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ABSTRACT In this paper, an asymptotic bound on the recovery error probability of a sparse signal is derived
for the orthogonal matching pursuit algorithm. The proposed bound is based on the support recovery analysis
with a random measurement matrix, which gets closer to the empirical bound tightly in a large system and
high signal-to-noise ratio regime. During recovery, all signal associated parameters introduced in the existing
analysis are considered together. Furthermore, the necessary conditions for the conventional bound derivation
such as the minimum value limit of non-zero coefficients in the sparse signal can be relaxed in our proposed
approach. Through numerical evaluations, our theoretical performance bounds are demonstrated to be close
to the simulated results, notably closer than those obtained previously.

INDEX TERMS Compressive sensing, orthogonal matching pursuit, support recovery.

I. INTRODUCTION
In general, signals are sampled at least at a Nyquist sampling
rate, corresponding to twice the maximum frequency of inter-
est for signal reconstruction. However, it may be inefficient
to sample at a Nyquist rate for a signal, when the signal can
be sparsely represented in a transformed domain. For this
reason, compressive sensing (CS) has received a considerable
attention in that a sparse signal can be recovered from fewer
samples than the Nyquist requirement. CS has been applied
to various applications such as wireless communications, and
image compressions [1], [2].

In most applications of CS, a noisy measurement can be
expressed as

y = 8s+ n, (1)

where 8 ∈ RL×N is a measurement matrix, and s ∈
RN×1 is a Q-sparse vector (i.e., ‖s‖0 = Q) with a support
set denoted by 3 = {i|si 6= 0} whose indices indicate
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the positions of non-zero coefficients of s. Here, si stands
for the i-th element of s. The recovery problem in CS is
underdetermined because there are fewer measurements than
unknowns. However, the problem in CS can be solved by
taking advantage of the sparsity of recovering signal. Suppose
that s belongs to the set obtained by the union of all the(N
Q

)
=

N !
Q!(N−Q)! Q-dimensional subspaces in RN×1. In the

recovery problem, although an l0-optimization is good to seek
the sparsest solution, it requires a combinatorial search. Alter-
natively, the recovery problem of finding the coefficients of
Q basis vectors in the signal decomposition can be formu-
lated as an l1-optimization problem [3]. Besides, there are
low-complexity greedy algorithms to recover a sparse signal
such as orthogonal matching pursuit (OMP) and compressive
sampling matching pursuit (CoSaMP) [4].

OMP is an iterative algorithm to find out the best matching
projection with low-complexity, which is frequently used for
sparse signal recovery in CS because of its efficiency and
effectiveness. For the OMP, the best column index can be
chosen by searching for the most closely correlated column
in the measurement matrix with the current residual vector at
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each step. At each step, the index of the selected column is
included in the estimated support set and the residual vector
is updated by projecting the observation onto the linear sub-
space spanned by the columns in the set. Detailed procedures
are provided in Algorithm 1.

Algorithm 1 OMP Algorithm
Input: y, 8, and stopping criterion
Output: ŝ ∈ RN×1, and 3̂

Notation : q is an iteration index. ŝ and 3̂ denote esti-
mated sparse signal and estimated support set, respec-
tively. In addition, r(q) is the q-th residual vector.
Initialization : q = 0, 3̂(0) = ∅, and r(0) = y

1: while Stopping criterion (e.g., q < Q) do
2: q = q+ 1
3: φ(q) = argmax1≥j≥N |〈r(q−1),8j〉|

4: 3̂(q) = 3̂(q−1) ∪ {φ(q)}

5: ŝ(q) = argmin
z∈E|3̂(q)|

‖y−8
3̂(q)

z‖
6: r(q) = y−8

3̂(q)
ŝ(q)

7: end while
8: return ŝ = ŝ(q), and 3̂ = 3̂(q)

Despite the weaknesses such as poor reconstruction per-
formance in a low signal-to-noise ratio (SNR), OMP has
been widely used with other strengths owing to its simple
procedures, such easy and fast implementability with low
complexity. In particular, it is suitable for CS recovery in
wireless communications and data compressions for Internet
of things (IoT) because IoT devices have limited hardware
resources (e.g., small memory, low battery) with low pro-
cessing power [5], [6]. Thus, it is important to investigate
theoretical performance predictions of OMP for applications,
which is a primary motivation of this study.

