. R. Whiting, E. Muka, D. A. Rubin,
T. K. Pilgram, K. S. Kohm, S. S. Young, P. Ho, and D. D. Hendrickson,
“Assessment of visually lossless irreversible image compression: Com-
parison of three methods by using an image-comparison workstation,”
Radiology, vol. 215, no. 2, pp. 543-553, May 2000.

A. Ng, “Sparse autoencoder,” Lect. Notes, vol. 72, pp. 1-19, Jan. 2011.
V. Muralidharan, Y. Dong, and W. David Pan, “A comparison of fea-
ture selection methods for machine learning based automatic malarial
cell recognition in wholeslide images,” in Proc. IEEE-EMBS Int. Conf.
Biomed. Health Informat. (BHI), Feb. 2016, pp. 216-219.

H. Yin and N. K. Jha, “A health decision support system for disease
diagnosis based on wearable medical sensors and machine learning ensem-
bles,” IEEE Trans. Multi-Scale Comput. Syst., vol. 3, no. 4, pp. 228-241,
Oct. 2017.

I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning—A
new frontier in artificial intelligence research [research frontier],” IEEE
Comput. Intell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.

V. Nair and G. E. Hinton, 3D object recognition with deep belief nets,”
in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1339-1347.

B. P. Nigam, M. K. Sundaresan, and T.-Y. Wu, “Theory of multiple
scattering: Second born approximation and corrections to Molidre’s work,”
Phys. Rev., vol. 115, no. 3, pp. 491-502, Aug. 1959.

VOLUME 8, 2020

(18]

[19]

(20]

(21]
(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

J. Schluter and C. Osendorfer, ‘“Music similarity estimation with the mean-
covariance restricted Boltzmann machine,” in Proc. 10th Int. Conf. Mach.
Learn. Appl. Workshops, Dec. 2011, pp. 469-477.

C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and D.-R. Liou, “Autoencoder for
words,” Neurocomputing, vol. 139, pp. 84-96, Sep. 2014.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

G. E. Hinton, ‘“Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.

P. Baldi and P. J. Sadowski, “Understanding dropout,” in Proc. Adv. Neural
Inf. Process. Syst., 2013, pp. 2814-2822.

D. Warde-Farley, 1. J. Goodfellow, A. Courville, and Y. Bengio, “An
empirical analysis of dropout in piecewise linear networks,” 2013,
arXiv:1312.6197. [Online]. Available: http://arxiv.org/abs/1312.6197

C. Thompson, Kevyn, and R. Nickolov, ““A clustering-based algorithm for
automatic document separation,” in Proc. Workshop Inf. Retr. OCR, From
Converting Content Grasping, Meaning, Tampere, Finland, 2002, pp. 1-5.
W. C. Mann and S. A. Thompson, “‘Rhetorical structure theory: Toward a
functional theory of text organization,” Interdiscipl. J. for Study Discourse,
vol. 8, no. 3, pp. 243-281, 1988.

D. Li, M. L. Seltzer, D. Yu, A. Acero, A. R. Mohamed, and G. Hinton,
“Binary coding of speech spectrograms using a deep auto-encoder,” in
Proc. 11th Annu. Conf. Int. Speech Commun. Assoc., 2010, pp. 1-10.

N. Hatipoglu and G. Bilgin, “Cell segmentation in histopathological
images with deep learning algorithms by utilizing spatial relationships,”
Med. Biol. Eng. Comput., vol. 55, no. 10, pp. 1829-1848, Oct. 2017.

J. Masci, U. Meier, D. Cire an, and J. Schmidhuber, ““Stacked convolutional
auto-encoders for hierarchical feature extraction,” in Proc. Artif. Neural
Netw. Mach. Learn., 2011, pp. 52-59.

C. Hu, R. Ju, Y. Shen, P. Zhou, and Q. Li, *“Clinical decision support for
Alzheimer’s disease based on deep learning and brain network,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1-6.

J. Shan and L. Li, “A deep learning method for microaneurysm detection
in fundus images,” in Proc. IEEE Ist Int. Conf. Connected Health, Appl.,
Syst. Eng. Technol. (CHASE), Jun. 2016, pp. 357-358.

S. Chen, J. Qin, X. Ji, B. Lei, T. Wang, D. Ni, and J.-Z. Cheng, “‘Automatic
scoring of multiple semantic attributes with multi-task feature leverage:
A study on pulmonary nodules in CT images,” IEEE Trans. Med. Imag.,
vol. 36, no. 3, pp. 802-814, Mar. 2017.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371-3408, Dec. 2010.

