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ABSTRACT A phase change memory (PCM) model suitable for neuromorphic circuit simulations is
developed. A crystallization ratio module is used to track the memory state in the SET process, and an active
region radiusmodule is developed to track the continuously varying amorphous region in the RESET process.
To converge the simulations with bi-stable memory states, a predictive filament module is proposed using a
previous state in iterations of nonlinear circuit matrix under a voltage-driven mode. Both DC and transient
analysis are successfully converged in circuits with voltage sources. The spiking-time-dependent-plasticity
(STDP) characteristics essential for synaptic PCM are successfully reproduced with SPICE simulations
verifying the model’s promising applications in neuromorphic circuit designs. Further on, the developed
PCM model is applied to propose a neuron circuit topology with lateral inhibitions which is more bionic
and capable of distinguishing fuzzy memories. Finally, unsupervised learning of handwritten digits on
neuromorphic circuits is simulated to verify the integrity of models in a large-scale-integration circuits. For
the first time in literature an emerging memory model is developed and applied successfully in neuromorphic
circuit designs, and the model is applicable to flexible designs of neuron circuits for further performance
improvements.

INDEX TERMS Neuromorphic circuits, phase change memory, SPICE model, spike-time-dependent
plasticity, spiking neural networks.

I. INTRODUCTION
Traditional computers are based on the Von Neumann
structure, which results in a spatial separation between the
processor and the memory. Due to the existence of the
memory wall problem [1], most of the time is consumed
during data migration from memory to CPU when process-
ing big data, which even becomes a major factor affecting
computer speed and power consumption [2]. However, in the
biological neural brain, the storage unit and the logic unit are
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integrated, and data does not need to be transferred between
them. When appropriate connections are established between
different neurons, a neural network with storage and com-
puting functions can be formed. In the 1980s, Carver Mead,
a computer scientist at the California Institute of Technology,
first proposed the concept of ‘‘neuromorphic’’ [3], which
aims to use the characteristics of analog circuits to imitate the
human nervous system, and finally create chips that simulate
the human brain.

The implementation of neuromorphic circuits depends on
non-volatile memory. Among the many new non-volatile
memories, PCM is considered to be one of the next generation
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of mainstream non-volatile memories due to its advantages
such as high read speed, high write speed, long life, stable
storage, simple process, and multi-level storage. In order to
improve the yield of the chip, circuit simulation needs to be
performed on the chip before the actual chip manufacturing,
and device models are essential for circuit simulation [4]–[6].

Neural networks use brain-like topologies for information
processing and are popular because they can effectively solve
practical problems (such as speech recognition, face recogni-
tion, etc.) [7]–[9]. Compared with artificial neural networks
(ANN), the spiking neural network (SNN) contains timing
information, has stronger biological interpretation, and has
the advantages of event-driven and low power consumption.
Considering its advantages, SNN is considered as the next
generation neural network [10], [11].

Currently, Some researchers implement neural net-
work system-level simulation without actual synapse
models [12]–[16], and other reseachers [17] is directly man-
ufacturing PCM-based neural network chips. However, in the
design and simulation of neuromorphic circuits based on
PCM synapses, an effective PCMmodel is needed. Modeling
SNN requires more detail time tracking model which is
seldom implemented in previous PCM model.

It is common that the resistance change in a PCM cell
is usually expressed in term of the input current [18], [19].
However, the input in a real circuit and the solution method in
a circuit simulator usually take voltage as an input other than
current. As a result, a voltage-driven model is more impor-
tant in practical situation to mimic the behavior of a PCM
cell. Moreover, current PCM models mostly focus on the
application of the memory [20]–[22], neglecting the change
of its analog characteristics, such as the partial RESET
characteristic. To better implement neuromorphic ciucuits,
a voltage-driven PCM SPICE model that can reflect the
analog characteristics is urgently needed. It is reported that
the lateral inhibition mechanism of the human brain can
distinguish fuzzymemories [23], [24]. In order to improve the
bionics and practicality of neuromorphic circuits, the lateral
inhibition function in neuromorphic circuits also needs to be
considered.