The accuracy of the support recovery is one of the most
important issues in CS. Once the support set is correctly
reconstructed, (1) is well-posed and provides an accurate
estimate of s using the least square approach [7]. There-
fore, in some applications, the estimation of a sparse signal
refers to the recovery of the support set. For example, dis-
tributed detection problem can be solved using CS and the
estimation performance is directly related to the accuracy
of support recovery [8]. Furthermore, statistical performance
of support recovery with a random measurement matrix is
required in some applications. For example, in CS encryption,
a measurement matrix used as a secret key can be randomly
changed to enhance the security (e.g., one-time pad) [9]–[11].
To evaluate the performance of these applications, a statistical
recovery performance for ensemble should be analyzed.

Two features of a measurement matrix are used to analyze
the support recovery of OMP. One is the restricted isometry
property (RIP) and the other is the mutual coherence. For the
RIP, the restricted isometry constant (RIC) of order Q can be
defined as the smallest constant of δQ such that

(1− δQ)‖s‖22 ≤ ‖8s‖
2
2 ≤ (1+ δQ)‖s‖22. (2)

FIGURE 1. Comparison of analyses for support recovery in OMP.

There exist several studies using the RIP to see the perfor-
mance of the support recovery of OMP in [12]–[20]. Most
of these provide sufficient conditions for the exact support
recovery of OMP theoretically. In [14], a sufficient condition
of the RIC for the exact recovery in a noiseless case is
given by δQ+1 < 1

3
√
Q
. In addition, in a noisy case, when

δQ+1 <
1

√
Q+1

, a sufficient condition of the minimum value
of non-zero coefficients in s for the exact support recovery is
provided as follows:

smin ≥
2

1− (
√
Q+ 1)δQ+1

(
1+

√
(1+ δ2)Q
1− δQ+1

)
ε, (3)

where ‖8Tn‖∞ ≤ ε in [20]. However, as shown in [21],
determining whether or not a measurement matrix satisfies
the RIP is NP-hard. In addition, most of the analyses are
focused on derivations of sufficient conditions for the support
recovery. On the other hand, mutual coherence-based analy-
ses have been performed to derive the upper bounds on the
error probability of the support recovery in OMP in [22], [23],
where the mutual coherence can be defined by

µmax = max
1≤i 6=j≤N

|〈8i,8j〉|. (4)

However, they have a non-negligible gap between the
derived theoretical bounds and empirical results. Besides,
the information-theoretic limits of the sparsity recovery prob-
lem are investigated in [24].

In this paper, we derive an asymptotic upper bound on
the recovery error probability in the high SNR regime and
large system for a random ensemble in OMP. The proposed
analysis is not affected by a single realization of a mea-
surement matrix; however, it depends on statistical features
of the random measurement matrix. We are motivated to
provide an acceptable performance guarantee for identifying
a support set of a sparse signal. To this end, our analysis
is based on the statistical characteristics of a random mea-
surement matrix in CS. The derivation can be used for some
applications such as CS encryption [9]–[11] and wireless
communications [25]–[27], which can directly exploit spar-
sity with an acceptable prediction of the support recovery.
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Through numerical evaluations, it is demonstrated that the
proposed theoretical analysis closely agrees with the empir-
ically obtained results compared to the conventional mutual
coherence-based analysis [23] in terms of the recovery error
probability. Furthermore, it is shown that the proposed anal-
ysis is more valid in a large system and high-SNR regime.
Notation: Upper-case and lower-case boldface letters are

used for matrices and vectors, respectively. XT denotes the
transpose ofX. For a matrixX (a vector x),Xm (xm) andXn,m
represent the m-th row (element, resp.) and the m-th row and
the n-th column element of X, respectively. The p-norm of a
vector a is denoted by ‖a‖p (If p = 2, the norm is denoted by
‖a‖without the subscript).N (µ,R) andU (a, b) represent the
distribution of Gaussian random vectors with mean vector µ
and covariance matrixR and the uniform distribution with an
interval [a, b], respectively. 〈x, y〉 denotes the inner product
between x and y.

