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ABSTRACT State-of-health (SOH) is a health index (HI) that directly reflects the performance degradation
of lithium-ion batteries in engineering, but the SOH of Li-ion batteries is difficult to measure directly. In this
paper, a novel data-driven method is proposed to estimate the SOH of Li-ion batteries accurately and explore
the relationship-like mechanism. First, the features of the battery should be extracted from the performance
data. Next, by using the evolution of genetic programming to reflect the change in SOH, a mathematical
model describing the relationship between the features and the SOH is constructed based on the data.
Additionally, it has strong randomness in the formula model, which can cover most of the structural space
of SOH and features. An illustrative example is presented to evaluate the SOH of the two batches of Li-ion
batteries from the NASA database using the proposed method. One batch of batteries was used for testing
and comparison, and another was chosen to verify the test results. Through experimental comparison and
verification, it is demonstrated that the proposed method is rather useful and accurate.

INDEX TERMS Genetic programming, Li-ion battery, state-of-health (SOH), prognostic and health man-
agement.

I. INTRODUCTION
Currently, prognostic and health management (PHM) has
been widely studied in industrial management to improve
industrial production efficiency and ensure production
safety [1], [2]. As an energy storage system, Li-ion batteries
provide themost reliable power for various kinds of important
equipment in different fields, such as satellite, aerospace and
electrified vehicles. Therefore, it is extremely significant to
consider the real-time accurate health status of Li-ion batter-
ies to ensure the reliability of equipment [3].

With the development of monitoring technology, using
Li-ion battery monitoring data to study PHM has become
one of the most feasible and effective approaches. The SOH
reflects the current capability of a battery to store and supply
energy relative to that at the beginning of its life, so it is an
indicator to evaluate the degradation level of batteries [4].
Unfortunately, achieving an accurate estimate of the SOH
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is a challenging task. Due to the limitations of monitoring
technology, it is difficult to directly measure the SOH of
Li-ion batteries. To solve this problem and realize further
management of Li-ion batteries, researchers have made many
contributions. In general, existing methods mainly include
the model-based methods and data-driven methods [5]. The
model-based methods attempt to establish physical mod-
els or use mathematical representations to describe the SOH
degradation of Li-ion batteries. Although experimental meth-
ods require a large number of experiments to analyse bat-
tery ageing behaviour, they can be used to study ageing
mechanisms, providing a theoretical basis for model-based
methods such as the extended Kalman filter (EKF) [6]–[9],
multiscale EKF [10], wiener process [11], and particle filter
(PF) [12]–[15]. Although Li-ion battery life can be accurately
predicted by these methods, it is difficult to track the SOH
degradation process of the battery in details.

One of the most widely used data-driven techniques is
incremental capacity/differential voltage (IC/DV) analysis.
IC/DV analysis has been proven to be a powerful tool for

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 95333

https://orcid.org/0000-0003-4579-8602
https://orcid.org/0000-0002-7981-6955
https://orcid.org/0000-0003-4000-1473
https://orcid.org/0000-0002-6854-697X
https://orcid.org/0000-0001-5400-737X


H. Yao et al.: Novel Lithium-Ion Battery SOH Estimation Method

battery capacity estimation [16]. Based on this method,
the voltage plateaus on charging/discharging curves can be
transformed into clearly identifiable peaks on IC/DV curves.
Each peak of the curve represents a specific electrochemical
process taking place in the cell and can be characterized
by features such as the intensity and position. These peak
features are closely related to battery capacity fade and can
be used as indicators for SOH estimation. Weng et al. [17]
estimated the battery SOH by relating it to the peak intensity
of IC curves. Li et al. [18] established a linear regression rela-
tionship between battery capacity and the peak position on IC
curves. However, IC/DV curves are sensitive to measurement
noise inherent in battery systems [18], [19]. Accordingly,
proper smoothing methods have to be proposed for obtaining
smooth curves that facilitate the identification and evaluation
of IC/DV curve features.