In this work, a time tracking PCM model suitable for neu-
romorphic circuits will be developed, and the functionality
and integrity of the PCMmodel will be verified in large-scale-
integration circuits simulation.

II. SPICE MODELING OF PCM
At present, the mushroom structure of PCM is widely used
in academia and industry. As shown in figure 1, a phase
change material (GST) is sandwiched between top electrode
and bottom electrode. In figure 1, TE is top electrode, BE
is bottom electrode, zact is the radius of the active region,
WG is the width of the top electrode, WBE is the width of
the bottom electrode,HG is the thickness of the phase change
layer, HBE is the height of bottom electrode and rBE is the
radius of bottom electrode. The PCM shown in figure 1 is in
a partial SET state, and the active region has been partially

FIGURE 1. Schematic diagram of commonly used PCM mushroom
structure.

crystallized, but a stable conductive path has not yet been
formed. The filament shown in the figure 1 is a dynamic
conductive path. When the electric field inside the PCM
exceeds a certain switching threshold, dynamic conductive
filaments appear. This will significantly reduce the resistance
and make the PCM enter a unstable low resistance state.
When the voltage drops and the electric field is below the
switching threshold, the PCM returns to the high resistance
state. This process is called ovonic threshold switch (OTS)
effect [25].

A. MODELING THE GRADUAL SET PROCESS
Memory is thought to be encoded by changes in synap-
tic strength [26]. To achieve long-term potentiation (LTP),
synaptic strength needs to be continuously enhanced. The
continuously adjustable nature of PCM is very similar to
the non-linear adjustment of biological synapses. Continuous
enhancement of PCM synaptic conductance can achieve LTP.
It is reported in [27] that PCM is suitable for multi-level
storage, and the continuously adjustable feature of PCM has
been experimentally proven by reseachers of IBM [17].

In the process of PCM synapse modeling, the dynamic
state variable Cf is used to track the crystal fraction of
the active area of PCM. According to the phase change
dynamics the crystal fraction is determined by the differential
Johnson-Mehl-Avrami (JMA) equation [28], which resem-
bles a RC circuit equation format. As shown in (1), a RC cir-
cuit equation is used to represent the JMA equation, in which
the node voltage VCf represents the Cf [29].

CSET ·
dVCf
dt
= ISET −

VCf
RSET

(1)

In (1), CSET is equivalent capacitance, ISET is equivalent
current and RSET is equivalent resistance. By setting a SET
pulse of appropriate width and height, a slow increase in the
crystallization ratio Cf can be achieved. Figure 2 shows the
circuit and simulation results. In each set of simulations,
the pulse height remains unchanged. After each pulse is
applied, the Cf of the PCM is recorded. In the next set of
simulations, the pulse height is maintained at another value.
The results show that within a certain range, the higher the
pulse height, the faster the crystallization.
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FIGURE 2. Circuit schematic of modeling the gradual SET process and
corresponding simulation results. In each set of simulations, the height
and width of the pulses are the same. E.g., all 20 pulses have a pulse
height of 2.25V and a pulse width of 10ns. In this work, pulses are applied
one by one, and the crystalline ratio Cf of the PCM is recored after each
pulse.

B. MODELING THE GRADUAL RESET PROCESS
In addition to LTP, long-term depression (LTD) is also widely
found in the nervous system and is considered to be an impor-
tant basis for learning and memory [30]. The continuous
weakening of PCM synaptic conductance can achieve LTD.