S. Rifai, Y. Bengio, Y. Dauphin, and P. Vincent, “A generative process for
sampling contractive auto-encoders,” 2012, arXiv:1206.6434. [Online].
Available: http://arxiv.org/abs/1206.6434

J. Zhang, K. Li, Y. Liang, and N. Li, “Learning 3D faces from 2D
images via stacked contractive autoencoder,” Neurocomputing, vol. 257,
pp. 67-78, Sep. 2017.

E. Hosseini-Asl, J. M. Zurada, and O. Nasraoui, ‘“Deep learning of part-
based representation of data using sparse autoencoders with nonnegativity
constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12,
pp. 2486-2498, Dec. 2016.

X. Shen and Y. Wu, “A unified approach to salient object detection via low
rank matrix recovery,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 853-860.

C. Shen and Q. Zhao, “Learning to predict eye fixations for semantic
contents using multi-layer sparse network,” Neurocomputing, vol. 138,
pp. 61-68, Aug. 2014.

C. Xia, F. Qi, G. Shi, and P. Wang, ‘“Nonlocal center—surround
reconstruction-based bottom-up saliency estimation,” Pattern Recognit.,
vol. 48, no. 4, pp. 1337-1348, 2015.

A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contex-
tual guidance of eye movements and attention in real-world scenes: The
role of global features in object search.,” Psychol. Rev., vol. 113, no. 4,
pp. 766-786, 2006.

A. M. Treisman and G. Gelade, “°A feature-integration theory of attention,”
Cognit. Psychol., vol. 12, no. 1, pp. 97-136, 1980.

G. A. Carpenter and S. Grossberg, Adaptive Resonance Theory. 2017,
pp. 24-40.

G. Kootstra, A. Nederveen, and B. D. Boer, “Paying attention to symme-
try,” in Proc. Brit. Mach. Vis. Conf., 2008, pp. 1115-1125.

94945



IEEE Access

P. A. Pattanaik et al.: Unsupervised Deep Learning CAD Scheme for the Detection of Malaria

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

H. J. Seo and P. Milanfar, ““Static and space-time visual saliency detection
by self-resemblance,” J. Vis., vol. 9, no. 12, p. 15, Nov. 2009.

R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning
for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 3586-3593.

J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu, “Background
prior-based salient object detection via deep reconstruction residual,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 8, pp. 1309-1321,
Aug. 2015.

K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolu-
tional networks: Visualising image classification models and saliency
maps,” 2013, arXiv:1312.6034. [Online]. Available: http://arxiv.org/
abs/1312.6034

B. Taille and M. G. Ortiz, “Separating inference from feature learning in
deep unsupervised visual saliency estimation,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), May 2017, pp. 1195-1201.

Q. Zhao and C. Koch, “Learning visual saliency by combining feature
maps in a nonlinear manner using AdaBoost,” J. Vis., vol. 12, no. 6, p. 22,
Jun. 2012.

G. S. Babu, P. Zhao, and X. L. Li, “Deep convolutional neural network
based regression approach for estimation of remaining useful life,” in Proc.
Int. Conf. Database Syst. Adv. Appl., 2016, pp. 214-228.

G. Li and Y. Yu, “Visual saliency based on multiscale deep features,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 5455-5463.

K. Sun, J. Zhang, C. Zhang, and J. Hu, “Generalized extreme learning
machine autoencoder and a new deep neural network,” Neurocomputing,
vol. 230, pp. 374-381, Mar. 2017.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning
for healthcare: Review, opportunities and challenges,” Briefings Bioinf.,
vol. 19, no. 6, pp. 1236-1246, Nov. 2018.

J. C. Patra and A. C. Kot, ““Nonlinear dynamic system identification using
chebyshev functional link artificial neural networks,” IEEE Trans. Syst.,
Man, Cybern. B. Cybern., vol. 32, no. 4, pp. 505-511, Aug. 2002.

J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, and
A. Madabhushi, “Stacked sparse autoencoder (SSAE) for nuclei
detection on breast cancer histopathology images,” IEEE Trans. Med.
Imag., vol. 35, no. 1, pp. 119-130, Jan. 2016.

P.P. K. Chan, Z. Lin, X. Hu, E. C. C. Tsang, and D. S. Yeung, “Sensitivity
based robust learning for stacked autoencoder against evasion attack,”
Neurocomputing, vol. 267, pp. 572-580, Dec. 2017.

C. Roa, A. Alfonso, J. E. Arevalo Ovalle, A. Madabhushi, and
F. A. G. Osorio, “A deep learning architecture for image representation,
visual interpretability and automated basal-cell carcinoma cancer detec-
tion,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.,
2013, pp. 403-410.