The fuzzy logic model is also a data-driven method that
used to describe the performance degradation and calculate
the SOH of Li-ion batteries [20]. In this model, the number of
cycles should be considered as the feature parameter of Li-ion
batteries, and the relationship between the feature parameter
and SOH of Li-ion batteries can be described as

yfit = a0 + a1e
−( x

α1
)β1
+ a2e

−( x
α2

)β2
, (1)

where x represents the number of cycles and y is the value
of SOH. The fuzzy logic computes the HI using a fitting
curve with an error between 5% and 10%.Because many Li-
ion battery parameters change as the capacity decreases, it is
difficult to reflect the SOH of Li-ion batteries using the afore-
mentioned performance degradation model. Simultaneously,
only the state of the overall trend of the Li-ion battery can be
given, resulting in the inaccuracy of the model.

To solve the problem of estimation accuracy, many
machine learning methods have been used to estimate the
SOH of Li-ion batteries and have achieved good results,
such as neural networks (NNs) [21], support vector machine
(SVM) [17], [22], and Gaussian process regression (GPR)
[23], [24]. The artificial neural network is a data-driven
method widely used in the research of battery performance
degradation. Hussein [25] used an artificial neural network to
achieve capacity fade in Li-ion batteries for electric vehicles.
You et al. [26] designed a recurrent neural network-based
model to estimate the SOH in a more realistic environment.
However, it has the shortcomings of poor generalization abil-
ity, discretization of structure, and low convergence speed.
SVM and RVM have strong capabilities in solving small
sample, nonlinear and local minimum values. Therefore, they
have achieved good results in the SOH estimation and predic-
tion of Li-ion batteries. As a result, these methods have been
studied deeply in PHM. Zhang [27] denoised by empirical
mode decomposition and then used multi-kernel relevance
vector machine to achieve battery capacity prediction. Dong
et al. [28] estimated the SOH of battery and predicted the
remaining service life by supporting a vector regression par-
ticle filter. Li et al. [29] established a multistep prediction
model based on average entropy to predict SOH and RUL.

However, the disadvantages of SVM and RVM in these
aspects cannot be ignored: usually, it is a time-consuming
task for tuning the soft margin parameter C through cross-
validation methods, sparsity cannot always be achieved, and
a high number of support vectors are thus obtained. GPR is
a nonparametric model that uses a Gaussian process prior
to regression analysis of data. Zhou et al. [30] realized the
online estimation of Li-ion battery capacity by combining
EKF with the GPR model. Simultaneously, the performance
of the GPRmodel depends on the chosen covariance function
and its parameters, and the long-term prediction error is large.
Although these methods do not require a deep understanding
of battery ageing and its associated degradation mechanisms,
it is necessary to collect a large amount of data from previous
experiments to train the estimation models, which limits the
wide use of these methods. Specifically, these methods need
to choose the appropriate kernel function and parameters
according to the actual situation, and it is not an easy task
to achieve the autonomy of the kernel function. Furthermore,
the above data-driven method cannot clearly know the poten-
tial relationship between the features and SOH.

The remainder of this paper is organized as follows.
Section II describes some of the current problems in the
SOH estimation of Li-ion batteries. In Section III, the process
of obtaining an SOH calculation formula by a genetic pro-
grammingmodel is elaborated. Section IV gives experimental
verification and comparison of BP neural networks. Finally,
this paper is concluded in Section V.

II. PROBLEM STATEMENT
After an extensive literature review, there are many kinds of
battery SOHs that can be reflected in the numerous mon-
itoring parameters of batteries. The SOH of a battery can
only be monitored by mechanisms directly, but it is hard
to monitor due to the limitation of practical applications.
Especially when we find it difficult to know how it works,
it is a meaningful issue to choose the parameters that can
best reflect the change in battery SOH and construct the
corresponding SOH estimation formula such as mechanism.

Genetic programming (GP) model is a very powerful
supervised machine learning algorithm and has been success-
fully applied to classification and regression inmany different
fields [31], such as network identification [32], fault detec-
tion [33] and task scheduling planning [34]. This method
has a good ability to approximate nonlinear relationships
and is robust to outliers. Although it has good regression
performance and has been well used in other areas, such as
strategy optimization and feature selection, no similar work
has been done to date in estimating the SOH of batteries.
Reference [35] used multi-objective GP to synthesize human-
understandable HI from sequences of voltages, currents and
temperatures streamed via on-vehicle sensors. In paper [36],
the GP was used to address the challenge of automatically
discovering advanced features, which can well capture fault
progression. However, these studies did not give a concise
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FIGURE 1. The GP model.

model expression to estimate HI and explore the inherent
relationships of HI and features.