During PCM synapse modeling, the dynamic variable zact
is used to track the active area radius of the PCM. zact is
determined by the internal temperature of the active area
during the RESET operation. Reference [20] gives an equa-
tion for calculating the radius of the active area. The radius
depends on the maximum temperature inside the active area.
However, there is no detailed description of the temperature
calculation, which cannot be used directly in the continuous
partial RESET process. In order to calculate the dynamic
active area radius, the maximum temperature of each partial
RESET process needs to be recorded. The local maximum
temperature Tmax including timing and spatial information
is written as (2). Where Tmelt is the melting temperature,
StranMelt (T ) is a smoothing function about the melting tem-
perature, and StranMax(T ) is a smoothing function about the
maximum temperature, as shown in (3),(4) respectively.

Tmax(t +1t) = Tmelt · StranMelt (T )+ [1− StranMelt (T )]
· [1− StranMax(T )] · T (2)

StranMelt (T ) =
1

1+ exp(T−Tmelt
τmelt

)
(3)

StranMax(T ) =
1

1+ exp(T−Tmax
τmax

)
(4)

In (3), τmelt is melting temperature conversion time con-
stant, and in (4), τmax is maximum temperature conversion
time constant. Finally, zact is modified as (5),where HG is the
phase change layer height of PCM, and Ttop is the temperature
of the top electrode (default is room temperature).

zact (t +1t) = zact (t) · StranMelt (T )+ [1− StranMelt (T )]

· [1−StranMax(T )] ·
Tmax − Tmelt
Tmax − Ttop

· HG (5)

FIGURE 3. The embedded diagram is the circuit schematic of this process.
The red line is the simulation result of PCM conductance change with
pulse number during gradual RESET process. The blue line is the
simulation result of the active area radius. In this process, each pulse
causes the internal temperature of the PCM to exceed the melting
temperature. The internal temperature increases as the pulse height
increases, which causes the radius of the active region to become larger,
and finally causes the conductance of PCM to decrease.

Figure 3 shows the circuit and simulation results of grad-
ual RESET process. In this process, each time a pulse is
applied, the corresponding resistance value is recorded. The
pulse width is the same, but the height gradually increases.
The increase in pulse height causes the internal temperature
of the PCM to increase, resulting in an increase in the radius
of the active area. This makes the amorphous region larger,
and the conductance of the PCM further decreases.

C. SPICE MODELING METHODS
The structure-based PCM resistance model can be expressed
as (6) [20]. In the equation, RC is the crystalline resistance
outside the active area, and gf represents the dynamic con-
ductance of the active area filament. RA represents the static
resistance of the active area and it can be calculated by
conformal mapping, as shown in (7) [20].

RPCM = RC +
RA

1+ gf × RA
(6)

RA =
ρact

π

HREeff
(
k ′wRE

)
WREeff

(√
1− k

′2
wRE

)

×

 1
zact + 2WBE

+

2 ln
(
2zact
WBE

)
√
4z2act −W

2
BE

 (7)

In (7), HREeff and WREeff are the effective height and
width after mapping the hemisphere shaped top electrode to
a line parallel to the bottom electrode. kwRE and k ′wRE are the
modulus of the complete elliptical integral of the first kind for
WREeff andHREeff that satisfy the condition k

′2
wRE+k

2
wRE = 1.

The effective resistivity of the active region ρact is described
as follows [31]:

ρact = ρamo + Cf
(
ρcry − ρamo

)
(8)
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Therefore, RA depends on the active area radius zact and
the crystal fraction Cf .
The circuit schematic of voltage-driven PCM simulation

analysis is shown in figure 4(a). As shown in figure 4(b),
the load line of the voltage source intersects with the resis-
tance characteristic curve of the high-impedance PCM at
point B(V2, I2), and intersects with the resistance charac-
teristic curve of the low-impedance PCM at point A(V1, I1).
Supposing the PCM is in a high-resistance state at the begin-
ning. During the SET process, the initial steady-state point in
the circuit is point B. Since V2 > Vth at this time, OTS effect
occurs and a low-resistance filament appears in the active
area, causing PCM to enter a temporary low resistance state.
At this time, the steady state point in the circuit is point A.
However, since V1 < Vth, the filament disappears, and PCM
returns to high-resistance state, so the steady-state point in the
circuit returns to point B. This situation will cause the voltage
oscillation phenomenon across the PCM, jumping back and
forth between V1 and V2.

