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ABSTRACT The convergence of wireless power transfer (WPT) and mobile edge computing (MEC) has
fostered the rise of wireless powered MEC, which is taken as a crucial technology for the sustainability
of the Industrial Internet of Things (IIoT) systems. This article provides an overview of wireless powered
MEC enabled IIoT systems, including use cases, network requirements, system architecture, and resource
management. First, we highlight four key requirements to drive operational efficiency from the perspective
of being transformed IIoT projects. Then an integration architecture of wireless powered MEC for IIoT is
proposed. Designed with joint consideration of energy, communication, and computing resources, the archi-
tecture is enabled by an efficient system schedule mechanism to achieve age-aware data update, green and
sustainable energy supply, as well as hierarchical and resilient computation. Finally, a case study is provided
to verify the feasibility of the proposed architecture and demonstrate the efficiency of the proposed resource
management approach.

INDEX TERMS Wireless power transfer, mobile edge computing, Industrial Internet of Things, network
architecture, resource management.

I. INTRODUCTION
The Industrial Internet of Things (IIoT) consists of a mul-
titude of industrial devices connected by communication
technologies that enable advanced data analytics to drive
an unprecedented level of efficiency, productivity, and per-
formance [1]–[3]. It allows companies to predict failures,
increase automation, and manufacture more quickly. These
applications, however, are often data- and computation-
intensive and will fast deplete the constrained computing
capability and energy of wireless IIoT devices. The current
wireless network architectures and conventional cloud-based
systems are far from being satisfactory to meet the demands
of these emerging applications in terms of data collec-
tion, delivery, and analysis. To support new requirements
and unleash the potential of IIoT, new business models are
being created with both focuses on mobile edge computing
(MEC) [4]–[7] and wireless power transfer (WPT) [8]–[10]
technologies.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zonghua Gu .

MEC, first proposed in 2014 by European Telecommuni-
cations Standards Institute (ETSI) [11], is considered a good
supplementary of the current centralized cloud by geograph-
ically distributing computation resources at close proxim-
ity to end devices. Given the proximity, MEC expects to
relieve network congestion, speed up response, achieve high
energy efficiency, and preserve context-awareness in 5G and
beyond [4]–[7]. To embrace heterogeneous access technolo-
gies and reflect non-cellular network requirements, in 2017,
ETSI officially changed the name of MEC to multi-access
edge computing. In this article, the acronym MEC is used
interchangeably to stand for mobile edge computing and
multi-access edge computing, since their main idea, advances
in performance, realization, and benefits in terms of comput-
ing are the same. Over the past few years, MEC has attracted
massive attention from tech giants such as Huawei, Ericsson,
and AT&T, and has been standardized as a key technology in
future IIoT by Industrial Internet Consortium (IIC) [12]. In
general, there are two operation modes in MEC, i.e., partial
and binary computation offloading [8], [13]. Partial offload-
ing requires a computation task to be divided into two parts
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with one executed locally and the other offloaded to MEC for
computing. Binary offloading, on the other hand, only allows
a task to be executed either locally or remotely. In practice,
partial offloading is favorable for production visibility that
composes ofmultiple parallel segments, while binary offload-
ing is suitable for simpler tasks like environmental mon-
itoring. In terms of computation efficiency maximization,
partial computation offloading would perform better than the
binary [14]. Although MEC is not a new concept and has
been extensively studied, its application to the IIoT scenario
is quite a new direction owing to IIoT’s device heterogeneity,
time-varying environment, and scalability requirement.

Aiming at raising automation level and reducing man-
ufacturing costs, IIoT is expected to support a massive
number of small-size and low-cost devices to operate in
a self-sufficient manner for a long time. The conven-
tional wire-based power supply and battery-changing method
would be cost-prohibitive and inconvenience, which boosts
the research of energy harvesting (EH) technologies. Gen-
erally, there are two types of EH technologies: passive EH
and active EH. Passive EH focus on harvesting conventional
renewable energy resources, such as solar and wind, which
are unpredictable and intermittent. Active EH, also known
as WPT, on the contrary, leverages dedicated power beacon
to provide stable and controllable wireless power supply for
devices [15], [16], making it a promising solution to copewith
the insufficient battery capacity problem facing IIoT.

Recently, commercial WPT transmitter is able to transfer
tens of microwatts power to more than ten meters, which is
sufficient to power most activities of IIoT devices [8]. Com-
pared with passive EH, WPT is also superior in large-scale
applications due to its small form factor, predictable and
stable nature, as well as low cost [9]. However, wireless
energy transmission consumes spectrum resources and needs
to be jointly designed with the decisions of data deliv-
ery and computation. How to support WPT functional-
ity in IIoT without much modification of current system
architecture also raise questions in system management and
resilience.