An accurate multiple regression model is sought for bat-
tery SOH estimation, which is constructed through various
function changes and different formulas. The purpose is
to obtain an accurate and simple battery SOH estimation
model. Motivated by this, this paper proposes a method of
autonomously determining the regression formula based on
the GP regression method to diagnose Li-ion battery SOH.
This proposedwork aims to fill this gap by using the GPmode
for estimating the SOH of Li-ion batteries accurately and
exploring the relationship between monitoring parameters,
such as current, voltage, temperature and SOH.

This method has several notable features of SOH estima-
tion. First, it has strong randomness in the formula model,
which can cover most of the structural space of SOH and
features. Next, it has good robustness for the interference
of significant noise and input-independent features present
in the predictor variables. In addition, compared to other
machine learningmodels, it is only necessary to determine the
parameters without having to train the model multiple times.

The SOH is an important index for battery health manage-
ment. To evaluate the estimation results, the SOH of Li-ion
batteries must be defined. Therefore, it is important to under-
stand the definition of SOH clearly, which can be generally
defined as [1]:

SOH =
Cactual
Cnorm

× 100%, (2)

where Cactual represents the maximum practical capacity as
measured from the operating battery at the current time.
Cactual may fade over time due to the effect of battery age-
ing. Cnorm is the rated capacity from battery manufacturers.
We assume that the SOH of Li-ion batteries can be repre-

sented by an unknown function:

Fsoh = f (g1, g2, · · · , gn). (3)

where Fsoh is the estimated SOH of the Li-ion battery and
gi(i = 1, 2, · · · ,n) are the features extracted from the Li-
ion battery monitoring data. Using the genetic programming
model, Eq. (3) can be constructed. It has the obvious advan-
tage of avoiding the fixed-function model framework so that
the model can independently explore the functional relation-
ship between features and the SOH of Li-ion batteries.

III. METHODOLOGY
A. GENETIC PROGRAMMING (GP)
The genetic programming flowchart is shown in Fig. 1. The
extracted features and the SOH of Li-ion batteries are input
into the genetic programming model. Like the genetic algo-
rithm (GA), the GP is also one kind of machine learning
method. Usually, GA optimizes a value, while the difference
of GP is that the optimal individual is a strategy or function.
First, the initial calculation formula population is randomly
generated, and then the individual selection is performed
according to the fitness function; further, the intersection and
variation are performed. Finally, the evolution is terminated
according to the judgement condition while obtaining the
optimal formula individually. Similar to GA, GP has the same
important elements as follows [36]:
• Randomly generate an initial genetic population;
• Require a training set and fitness function;
• Evaluate the individual’s viability in the population
according to the fitness function, and then perform indi-
vidual screening;

• Individuals in the population perform similar gene
manipulations to achieve crossover and mutation;
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FIGURE 2. GP individual example.

• Termination controllable.
According to the GP model and Eq. (3), a function consists

of an independent variables, dependent variables, operators
and coefficients. Thus, the extracted features can be linked by
operators and coefficients to obtain the calculation formula
of SOH for Li-ion batteries. First, a large number of first-
generation individuals need to be randomly generated. Each
individual in this genetic programming represents a function.
In addition, for the independent variables, the individual in
the GP model also includes a series of mathematical opera-
tions, such as plus, minus, multiplication, division, square,
square root, exponential operation and logarithmic opera-
tions. An individual coding can be represented by a tree
structure, and an illustrative individual is shown in Fig. 2.
For this individual, the node C is a constant, and the node Gi
represents the factor that is a function of the extracted features
gi in the form of production (logarithm, square, square root,
etc.) and constant a, as

Gi = a · f (gi). (4)

Hence, the specific formula represented by the tree structure
in Fig. 2 for an illustrative individual is

Fsoh = G1 × G2 + G3 + C . (5)

The depth of the tree structure is defined as the number of
factors in an individual. It should be noted that for each
individual in the GA model, the tree depth is set to 3, and
each node is randomly generated in this paper.