FIGURE 4. (a) Schematic diagram of voltage-driven PCM simulation
analysis. (b) Schematic diagram of bistable points of PCM. The solid red
line indicates the SET operation of the PCM from a high-impedance state
to a low-impedance state, and the dashed green line indicates a
low-impedance PCM state. The expression of power load line is

V
VOC

+
I

ISC
= 1, and the expression of PCM resistance characteristic cruve

is V = I × RPCM . Where VOC is open-circuit voltage, ISC is short-circuit
current and RPCM is nolinear.

In order to solve the voltage oscillation problem caused
by the bistable state in the PCM model, a new conductivity
equation of the filament that depends on the previous state is
proposed, as shown in (9).

gf = StranGf × gfOld × exp(
−1t
τlifetime

)× Stranfss

+ (1− StranGf )× gfCal (9)

In this equation, gfOld is the filament conductance of the
previous state. 1t is the time difference between the current
state and the previous state. τlifetime is the disappearance time
constant of the filament. gfCal is the calculate conductance of
the current state, as shown in (10), wheremf is the conductiv-
ity coefficient of the filament,Vth is the high threshold voltage

of filament and τst is the smoothing transition time constant.
StranGf is a smoothing functionwhich depends on the filament
conductances of the previous state and the calculate conduc-
tance, as shown in (11). Stranfss is a smoothing function which
depends on the lower threshold voltage of filament, as shown
in (12).

gfCal =
mf × (1− Cf )

zact
×

1

1+ exp(−V−Vth
τst

)
(10)

StranGf =
1

1+ exp( gfCal−gfOld
τst

)
(11)

Stranfss =
1

1+ exp(V−Vfss
τst

)
(12)

During the SET process, the OTS effect occurs when
V > Vth, the PCM changes from a high resistance state
to a low resistance state, and the steady state point in the
circuit changes from point B to point A. When calculating
the conductance of the current state, even if V1 < Vth, since
the gf will not immediately become 0, the circuit’s steady
state point will remain near point A. The PCM performs the
SET process until a phase change occurs, from amorphous
state to full crystalline state. At this time, the PCM is in a
stable low-impedance state, and the steady-state point of the
circuit is maintained at point A (V1, I1).

D. PCM MODEL FUNCTIONAL VERIFICATION:DC
ANALYSIS AND TRANSIENT ANALYSIS
The circuit diagram and the simulation results of DC analysis
are shown in figure 5. The voltage source scans forward, and
the initial state of the PCM is a high-impedance state. When
the voltage across the PCM is smaller than the threshold
voltage (V < Vth), PCM is in a high-impedance state, so the
current is very small. When V > Vth, a filament appears.
The resistance is in a temporary low-resistance state and the
current increases. In the DC simulation, each state point is
considered to be a steady state, so the PCM undergoes a

FIGURE 5. The resistance characteristic curve of PCM when the series
resistance Rs takes different values in the DC forward scan.Embedded
figure is DC analysis circuit schematic.
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SET process under a large current and sufficient Joule heat,
from an amorphous state to a crystalline state. Because the
conductance of the PCM changes during the SET process,
when different static resistances Rs are connected in series,
the voltage across the PCM will jump in the circuit, showing
different degrees of snapback. The larger Rs, the more obvi-
ous the snapback phenomenon.

In order to further verify the practicability of the PCM
model, a transient analysis simulation is performed. The
schematic diagram of the simulation circuit and the simu-
lation results are shown in figure 6. In the transient simu-
lation analysis, the SET process is performed first, and the
snapback phenomenon can be seen from the figure 6(c).
Figure 6(e) shows the decay of filament conductance over
time. After the SET process is performed, the PCM changes
from a high resistance state to a low resistance state, as shown
in figure 6(f). The following is the RESET process. After
the RESET, the resistance value of the PCM returns to the
high-resistance state.