II. SUPPORT RECOVERY ANALYSIS IN OMP
In this section, we first introduce an existing recovery analysis
for a support set that utilizes the mutual coherence of a
measurement matrix in OMP. Then, the proposed support
recovery analysis is presented as the main contribution in this
paper and compared with a conventional approach in [23].

A. CONVENTIONAL ANALYSIS OF SUPPORT RECOVERY
In previous studies [22], [23], the support recovery in OMP
is analyzed with the mutual coherence of a measurement
matrix, denoted by the maximum absolute cross-correlation
between columns of a measurement matrix. Then, recent
results on support recovery in [23] can be abstracted by the
following theorem, providing good insights on coherence-
based analysis.
Theorem 1 (Miandji et al. [23]): Consider a noisy CS

measurement in (1) with n ∼ N
(
0, σ 2I

)
. Let λ =

Pr{|〈8̃j,n〉| ≤ β}, for some constant β ≥ 0 and j ∈
{1, 2, · · · ,N }. If smin ≥ β, then an upper bound on the
recovery error probability is given by

Pe<1−λ
(
1−2Nexp

(
−N (smin/2−β)2

2Q2γ 2+2Nγ (smin/2− β)/3

))
,

(5)

where γ = µmaxsmax . Here, smin and smax are the minimum
and maximum values of non-zero coefficients in s, respec-
tively. Moreover, λ is lower bounded by

λ ≥ 1− N

√
2
π

σ

β
exp

(
−β2

2σ 2

)
. (6)

In Theorem 1, themutual coherence,µmax , is used to derive
the correlation between a column of a measurement matrix
and a noisy measurement (for the proof of this theorem, see
[23] for details). Theorem 1 is an updated version of the
support recovery analysis derived in [22] to take into account
various parameters (L, N , Q, smin, smax , σ 2 and µmax) and to
improve the performance bound. However, it requires to meet
a certain condition, smin ≥ β. In addition, there is a significant

difference between theoretical and empirical results, making
it difficult to apply the analysis with (5) to actual applications.
In particular, if a Gaussian measurement matrix having a
relatively high mutual coherence (e.g., E[µmax] = 0.3899
with L = 128 and N = 256) is used, the upper bound on
the error probability in (5) approaches one even though the
other parameters are set for favorable conditions. Motivated
by these problems, we present a new analysis of support
recovery in OMP, as follows.

B. PROPOSED ANALYSIS OF SUPPORT RECOVERY
In this subsection, we derive an asymptotic upper bound on
the recovery error probability in high-SNR regime and large
system with a random measurement matrix in OMP.
Theorem 2: Consider a noisy CS measurement in (1),

where a measurement matrix, 8 is a random matrix whose
elements are independent and identically distributed random
variables (e.g., Gaussian, Bernoulli) of zero mean and 1/L
variance, s3(q) ∼ U (smin, smax), and n ∼ N

(
0, σ 2I

)
. Here,

3(q) denotes an index of the q-th non-zero element in s. Then,
an asymptotic upper bound on the recovery error probability
in the high-SNR regime and large system is given by

Pe

<

∫
∞

0

√
2(N − Q)√
πσ̃ 2

κ

exp
(
−

z2

2σ̃ 2
κ

)[
erf
(

z

σ̃κ
√
2

)]N−Q−1
×

1−[1− 1
2

(
erf

(
z+ µ̃η
σ̃η
√
2

)
+erf

(
z− µ̃η
σ̃η
√
2

))]Qdz,
(7)

where µ̃η = smin, σ̃ 2
η =

s2min(Q−1)
L +σ 2, σ̃ 2

κ =
Q
L ((

smax+smin
2 )2+

1
12 (smax − smin)