Genetic operations such as crossover and mutation are
performed on the node in the tree structure for each indi-
vidual to determine the model of SOH. After performing
the selection operation, it is determined whether the cross
operation is performed based on the crossover probability.
If there is no intersection, the individual will not change; if
it is crossed, using individuals F1 and F2 as examples, the
specific operation is shown in Fig. 3. Individuals F1 and F2
are randomly selected, and the number of nodes is randomly
selected from individuals F1 and F2 to cross to obtain a new
individual. As shown in Fig. 3, nodes G3 and G4 in the two
individuals are randomly selected and interchanged to obtain
two new individuals F’1 and F’2. When the population of
individuals is crossed, the variation in the individual popu-
lation is simultaneously performed according to the process

FIGURE 3. An example of a crossing operation.

FIGURE 4. An example of a mutating operation.

of genetic programming, as shown in Fig. 1. The individual
F1 is randomly selected, and whether the mutation operation
is performed is determined or not depends on the mutation
probability. If the mutation is not performed, the individual
F1 remains the same. In contrast, the nodes in the individ-
ual are randomly selected, and the whole node or a part is
selected to be mutated. In the example in Fig. 4, for individual
F1 selection, the logarithmic operation in node G3 is mutated
to a square operation, resulting in a new individual F’1.
Among them, individuals who have undergone crossover and
mutation can be repeatedly crossed and mutated.

B. FITNESS FUNCTION DESIGN
Tominimize the error between the estimations and true values
of the SOH, the root mean square error (RMSE) is proposed
to measure the individual’s fitness as

RMSE =

√√√√ 1
N

N∑
i=1

(SOHi − Fi)2, (6)

where SOHi and Fi represent the true values and estimations
of the SOH of the Li-ion battery during the i cycle, respec-
tively, and i = 1, 2, · · · ,N .
The population individual repeats the selection, crossover,

andmutation operations.When the fitness of individual is less
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than the threshold or the evolutionary generations reach the
maximum iteration numbers, the corresponding individual is
the optimal one. The evolution is terminated accordingly.

When the optimal individual is obtained, the model F =
fo(g1, g2, · · · , gn) can be determined to present the formula
between the performance feature parameters and SOH of Li-
ion batteries. According to the determined formula, the SOH
of Li-ion batteries could be estimated and predicted with
newly monitored performance features gnew.

IV. EXPERIMENTS AND VERIFICATION
In this section, the source and feature extraction of the per-
formance degradation test data of Li-ion batteries is first
introduced to ensure the repeatability and integrity of the
algorithm and model. Then, the SOH estimation result of the
Li-ion battery obtained by the genetic programming model is
given, which is compared with the BP neural network model
to verify the applicability and efficiency of the GP model.

A. EXPERIMENT DATA AND VERIFICATION DESIGN
In this paper, the test results of commercially available Li-
ion 18650-sized rechargeable batteries obtained in the NASA
open source database are used for verification. Three different
Li-ion battery operating test conditions, including charge,
discharge and impedance, can be specified as follows [37]:

Charging process: The lithium-ion battery is charged in
constant current (CC) mode (current 1.5). After that, the
lithium-ion battery continues to charge in constant voltage
(CV) mode until the charging current drops to 20 mA, which
indicates the end of charging.

Discharge process: the lithium-ion battery is discharged
in CC mode until the voltage reaches a certain set cut-off
voltage.

Impedance measurement: The impedance of the lithium-
ion battery was measured by EIS frequency scanning in the
range of 0.1 Hz ∼5 kHz.

The performance of the Li-ion battery degraded due to
cyclic charge and discharge, which may be continuous or dis-
continuous due to impedance measurements during the actual
capacity attenuation test. In this paper, two batches of lithium
batteries under different experimental conditions are consid-
ered:

(1) #5, #6 and #7 as a group are used to train the GP model.
From the data, 50% -70% is selected for training commonly
used in machine learning, and the rest of the data are used as
a preliminary formula validation.