FIGURE 6. (a) Trans analysis simulation circuit schematic. (b) Voltage of
the pulse source, first perform SET operation and then RESET operation.
(c) Voltage across PCM. (d) Change of crystallization ratio (Cf ). (e) Change
of filament conductance (gf ). (f) Change of PCM resistance.

III. BUILDING CIRCUITS BASED ON PCM MODELS TO
MIMIC BIOLOGICAL STDP
In the synaptic design of neuromorphic circuits, reseachers
of IBM proposed a 2T1R (2 Transistors and 1 Resistance)
structure [17]. Compared with the traditional 1T1R structure,
the 2T1R structure can reduce the capacitance from 1 µF

to 1 pF, which can not only reduce the layout area of the
capacitor, but also reduce the power consumption during
neural network training.

Since the leaky-integrate-and-fire (LIF) neuron circuit
model has a simple structure and has basic biological neuron
properties [32], it is often used to mimic biological neurons.
The model is described as (13), where I (t) is signal input
current, Vm(t) is cell membrane potential, and Rm is cell
membrane equivalent impedance.

I (t)−
Vm(t)
Rm
=
dVm(t)
dt

(13)

Multiple neurons are connected by synapses to form a
neuromorphic circuit suitable for learning. Figure 7(a) shows
a pre-neuron, post-neuron, and synaptic structure diagram
between them. This structure implements a LIF neuron circuit
model. The synaptic connection of this neural circuit diagram
uses a 2T1R structure. The capacitance on the post-synaptic
neuron represents the biological cell membrane potential.
If the pre-synaptic neuron does not generate LIF word line
(LIF WL) pulses, the voltage of this capacitor will be slowly
charged and returned to a high level, at which time the neuron
is at resting state. When the pre-synaptic neuron generates a
LIF WL pulse, the pre-synaptic neuron will generate a STDP
word line (STDP WL) pulse at the falling edge of the LIF
WL pulse and act on the gate of the transistor M2. At this

FIGURE 7. (a) Schematic diagram of neuron circuit structure. When in LIF
WL mode, the discharge path of the capacitance of the post-synaptic
neuron is C1->M1->PCM->GND. When in STDP WL mode, the current path
through the PCM synapse is STDP BL->M2->PCM->GND. (b) Overlap
schematic of STDP WL pulse and STDP BL pulse. Red: from pre-synaptic
neuron, applying on the gate of transistor M2; Blue: from post-synaptic,
applying on the drain of transistor M2 [17].
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time, the neural circuit is in LIF mode, and the capacitance
of the post-synaptic neuron will leak through the PCM. The
leakage speed depends on the resistance of the PCM. When
the voltage of the capacitor is lower than the threshold Vth,
the post-neuron will fire. This will propagate LIF WL pulses
to the neurons in the next layer, and after a certain time delay,
STDP bit line (STDP BL) pulses will be generated to put the
neuromorphic circuit into STDP mode. The overlap of the
STDP BL pulse and the STDP WL pulse in time determines
the resistance value of the transistor M2, which affects the
current flowing through the PCM. As shown in figure 7(b),
when the left side of STDP WL pulse overlaps with STDP
BL pulse, the current flowing through the transistor M2 is
large enough to cause a partial RESET process of the PCM.
If the right side of STDP WL pulse overlaps with STDP BL
pulse, the current flowing through the transistor M2 can only
cause the partial SET process of the PCM.