2)+ σ 2, and erf(·) denotes the error function.
Proof of Theorem 2: The following two lemmas will be

used to prove Theorem 2 and the proofs of lemmas are
presented at Appendices A and B, respectively.
Lemma 1: Let 0k,3 = 〈8̃k ,83s3 + n〉 and 0j,3◦ =
〈8̃j,83◦s3◦ + n〉, where 8̃j =

8j

‖8j‖2
, 8̃k =

8k
‖8k‖2

, s3 =
smin · 1, and3◦ = 3\{j}. Then, the distributions of 0k,3 and
0j,3◦ become N

(
0, σ̃ 2

κ

)
and N

(
0, σ̃ 2

η

)
, respectively, in a

large system.
Lemma 2: Pr(minj∈3 |〈8̃j,83s3 + n〉| > minj∈3 |〈8̃j,

83s3+n〉|) approaches zero in a large-system and high-SNR
regime.

In OMP, a support set cannot be recovered exactly when(
max
j∈3

∣∣∣〈8̃j, r(q)
〉∣∣∣ < max

k 6∈3

∣∣∣〈8̃k , r(q)
〉∣∣∣) , (8)

where r(q) is the residual vector in the q-th iteration and
1 ≤ k ≤ N hereinafter. Here, r(1) = y and r(q) = y −
8̂(q−1)ŝ(q−1), where 8̂(q−1) and ŝ(q−1) are the measurement
matrix with the estimated support set and the estimated sparse
vector in the (q − 1)-th iteration, respectively. However, it is
difficult to derive the probability of an event due to the recur-
sively computed residual vector. Alternatively, in [22], [23],
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a recovery error event can be approximated as

min
j∈3
|〈8̃j,83s3 + n〉| ≤ max

k 6∈3
|〈8̃k ,83s3 + n〉|. (9)

The error event of (9) is defined using a measurement
vector, y in [22], [23], while the indices of a support set
can be found using the residual vectors in OMP. It is
unfavorable for the support recovery to use a measure-
ment vector instead of residual vectors, which can reduce
the interferences caused by the superposition with other
atoms for the support set in y. However, the probability
of (9) can be used as an asymptotic upper bound on a
recovery error probability (i.e., a probability of an error
event of (8) for Q iterations) because the interferences
become negligibly small with a large L. In addition, since
Pr(minj∈3 |〈8̃j,83s3 + n〉| > minj∈3 |〈8̃j,83s3 + n〉|)
approaches zero with a large L and a high SNR (from
Lemma 2), the recovery error event in (9) can be modified to
easily derive an upper bound on the recovery error probability
in a large-system and high-SNR regime as follows:

min
j∈3
|〈8̃j,83s3 + n〉| ≤ max

k 6∈3
|〈8̃k ,83s3 + n〉|. (10)

The term on the left-hand side of (10) can be rewritten as

min
j∈3
|〈8̃j,83s3+n〉|=min

j∈3
|sj+〈8̃j,83◦s3◦+n〉|. (11)

Then, from (10), (11) and Lemma 1, we can rewrite the
recovery error event as follows:

min
j∈3
|smin + 0j,3◦ | −max

k 6∈3
|0k,3| ≤ 0. (12)

For convenience, let η = |smin + 0j,3◦ |, κ = |0k,3|. Thus,
to obtain a recovery error probability, the distributions of η
and κ have to be derived. From Lemma 1, the distribution of
0k,3 becomes N

(
0, σ̃ 2

κ

)
in a large-system. Thus, κ follows

the half-normal distribution, where the probability density
function and cumulative distribution function of κ can be
approximated by

fκ (z) ≈

√
2√
πσ̃ 2

κ

exp
(
−

z2

2σ̃ 2
κ

)
(13)

and

Fκ (z) ≈ erf
(

z

σ̃κ
√
2

)
. (14)

Then, the mean and variance of κ are given by, respectively,

µκ = σ̃κ

√
2
π

(15)

and

σ 2
κ = σ̃

2
κ

(
1−

2
π

)
. (16)