M. Woaniak, D. Podap, L. Kodmider, and T. Cdapa, “Automated fluores-
cence microscopy image analysis of pseudomonas aeruginosa bacteria in
alive and dead stadium,” Eng. Appl. Artif. Intell., vol. 67, pp. 100-110,
Jan. 2018.

D. Polap and M. Wozniak, “Bacteria shape classification by the use of
region covariance and convolutional neural network,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1-7.

J. A. Quinn, R. Nakasi, P. K. B. Mugagga, P. Byanyima, W. Lubega, and
A. Andama, “Deep convolutional neural networks for microscopy-based
point of care diagnostics,” in Proc. Mach. Learn. Healthcare Conf., 2016,
pp. 271-281.

G. Litjens, T. Kooi, B. Ehteshami Bejnordi, A. Arindra Adiyoso Setio,
F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak,
B. van Ginneken, and C. I. Sanchez, “A survey on deep learning in
medical image analysis,” 2017, arXiv:1702.05747. [Online]. Available:
http://arxiv.org/abs/1702.05747

94946

[61] D. Bibin, M. S. Nair, and P. Punitha, ‘“Malaria parasite detection from
peripheral blood smear images using deep belief networks,” IEEE Access,
vol. 5, pp. 9099-9108, 2017.

[62] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, ‘“‘Deep convolutional neural networks for
computer-aided detection: CNN architectures, dataset characteristics and
transfer learning,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298,
May 2016.

PRIYADARSHINI ADYASHA PATTANAIK
received the Ph.D. degree in computer science
and engineering. Her areas of expertise are med-
ical image analysis and visualization, machine
learning (deep learning), computer vision, and the
Internet of Things. Her research interests include
developing machine learning algorithms with deep
neural networks and graphical models for visual
computing, including medical image analysis and
disease detection. Collaborations further supple-
ment her experience in international research projects involving research
stay for her Postdoctoral fellowship at Telecom SudParis (Public), France.

MOHIT MITTAL (Member, IEEE) received the
B.Tech. and M.Tech. degrees in computer sci-
ence and engineering from Guru Nanak Dev
University, Amritsar, in 2010 and 2011 respec-
tively, and the Ph.D. degree from Gurukula Kan-
gri Vishwavidyalaya, Uttarakhand, India, 2018.
He is a Postdoctoral Researcher at the Department
of Information Science and Technology, Kyoto
Sangyo University, Kyoto, Japan. He has pub-
lished more than 35 research articles in various
international journals and conferences. His research interests include wire-
less sensor networks, artificial intelligence, NLP, data mining, and machine
learning.

MOHAMMAD ZUBAIR KHAN received the
Ph.D. degree in computer science and informa-
tion technology from the Faculty of Engineering,
M. J. P. Rohilkhand University, Bareilly, India,
and the M.Tech. degree in computer science and
engineering from U. P. Technical University, Luc-
know, India, in 2006. He is currently working as an
Associate Professor with the Department of Com-

puter Science, College of Computer Science and
L “ Engineering, Taibah University. He has worked
as the Head and an Associate Professor with the Department of Computer
Science and Engineering, Invertis University, Bareilly. He has published
more than 40 journal articles and conference papers. He has more than
15 years teaching and research experience. His current research interests
include data mining, machine learning, parallel and distributed computing,
and computer networks. He has been a member of the Computer Society of
India, since 2004.

VOLUME 8, 2020



	INTRODUCTION
	RELATED WORK AND OUR MOTIVATION
	PROPOSED CAD SCHEME
	EXPANSION OF INPUT DATA
	COMPRESSION OF INPUT DATA
	CLASSIFICATION

	DATA COLLECTION AND METHODOLOGY
	DATASET
	OTHER COMPARATIVE DEEP LEARNING BASED MODELS
	AE + SMC BASED MALARIA PARASITE DETECTION METHOD
	SAE + SMC BASED MALARIA PARASITE DETECTION METHOD
	TAE + SMC BASED MALARIA PARASITE DETECTION METHOD
	RBM + SMC BASED MALARIA PARASITE DETECTION METHOD

	EVALUATION METRICS

	EXPERIMENTS AND RESULTS
	COMPUTATIONAL CONSIDERATION
	K-FOLD CROSS VALIDATION
	CLASS PERFORMANCE
	BASELINES FOR COMPARISONS

	CONCLUSION
	REFERENCES
	Biographies
	PRIYADARSHINI ADYASHA PATTANAIK
	MOHIT MITTAL
	MOHAMMAD ZUBAIR KHAN