In order to verify the STDP function of this neuromor-
phic circuit, a 1-neuron-2-synapses neuromorphic circuit was
constructed and simulated on the SPICE platform. The sim-
ulation results are shown in figure 8. The simulation time is
within 1 period (1µs). The LIFWL pulse of pre-synaptic neu-
ron1 arrives first, and the LIF WL pulse of pre-synaptic neu-
ron2 then appears. Since the LIF WL pulses of pre-synaptic

FIGURE 8. Simulation results of STDP test for neuromorphic circuit
(simple 1 neuron with 2 synapses). (a) When V < Vth, the neuron will be
activated and output the Fire signal. (b) STDP BL of post-synaptic
neuron:when the neuron is activated, STDP BL pulse is generated after a
delay. (c) LIF WL of pre-synaptic neuron1. (d) STDP WL of pre-synaptic
neuron1: at this time, the right side of STDP WL pulse overlaps with STDP
BL pulse, resulting in a partial SET operation of PCM. (e) The resistance
value R1 is calculated by (6). After the partial SET operation occurs,
the increase in Cf causes the resistance of the PCM to decrease. (f) LIF
WL of pre-synaptic neuron2. (g) STDP WL of pre-synaptic neuron2: at this
time, the left side of STDP WL pulse overlaps with STDP BL pulse,
resulting in a partial RESET operation of PCM. (h) The resistance value
R2 is calculated by (6). After a partial RESET operation, both zact and Cf
change. Cf is affected by the RESET cooling rate, and zact is affected by
the maximum temperature. As a result, the partial RESET process causes
the resistance of the PCM to increase.

neuron1 cause post-synaptic neuron fire, it is considered to
contribute to post-synaptic neuron fire. At this time, the right
side of STDP WL pulse of pre-synaptic neuron1 overlaps
with STDP BL pulse, and the partial SET process occurs
in synapse1. In contrast, the LIF WL pulse of pre-synaptic
neuron2 arrives after the post-synaptic neuron fires, and it is
considered that the LIF WL pulse does not contribute to the
post-synaptic neuron fire. Therefore, the left side of STDP
WL pulse of pre-synaptic neuron2 overlaps with STDP BL
pulse, which causes a partial RESET process.

For synapses, the trigger time of the LIF WL pulse
of the pre-synaptic neuron is tpre, and the trigger time of
the post-synaptic neuron is tpost . If 1t = tpost − tpre > 0,
the synapse will undergo the SET process. The con-
tact conductance increases, i.e. the synaptic weight W
(neuron connection strength) increases, 1W > 0; if
1t = tpost − tpre < 0, the synapse undergoes a RESET pro-
cess, and the synaptic conductance decreases, i.e. the synaptic
weightW decreases,1W < 0. Figure 9 shows the simulation
results of the STDP test based on the 2T1R structure. The
relationship curve between the PCM synaptic weight changes
relatively (1WW ) and the relative time

(
1t = tpost − tpre

)
is

similar to the shape of experimental statistics of [17]. The
synapse has strong spike-time-dependent plasticity, which
shows that the neuromorphic circuit constructed in this paper
is suitable for neural network applications.

FIGURE 9. STDP comparison of simulation results based on PCM model
and experimental statistics of [17]. 1W /W is the PCM synaptic weight
changes relatively, Time is normalized (tpost − tpre).

IV. CIRCUIT DESIGN BASED ON PCM MODEL:
NEW NEUROMORPHIC CIRCUIT STRUCTURE FOR
LATERAL INHIBITION
The circuit implementation of the lateral inhibition mecha-
nism between neurons in the same layer is shown in figure 10.
M3 is a NMOS transistor, andM4 is a PMOS transistor.When
in LIF mode, the Pctrl wire transmits a high level, and the
Nctrl wire transmits a high level. At this time,M3 is turned on
andM4 is turned off. The charge on the capacitor C1will flow
to ground through M3->M1->PCM->GND. When there is a
neuron fire, the module ‘‘Inhibition and Refractory Control’’
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FIGURE 10. Circuit diagram of the neuromorphic circuit for lateral
inhibition. M3 is NMOS and M4 is PMOS. The ‘‘Inhibition and Refractory
Control’’ macro model is used to control the opening or closing of M3 and
M4 to achieve refractory and lateral inhibition of neuron 1 and neuron 2.

will detect the fire signal. At this time, the Pctrl wire transmits
a low level and the Nctrl wire transmits a high level. The
neuron that just fired entered the refractory period, and will
return to LIF mode after the refractory period. Neurons with-
out fire in the same layer are affected by lateral inhibition.
The capacitor C1 (cell membrane potential) is charged to a
high level and is in a resting state.