(2) #33, #34 and #36 are used to verify the formula results.
Twenty percent of the data are selected for parameter opti-
mization, and the formula is verified by realizing an accurate
estimation of the SOH of Li-ion batteries.

All experiments were performed at room temperature
(24◦C). The specific battery situation is shown in Table 1.

B. FEATURE EXTRACTION
The charge was performed at a CC of 1.5 A until the voltage
reached 4.2 V, and then it continued charging at a CV until the

TABLE 1. Results for training 120 cycles.

charge current dropped to 20 µA. Five performance features
can be extracted from the Li-ion battery data, andmore details
of extracting features can be seen in [15] and [38]:

An equal voltage rise charging interval (g1) represents the
time it takes for the voltage to rise from a lower value to a
higher value during CC charging. The equal electric current
drop charging interval (g2) is the time elapsed during a CV
charging process in which the current drops from a higher
value to a lower value. An equal voltage drop discharge time
interval (g3) is extracted from the discharge voltage curve
of the battery. The average charge battery temperature (g4)
represents the average current temperature between the start
time of g1 and the end time of g2. The average battery
discharge temperature (g5) is the average battery temperature
during the g3 period. In the performance features of Li-ion
battery extraction, g1 is set to the time interval of the Li-
ion battery CC charging voltage 2.7 V rising to 4.2 V; g2 is
set to the Li-ion battery CV discharge current 1.5A falling
to 0.3A time interval; g3 is set to a time interval in which
the discharge voltage is reduced from 3.7 V to 2.7 V; the
performance feature data are regulated to within 0-100, so the
value of performance feature g1, g2, and g3 are respectively
divided by 100. Finally, the performance features (g1, g2, g3,
g4, g5) of the Li-ion battery are obtained.

C. SOH ESTIMATION RESULTS AND FORMULAS
The five performance features of batteries #5, #6, and #7
and the real SOH are shown in Fig. 6. Because the opti-
mal function may be more than one, the function form is
endless. To reduce the computational complexity and time
consumption, the individual tree depth in this paper is set to
4 to 6. The factorGi of the function only considers the square,
square root, logarithm and no function operation. The range
of the factor Gi and the constant coefficient of the function is
(−2, 2). The performance feature data of the Li-ion battery is
168 cycles. The first 120 cycle feature data and the real SOH
value of the Li-ion battery are used as the training set, and the
remaining 48 cycle feature data are used as the test set. The
performance feature data are put into the genetic program-
ming model for training. The number of populations of the
model is set to 1000, the crossover probability is 0.75, the
mutation probability is 0.05, and the number of iterations is
500. The BP network uses a feedforward neural network with
10 hidden neurons and the Levenberg-Marquardt algorithm.
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FIGURE 5. A #5 of the battery (a) charge voltage and g1 extraction during the charge cycle; (b) current curve and g2 extraction during the charge
cycle; (c) discharge voltage curve and g3 extraction during the discharge cycle; (d) charging temperature curve; (e) discharge temperature curve
from the second cycle.

FIGURE 6. #5, #6 and #7 battery SOH (f) and 5 performance features (a) g1; (b) g2; (c) g3; (d) g4; (e) g5; trend charts.

The maximum number of trainings is 1000, the training accu-
racy is 0.001 and the learning rate is 0.01. Figs. 7(a-c) show
the three sets of optimal estimation results for batteries #5, #6,
and #7 evolved through the genetically regulated model and
the BP neural network estimates obtained by the same data

training. Figs. 7(d-f) depict the fitness optimization process
for the optimal individual of batteries #5, #6, and #7.

It can be seen from Fig. 7 that after 120 cycles of training,
the process of GP model training to find the optimal function
converges very quickly, and the optimal individual has been
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FIGURE 7. The SOH estimation of (a) battery #5 (b) battery #6 (c) battery #7, and the process of fitness optimization of (d) battery #5 (e) battery #6
(f) battery #7.