In the same manner, from Lemma 1, the distribution of
smin + 0j,3◦ becomes a Gaussian distribution with a mean
of smin and a variance of σ̃ 2

η in a large system (i.e., with
a large L). Thus, η follows the folded normal distribution,

where the probability density function and cumulative distri-
bution function of η can be approximated by

fη(x) ≈
1√
2πσ̃ 2

η

exp

(
−
(x − µ̃η)2

2σ̃ 2
η

)

+
1√
2πσ̃ 2

η

exp

(
−
(x + µ̃η)2

2σ̃ 2
η

)
(17)

and

Fη(x) ≈
1
2

(
erf

(
x + µ̃η
σ̃η
√
2

)
+ erf

(
x − µ̃η
σ̃η
√
2

))
. (18)

Then, the mean and variance of η are given by, respectively,

µη = σ̃η

√
2
π
exp

(
−
µ̃2
η

2σ̃ 2
η

)
+ µ̃η

(
−erf

(
−µ̃η
√
2σ̃η

))
(19)

and

σ 2
η = smin +

s2min(Q− 1)

L
+ σ 2

− µ2
η. (20)

Let � = minj∈3 η − maxk 6∈3 κ. Then, according
to order statistics [28], the probability density function
of maxk 6∈3 κ becomes (N − Q)fκ (z) [Fκ (z)]N−Q−1, where
|{1, 2, · · · ,N }\3| = N −Q. In addition, the cumulative dis-
tribution function of minj∈3 η is given by 1−

[
1− Fη(x)

]Q,
where |3| = Q. From the distributions, an asymptotic upper
bound on the recovery error probability in the high-SNR
regime can be approximated as

Pe < Pr(� ≤ 0)

≈

∫
∞

0
(N−Q)fκ (z) [Fκ (z)]N−Q−1

(
1−

[
1−Fη(z)

]Q) dz.
(21)

Then, our proof can be completed by substituting (13), (14),
and (18) into (21).

C. DISCUSSIONS ON ANALYSIS
In this subsection, detailed descriptions for the analysis of the
support recovery are presented with a particular focus on the
features of Theorem 2.

Correlation is an important factor in the support recovery
of OMP since an index associated with the highest correlation
coefficient between a measurement vector, y, and a column
vector of a measurement matrix, 8, is iteratively selected.
Note that η

‖y‖ and
κ
‖y‖ are the correlation coefficients for the

correct and incorrect supports associated with j ∈ 3 and
k 6∈ 3, respectively. Then, from (13) and (17), it is shown
that η follows a different distribution from κ . In detail, η is
an absolute value of a Gaussian random variable with the
mean of smin and variance of

s2min(Q−1)
L + σ 2. In addition, κ

is an absolute value of a Gaussian random variable with zero
mean and variance of QL ((

smax+smin
2 )2+ 1

12 (smax−smin)
2)+σ 2.

Then, we can intuitively know that as smin and L increase (or
Q and σ 2 decrease), the recovery error probability decreases
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FIGURE 2. Performances for a recovery error probability over various
parameters, where L = 128, N = 2L, and ζ = 0.7.

because Pr (η > κ) becomes high with a large |µη −µκ | and
small σ 2

η and σ 2
κ .

From (21), an upper bound on the recovery error proba-
bility which is an integral expression is derived. Although
it is difficult to transform the upper bound to a closed-form
expression due to an error function, it is possible to ensure the
stability of the integral expression. In (21), if z→∞, a term
in the integral approaches zero due to fκ (∞) = 0, Fκ (∞) = 1
and Fη(∞) = 1. Therefore, with a sufficiently large number
for the integral upper limit, a numerical technique can be used
to perform the integral in (21).