V. LEARNING CHARACTERISTICS OF NEUROMORPHIC
CIRCUIT FOR UNSUPERVISED LEARNING
In order to verify the effectiveness of the PCMmodel used in
neuromorphic circuit, unsupervised learning is performed in
this neuromorphic circuit. The unsupervised learning process
is shown in figure 11(a). In this spiking neural network,
the input is a 7× 7 picture. Figure 11(b) shows the schematic
of the spiking neural network circuit architecture used in
this paper. In this spiking neural network, the input layer
contains 49 input neurons (pre-synaptic neuron), and the
output layer contains 2 neurons (post-synaptic neuron). Each
post-synaptic neuron is connected to 49 pre-synaptic neurons
through 49 synapses, and the strength of the synaptic connec-
tion is reflected in the conductance of PCM. The closer the
neurons are connected, the greater the conductance of PCM.

The encoding method used in this paper is time-to-first-
spike encoding [33]. This encoding method is described
by (14). In this equation, TimeLIF WL represents the time

FIGURE 11. (a) Unsupervised learning flowchart for a spiking neural
network (b) A schematic diagram of the circuit architecture of a spiking
neural network, where 49 input neurons correspond to 49 pixels of the
image.

of pulse emission, Valuepixel represents the numerical value
of the corresponding pixel, and WidthSTDP WL represents the
waveform width of STDP WL pulse.

TimeLIF WL =

(
1−

Valuepixel
255

)
×
WidthSTDP WL

2
(14)

Time-to-first-spike encoding can be further described as
figure 12. The left side of the figure is a schematic dia-
gram of a 7 × 7 pixel matrix, and each grid represents a
pixel. Each picture with a size of 7 × 7 can be regarded as
such a two-dimensional matrix, and the values in the matrix
represent the numerical value of the corresponding pixels.
The 2-dimensional matrix is converted into a 1-dimensional
vector in the manner shown in the figure, and a vector of
length 49 is obtained, which corresponds to 49 input neurons.
The higher numerical value of the pixel, the earlier the neuron
emits pulses; the lower numerical value of the pixel, the later
the neuron emits pulses.

This paper uses the neuromorphic circuit structure shown
in figure 7 to build a 49 × 2 neural network, which is
shown in figure 11(b). Then assigning initial values to the
weights of the neural network randomly and uniformly. The
neural network contains 2 post neurons, each of which has
49 synapses. In the ‘‘MNIST’’ dataset, the picture ‘‘0’’ is
randomly selected, and the picture is compressed into a
picture with a size of 7 × 7 using a bilinear interpolation
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FIGURE 12. The coding form of the input data of spiking neural networks,
using time-to-first-spike encoding method.

FIGURE 13. Example of spiking neural network used for unsupervised
learning. (a) The input picture of the neural network when learning ‘‘0’’,
using linear interpolation to compress the MNIST handwritten digit ‘‘0’’
from a 28× 28 pixels matrix to 7× 7 pixels matrix, where each pixel
corresponds to an input neuron. (b) When learning picture ‘‘0’’,
the synaptic weight of neuron 1 is compared before and after training.
(c) When learning picture ‘‘0’’, neuron 2 has no synaptic weight changes
due to the lateral inhibition. (d) The input picture of the neural network
when learning ‘‘1’’, where each pixel corresponds to an input neuron.
(e) When learning picture ‘‘1’’, neuron 1 has no synaptic weight changes
due to the lateral inhibition. (f) When learning picture ‘‘1’’, the synaptic
weights of neuron 2 are compared before and after learning.

method, as shown in figure 13(a). The whiter the color of a
pixel, the higher numerical value of the pixel, and the earlier
the time corresponding to the pulse emission. In contrast,
the darker the color of a pixel, the later the pulse is emitted.