TABLE 2. Results for training 120 cycles.

found in fewer than 100 iterations. In addition, the GP model
fits well with the SOH of the #5, #6, and #7 Li-ion batteries.
Compared to the BP neural network estimation results, the
GP model estimates the remaining 48 cycles of SOH more
accurately. According to the formulas for obtaining the opti-
mal individual representative of the three Li-ion batteries,
calculate the RMSE of the real SOH of Li-ion batteries,
as shown in Table 2.

Under this training condition, the GP model estimated the
RMSE of the SOH of batteries #5, #6 and #7 to be <1%,
while the BP neural network estimated the RMSE of SOH
to be >1%. The SOH estimation formulas of Li-ion batteries
#5, #6 and #7 obtained by the GP model are all different. The
number of performance features and the arithmetic function
of the factor Gi in the formula are different, which shows
that the formula obtained by the GP model has uncertainty.
Similar to the principle of finding the best individual in theGP
model, the group passes through the intersection and variation
between individuals and then gradually realizes the evolution-
ary group. The obtained optimal formula is a feasible solution
for estimating the SOC of Li-ion batteries.

To further verify the accuracy of the GPmodel, the optimal
formula was obtained by training the 90, 100 and 110 cycles
of the #5, #6 and #7 Li-ion batteries, respectively, and then
the remaining SOH estimation was performed.

The three Li-ion batteries of #5, #6 and #7 were trained
in 90, 100, 110, and 120 cycles, respectively, and then the
optimal formula was obtained under different conditions,
as shown in Table 3. Compared with the estimation results of
the BP neural network, the RMSE of batteries #5 and #7 based
on the GP model is 1% lower, while the RMSE of the BP
neural network model is approximately 2%. The RMSE of
the estimated SOH is much smaller than that of the BP neural
network. In the #5 battery estimation results, the GP model is
significantly better than the BP neural network model. The
RMSE of battery #6 is estimated to be smaller than that
of the BP neural network under different training periods.
Therefore, we can conclude that the GP model is generally
better than the BP neural network model for estimating the
SOH of this group of Li-ion batteries. In addition to the esti-
mated SOH results of battery #6 during training for 90 cycles,
the RMSE of the SOH and the true value of the Li-ion
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FIGURE 8. #5 Li-ion battery for SOH estimation of 90, 100, 110 cycles of training.

FIGURE 9. #6 Li-ion battery for SOH estimation of 90, 100, 110 cycles of training.

FIGURE 10. #7 Li-ion battery for SOH estimation of 90, 100, 110 cycles of training.

battery were estimated to be below 1% by the GP model.
The occasional results with fewer training cycles are more
accurate than those trained with more cycles, which needs
to be further explained. The reason for this phenomenon is
the certain randomness in the cross-mutation process, but
the estimation accuracy generally improves as the number
of training increases. Based on the above discussion, the GP
model can accurately estimate the SOH of Li-ion batteries.

The optimal formulas obtained for the #5, #6 and #7 Li-ion
batteries at different cycles were analysed. Feature selection
is automatically realized in the iterative optimization process
of the GP model, and the performance features contained in
the final optimal formula have a certain correlation with the
SOH of Li-ion batteries. Numerically, features g1, g2 and g3
appear more frequently in the formula than performance fea-
tures g4 and g5. Thus, the SOH contribution for the formula
is greater than the performance features g4 and g5, so the
features g1, g2 and g3 are more able to reflect the change in

the SOH of Li-ion batteries. In particular, the optimal formula
obtained in the #7 battery training 110 cycle and RMSE is
very small.

Fsoh = −0.02g3/23 + 0.2g3 − 1.47 (7)

By analysing the optimal formula, the GP model can help
analyse the influence of performance features on the SOH
of Li-ion batteries and help to summarize the functional
relationship between the SOH and performance features of
Li-ion batteries. It is proven that the performance feature g3
has a certain functional relationship with the SOH of Li-ion
batteries, and a function form of the performance feature g3
with the SOH of Li-ion batteries can be obtained. On the basis
of this, SOH can be represented by this model:

Fsoh = a0g3/23 + a1g3 + c (8)

The selected # 33, # 34 and # 36 batteries were used to
verify the obtained formula 8. The first 20% of the data (40
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TABLE 3. Results for training 90, 100, 110 and 120 cycles.