Let us compare Theorem 1 and 2 theoretically. A recovery
error in CS is defined as 3̂ 6= 3, where 3̂ is an estimated
support set. Instead of 3̂ 6= 3, a recovery error event in (9)
is alternatively used to derive an upper bound on the recov-
ery error probability in both analyses. In addition, the same
parameters (i.e., L, N , Q, smin, smax , σ 2) are considered in
both the analyses. However, statistical features of a random
measurement matrix are used to derive an upper bound on
the recovery error probability in the proposed derivation,

FIGURE 3. Performances for a recovery error probability over various
parameters, where L = 1024, N = 2L, and ζ = 0.7.

while the conventional derivation in [23] is based on mutual
coherence of a measurement matrix (i.e., µmax). Above all,
Theorem 2 can ensure a significantly improved bound, com-
pared to the conventional bound (i.e., Theorem 1) (Detailed
performance evaluation will be presented in Section III).

III. NUMERICAL RESULTS
In this section, we present the numerical results to compare
the theoretical results of Theorem 1 and 2 with the empirical
results. For simulations, it is assumed that smin and smax are
included in a non-zero coefficient set of s and the other coeffi-
cients follow a uniform distribution on the interval [smin smax]
and elements of a measurement matrix follow the Gaussian
distribution (i.e., 8l,n ∼ N (0, 1/L)). The SNR is defined as
E[‖sj‖2]
σ 2

for j ∈ 3. The empirical results for the recovery error
probability are divided into two cases: 1) empirical results for
3̂ 6= 3 obtained by OMP algorithm, 2) empirical results for
the alternative recovery error event in (9) used to derive Theo-
rems 1 and 2. As mentioned in Section II, the second case has
a larger recovery error probability than that of the first case.
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FIGURE 4. Performances for a recovery error probability with large L, N ,
and Q, where SNR= 18dB, and ζ = 0.7.

FIGURE 5. Performances for a recovery error probability over various ζ ,
where L = 1024, SNR = 18dB, N = 2L, and Q = 3.

Meanwhile, since themutual coherence of a randommeasure-
ment matrix is relatively high (e.g., E[µmax] = 0.3899 when
L = 128), all theoretical results of Theorem 1 converge to
one in the following simulation environment. Even if σ 2

→ 0
(which results in SNR→∞), an upper bound on the recovery

FIGURE 6. Performances over various undersampling and relative
sparsity ratios, where ζ = 0.7 and SNR = 18dB.

error probability in Theorem 1 remains one with E[µmax] =
0.3899.
From the following figures, we can find an improved per-

formance guarantee in Theorem 2 over various parameters
(i.e., L, N ,Q, σ 2, smin and smax) in terms of the recovery error
probability. Fig. 2 and Fig. 3 show that as the SNR and the
sparsity, defined as ϕ = N−Q

Q , increase (i.e., Q decreases),
the recovery error probability decreases. In addition, by com-
paring Fig. 2 with Fig. 3, it is shown that Theorem 2 can
yield theoretical results that are much closer to the empiri-
cally obtained results with a large L because it is easier to
discriminate between 8j and 8k with a large dimension of
a column vector of 8 in a recovery error event defined in
(9). From Fig. 4(a), we can clearly find that the prediction
accuracy of Theorem 2 is significantly improved in a large
system (i.e., large L andN ). Furthermore, as seen in Fig. 4(b),
the theoretical results in Theorem 2 are sufficiently close to
empirical results with a high sparsity (i.e., small Q) because
the superposition interference of a measurement vector in
(9) becomes small with a small Q. A ratio of smin to smax ,
i.e., ζ = smin

smax
, is also a crucial parameter that influences on

the recovery error probability. If ζ is small (e.g., 0.1 ∼ 0.5),
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the recovery performance of OMP deteriorates significantly.
As shown in (3), it is difficult to obtain a moderate recovery
performance with a low ζ . So, we deal with the recovery
performance for a high ζ . From Fig. 5, we can find that a large
ζ , which is maintained to obtain a reasonable recovery perfor-
mance in CS is favorable for theoretical results in Theorem 2.
Furthermore, in Fig. 6, we show the gap between the theoret-
ical and empirical results (i.e., accuracy of Theorem 2) over
various undersampling (i.e., L/N ) and relative sparsity ratios
(i.e., Q/L) when ζ = 0.7 and SNR= 18dB. From the figure,
it is found that Theorem 2 is valid with large undersampling
and small relative sparsity ratios (i.e., a large system).