The picture shown in figure 13 (a) is used as the input of the
neural network to perform unsupervised learning. The change
of synaptic conductance of neuron 1 before and after learning
is shown in figure 13 (b). After learning, neuron 1 can auto-
matically learn the information of the input picture without
the teacher’s supervision. The synaptic conductance of input
neurons with high pixel numerical value increases, while
the synaptic conductance of input neurons with low pixel
numerical value decreases. If the next input picture is similar
to the previous input picture, the neuronwill bemore sensitive
and fire earlier. Similar to biological neuron, the connections
between neurons will change under the stimuli of the external
environment, making the organism more sensitive to external

FIGURE 14. (a) Schematic diagram of the energy consumption of each
synapse (49 synapses) connected by a post-synaptic neuron when
learning the handwritten number ‘‘0’’. The unsupervised learning time is
1 period. (b) Schematic diagram of the energy consumption of each
synapse (49 synapses) connected by a post-synaptic neuron when
learning the handwritten number ‘‘1’’.

stimuli. When learning picture ‘‘0’’, neuron 1 fires first. Due
to the lateral inhibition, neuron 1 does not fire, so the synaptic
weight of neuron 1 does not change after learning, as shown
in figure 13 (c).

As shown in figure 13(d), when the input picture ‘‘1’’ is
given to the neural network, unsupervised learing of ‘‘1’’ in
neural network is performed. The synapse of neuron 1 before
and after learning is shown in figure 13(e). Due to the effect
of lateral inhibition, there is no change in the synaptic weight
of neuron 1.When learning picture ‘‘1’’, the synaptic conduc-
tance of neuron 2 is shown in figure 13(f), which shows that
neuron 2 can learn the information of number ‘‘1’’.

In unsupervised learning of handwritten digit ‘‘0’’,
the power consumption of neuron 1 and neuron 2 is shown
in figure 14(a). Since neuron 1 fires first, neuron 2 does not
fire because of lateral inhibition. Therefore, neuron 1 con-
sumes more power than neuron 2. In the unsupervised learn-
ing of handwritten digit ‘‘1’’, since neuron 2 fires first, neuron
1 does not fire due to the effect of lateral inhibition, so the
power consumption of neuron 2 is greater.

VI. CONCLUSION
This paper presents a time tracking PCM model with analog
characteristics, which is suitable for neuromorphic circuits.
The state variables Cf and zact are used to track the crystal
fraction and active area radius, respectively. The improved
equation of zact can reflect not only spatial information but
also temporal information, which is suitable for continu-
ous changes in synaptic conductance. Using the conduc-
tance of the filament’s previous state, the convergence of the
voltage-driven model is improved. This paper validates the
DC analysis and transient analysis of the model, and validates
STDP on the 2T1R structure of reseachers from IBM, further
illustrating the availability of the model. In order to improve
the bionics of neuromorphic circuits and distinguish fuzzy
memories, a method of implementing lateral inhibition mech-
anism in neuromorphic circuits has been proposed. It is the
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first time in literature to discuss the learning characteristics
of a spiking neural network based on PCM at the level of
circuit simulation. Unsupervised learning of the handwritten
digit ‘‘’0’’ and the handwritten digit ‘‘1’’ verifies the integrity
of models in a large-scale-integration circuits.

The PCM model proposed in this work provides a first
demonstration on the methodology to model the time evo-
lution of a PCM device, which is of great significance for
the simulation of neuromorphic circuits. There are still a
lot of possible refinements in term of the device physics
and efficiency enhancement. For example, the time evolution
of the filament formation and the crystallization process of
active region.
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