FIGURE 11. Li-ion battery for SOH estimation of 40 cycles of training: (a) #33, (b) #34, (c) #36 and (d)
estimation error.

cycles) were used to train the particle swarm algorithm to
optimize the parameters a0, a1, c.
It is obvious that the SOH estimation effect for batteries

#33 and #34 is very good according to Fig. 11 and Table 4.
Both the RMSE and MAE of the estimated results are less
than 0.2%. The RMSE is close to 3%, and theMAE is smaller
for the estimation of #36. According to Table 4, the estimation
errors of # 33 and # 34 are small, and the estimation error of
# 36 is relatively large. However, there is a good estimation

result for the overall change trend of the SOH of battery
#36, which can be confirmed at MAE = 0.81%. There are
two large estimation errors of battery #36, which leads to a
significant increase in the estimated RMSE. It can be seen
from Fig. 11(c) that the actual SOH value is greater than 1,
so it is reasonable to suspect that the monitoring data at these
two places are abnormal. It can be concluded that Eq. (8)
can achieve accurate estimates of # 33, # 34 and # 36 battery
SOH.
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TABLE 4. Results for the #33_#34_#36 battery.

FIGURE 12. The result for g3 estimate the SOH of #33, #34 and #36.

TABLE 5. Results for two methods.

It is apparent that Table 4 that the coefficient of the
3/2 power term is much smaller than the power of the first
power term, and there is a linear relationship with SOH. This
can also be confirmed by Fig. 12.

In order to further verify the proposed method, battery
#5 was selected to train the same 84 training cycles according
to the test method of Multi-Kernel RVM estimation SOH
in [38]. It is obvious that the accuracy is not significantly
different and both methods can accurately estimate the SOH
of battery, while the RMSE and R2 of the GP model are better
than MK-RVM from Table 4. Because the RMSE of the GP
model is smaller and R2 is closer to 1, the SOH estimation
result is more stable and fits better through the GP model.
Furthermore, the proposed method is easier to visualize by
expression.

V. CONCLUSION
In this paper, a GP model is provided for estimating the
SOH of Li-ion batteries based on the characteristic data. Data
were collected from the data repository of the NASA Ames
Prognostics Center of Excellence (PCoE). This paper selects
two batches of Li-ion battery data by extracting the features
of Li-ion batteries during each charge and discharge cycle.
The feature data and the SOH of the battery are input to
the GP model for training, and then a formula is obtained
for estimating the SOH of the Li-ion battery. According to
the principle of the GP model iteratively searching for the

optimal formula, the obtained SOH estimation formula of
Li-ion batteries is not unique and can greatly explore the
optimal formula. When the training cycles or batteries are
different, the estimation formula will be different. To verify
that the SOH of the Li-ion battery can be well estimated
by the obtained formula, the SOHs of batteries #5, #6 and
#7 are estimated by selecting three different training cycles
and compared with the BP neural network estimation results.
Then, using the batteries of # 33, # 34 and # 36 to verify the
results of the estimation formula, the relationship between
features and SOH is explored. It can be concluded that the GP
model can trace the change in SOHwell through the extracted
features, and the proposed method has good robustness.

The SOH estimation model is derived from training data
such as traditional machine learning. The difference is that
the method focuses on obtaining the function of estimating
SOH, and the relationship between the performance features
and the SOH of Li-ion batteries is constructed. Although the
traditional machine learning model could accurately estimate
the Li-ion battery SOH, it is difficult to conclude the possi-
ble relationship between extracted features and the SOH of
batteries. According to the optimal formula obtained by the
GP model, we can summarize the influence of features on
the SOH of Li-ion batteries and even obtain the expression
between the features and SOH.

This method can also be applied in electronics fields. In
particular, performance degradation studies are usable when
product performance degradation is not subject to typical
degradation processes, and products have certain features and
health indexes. When it is desired to obtain a functional rela-
tionship between HI and features, the model formula can be
optimized autonomously according to this method to realize
the estimation of HI.
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