IV. CONCLUSION
In this paper, we analyzed support recovery with a random
measurement matrix in OMP. An asymptotic upper bound on
the recovery error probability for the random ensemble was
derived using statistical features of a random measurement
matrix. The upper bound can ensure a more precise perfor-
mance prediction than the conventional analysis without any
required condition. From the numerical results, we showed
that the upper bound is sufficiently close to the empirical
results which is desirable for its applicability. Furthermore,
for a large system (i.e., large L and N ), a gap between the
theoretical and empirical results becomes negligibly small.

APPENDIX
A. PROOF OF LEMMA 1
Expanding 0k,3, it is shown that

0k,3 =

Q∑
q=1

8̃H
k 83(q)s3(q) + 8̃

H
k n,

=

Q∑
q=1

(
L∑
l=1

8̃∗l,k8l,3(q)s3(q)

)
+

L∑
l=1

8̃∗l,knl . (22)

Here, Var[8̃∗l,k8l,3(q)s3(q)] = 1
L2
(( smax+smin2 )2 + 1

12 (smax −

smin)2) and Var[8̃∗l,knl] =
σ 2

L , because 8l,3(q) ∼ N
(
0, 1

L

)
,

s3(q) ∼ U (smin, smax), and nl ∼ N
(
0, σ 2

)
are independent

(Note that Var(AB) = Var(A)Var(B) + Var(A)(E[B])2 +
Var(B)(E[A])2 if A and B are independent). Then, accord-
ing to the central limit theorem (CLT) for large L and Q
(i.e., a large system), the probability density functions of∑Q

q=1

(∑L
l=1 8̃

∗
l,k8l,3(q)s3(q)

)
and

∑L
l=1 8̃

∗
l,knl become

N
(
0, QL ((

smax+smin
2 )2 + 1

12 (smax − smin)
2)
)

and N
(
0, σ 2

)
,

respectively. From them, the distribution of 0k,3 becomes
N
(
0, σ̃ 2

κ

)
, where σ̃ 2

κ =
Q
L ((

smax+smin
2 )2 +

1
12 (smax − smin)

2)+ σ 2.
In the same manner, it can be shown that

0j,3◦ =

Q−1∑
q=1

8̃H
j 83◦(q)s3◦(q) + 8̃

H
j n,

= smin

Q−1∑
q=1

(
L∑
l=1

8̃∗l,j8l,3◦(q)

)
+

L∑
l=1

8̃∗l,jnl . (23)

Note that 83◦ is supported on 3◦ which has Q − 1 indices
excluding j in 3. Then, as 0k,3, the distribution of 0j,3◦

becomesN
(
0, σ̃ 2

η

)
due to the CLT for large L and Q, where

σ̃ 2
η =

s2min(Q−1)
L + σ 2.

B. PROOF OF LEMMA 2
To show that Pr(minj∈3 |〈8̃j,83s3 + n〉| < minj∈3
|〈8̃j,83s3 + n〉|) approaches zero in a large-system and
high-SNR regime, Pr(|〈8̃j,83s3 + n〉| < |〈8̃j,83s3 +
n〉|) is alternatively analyzed in this subsection. To this end,
consider

〈8̃j,83s3 + n〉 = sj + 8̃T
j 83◦s3◦ + 8̃

T
j n,

〈8̃j,83s3 + n〉 = smin + 0j,3◦ . (24)

For convenience, let 0̃j,3◦ = 8̃T
j 83◦s3◦ + 8̃T

j n. From
Lemma 1, it can be found that the distribution of smin+0j,3◦
becomes N (smin, σ̃ 2

η ) in a large system. Then, Pr(smin +
0j,3◦ < 0) approaches zero in a large-system and high-SNR

regime because smin > 0 and σ̃ 2
η (=

s2min(Q−1)
L + σ 2) → 0.

In the same manner, as 0k,3 and 0j,3◦ , the distribution of
0̃j,3◦ becomes to N (0, σ 2

0̃
) with a large L, where σ 2

0̃
=

Q−1
L (( smax+smin2 )2+ 1

12 (smax−smin)
2)+σ 2. From this, the dis-

tribution of smin + 0̃j,3◦ also becomes N (smin, σ 2
0̃
). Then,

in a large-system and high-SNR regime, Pr(sj + 0̃j,3◦ < 0)
approaches zero, because Pr(sj + 0̃j,3◦ < 0) < Pr(smin +
0̃j,3◦ < 0) and σ 2

0̃
→ 0 when L → ∞ and σ 2

→ 0. Then,
it can be shown that

Pr(|〈8̃j,83s3 + n〉| < |〈8̃j,83s3 + n〉|)

→ Pr(sj + 0̃j,3◦ < smin + 0j,3◦ ),

= Pr(s̃j + 8̃T
j 83◦ s̃3◦ < 0), (25)

where s̃j(= sj − smin) and an element of s̃3◦ (= s3◦ − smin)
follow a uniform distribution with an interval [0, smax−smin].
Note that the mean and variance of s̃j are given by E[s̃j] =

1
smax−smin

andVar[s̃j] = ( smax−smin2 )2+ 1
12 (smax−smin)

2, respec-
tively. Then, as 0̃j,3◦ , the distribution of 8̃T

j 83◦ s̃3◦ becomes
N (0, σ 2

s̃ ) because of the CLT for large L and Q, where σ 2
s̃ =

Q−1
L (( smax−smin2 )2+ 1

12 (smax−smin)
2). Thus, by using the joint

distribution of s̃j and 8̃T
j 83◦ s̃3◦ , the probability is given by

Pr(s̃j + 8̃T
j 83◦ s̃3◦ < 0)

=

∫ 0

−∞

∫ α

0

1
α

1
√
2πσs̃

exp

(
−(x − u)2

2σ 2
s̃

)
dudx

=

∫ 0

−∞

1
2α

([
1+ erf

(
u− x

σs̃
√
2

)] ∣∣∣α
0

)
dx

=

∫ 0

−∞

1
2α

[
erf
(
α − x

σs̃
√
2

)
− erf

(
−x

σs̃
√
2

)]
dx, (26)

where α = smax − smin. For convenience, let a = α

σs̃
√
2
and

b = − 1
σs̃
√
2
. Then, from

∫
erf(a+ bx)dx = (a+bx)erf(a+bx)

b +
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exp(−(a+bx)2)
b
√
π

, it can be shown that

Pr(s̃j + 8̃T
j 83◦ s̃3◦ < 0)

=
1
2α

∫ 0

−∞

erf(a+ bx)− erf(bx)dx,

=
1
2α

([
(a+ bx)erf(a+ bx)

b
+

exp(−(a+ bx)2)
b
√
π

−
bx erf(bx)

b
−

exp(−(bx)2)
b
√
π

] ∣∣∣0
−∞

)
,

=
1
2α

([
aerf(a+ bx)

b
+

1
b
√
π

(
exp(−(a+ bx)2)

− exp(−(bx)2)
)
+ x(erf(a+ bx)− erf(bx))

] ∣∣∣0
−∞

)
,

=
1
2α

(
a erf(a)

b
+

1
b
√
π
(exp(−a2)− 1)−

a
b

)
,

=
1
2

(
1− erf

(
smax − smin
σs̃
√
2

))
+

σs̃
√
2π (smax − smin)

×

(
1− exp

(
−

(
smax − smin
σs̃
√
2

)2
))

. (27)

When L → ∞, σ 2
s̃ approaches zero. Furthermore, a = ∞,

b = −∞, erf(a) = 1 and exp(−a2) = 0, when σ 2
s̃ = 0.

Then, from (27), Pr(s̃j+ 8̃T
j 83◦ s̃3◦ < 0) approaches zero in

a large-system and high-SNR regime.
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