The integration of MEC and WPT has fostered a new
paradigm called wireless powered MEC [13], [17]–[20],
where MEC server and WPT entity are embedded into
one edge node to provide self-sustainable computing. Apart
from those challenges facing separate MEC/WPT scenar-
ios, including limited bandwidth, intermittent connectivity,
doubly near-far problem, and energy causality, schedul-
ing in wireless powered MEC is also confronted with
more tricky multiple resource dependency problems. There
are some interesting studies on this topic, typically from
the perspectives of dynamically adjusting CPU frequen-
cies, offloading time portions, and power allocations to
maximize computation rate [13], [17] or minimize energy
consumption [18], [19]. Nevertheless, all of them assume that
new generated/arrived data can be transmitted/processed in a
one-slot-based manner. Such an assumption makes the opti-
mization more tractable but impractical for IIoT applications

that have limited edge computing capacity and certain data
freshness requirements, e.g., equipment monitoring and pre-
dictive maintenance. Besides, all these schemes require the
full knowledge of up-to-date network states, whereas, in prac-
tice, only partial and outdated state information is available
due to delay or scalability considerations. Different from pre-
vious works, [20] aims to improve the system utility compris-
ing of throughput and fairness by exploiting heterogeneity in
IIoT. A practical energy-aware resource allocation algorithm
was proposed considering the overhead for state feedback.
However, the algorithm developed there still requires devices
to send back their state information every time they get the
opportunity for offloading.

There have been separate reviews of application or use
cases over MEC [4], [5] and WPT [8], [15], [16]. How-
ever, the architectures and resource management strate-
gies proposed in these separate networks cannot be readily
applied to wireless powered MEC systems in IIoT, where
data offloading and energy constraints are highly coupled
with each other. Some articles have noticed these limita-
tions and provided up-to-date surveys to tackle the emerg-
ing challenges. In particular, the authors in [9] described
four future extensions of the wireless powered communica-
tion network (WPCN) [8]–[10], which include full-duplex,
multi-antenna, cognitive, and large-scale WPCN, to address
the energy scarcity problem from an IoT point of view.
Aazam et al. in [1] gave an overview architecture of IIoT on
the definition, application and also architecture with the sup-
port of fog computing. Most recently, studies in [11] provided
a comprehensive review work from a perspective of technol-
ogy integration with multi-access edge computing. Different
technologies such as EH, IoT, and machine learning are sepa-
rately discussed on how to be embedded into MEC scenarios.
However, none of the existing works can meet all the sys-
tem requirements of IIoT in practical implementation due to
the following reasons. First, IIoT devices (e.g., sensors and
actuators) have heterogeneous computing/storage capacities.
Such inhomogeneity would necessitate specific algorithms
for different types of devices. Second, given manufacturing
costs, the computation capacity of MEC servers is finite in
practice, which leads to data freshness considerations. For
example, data with validity within one second would lose
its value for analysis when it waits for three seconds to
be offloaded and processed. Third, these schemes may not
perform well in reality as perfect network state information
is not always available.

In this article, we investigated a systematic way to address
the mentioned concerns by abstracting features of IIoT, ana-
lyzing system architecture, and presenting efficient manage-
ment mechanisms for the overall system performance. To the
best of the authors’ knowledge, there are no other reviews
to integrate wireless powered MEC with IIoT networks in
the literature. The practical considerations from an IIoT per-
spective make our proposal differ from existing works both in
purpose and required changes. The key contributions of this
article are summarized as follow:
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• We introduce potential sectors for wireless powered
MEC from the perspective of some IIoT projects that
have already begun transformation and highlight their
network requirements.

• An integration architecture for wireless powered MEC
in IIoT is proposed, which supports age-aware data
update, green and sustainable energy supply, as well as
hierarchical and resilient computation.

• Following the proposed architecture, the major concerns
for system resource management in IIoT is considered,
including joint design of uplink and downlink transmis-
sion, age aware data update decision, as well as scalabil-
ity and practical considerations. Potential solutions are
proposed and a case study is presented to illustrate their
merits.

The rest of this article is organized as follows. In Section II,
we provide the use cases, present their network requirements,
and propose the four-layer integration architecture. Next, sys-
tem management of energy, communication and computing
resources is presented in Section III. A case study is followed
to evaluate the performance of the proposed approach by
simulations in Section IV. Finally, we highlight some future
research directions and conclude the article.

II. NETWORK REQUIREMENTS AND ARCHITECTURE
In this section, we describe some potential sectors for wireless
powered MEC in IIoT, highlight the network requirements
the system has, and propose a fundamental architecture to
support its potential realizations.

A. USE CASES: AN INDUSTRIAL PERSPECTIVE
The focus of IIoT, on industry at large, is broad. Instead
of giving new business models from a vendor’s perspective,
we concentrate on the application of wireless powered MEC
in some IIoT projects that have already begun transformation.

As shown in Fig. 1, according to their targets, they can
be categorized into three groups: 1) production visibility,
where sensors and edge nodes are used to give plant engi-
neers and managers a real-time view of their teams’ yield.
A representative example is the Factory of the Future
initiative launched by Airbus, which visualizes streamline
operations through wearable glasses [21]; 2) facility manage-
ment, where smart robotics can be powered through wireless
channels to embrace the concept of predictive maintenance
as proposed by ABB’s YuMi model [22]; and 3) supply chain
optimization, where wireless powered MEC can be imple-
mented to map material flow and track manufacturing cycle
times. A typical scenario is Amazon’s ambition to reinvent
warehousing [23].

B. NETWORK REQUIREMENTS
Although the specific metrics each use case expects are
distinctly different in terms of delay, reliability and energy
efficiency. There are some basic requirements that all of

FIGURE 1. The key requirements for supporting various IIoT use cases
with wireless powered MEC.

them meet in order to drive operational efficiency through
connectivity and analysis.

1) SUSTAINABILITY AND INTEROPERABILITY
In IIoT, multiple subsystems with different kind of coexist-
ing wireless devices would be deployed in close proximity.
Providing enough energy supplies for them to guarantee their
sustainability is critical yet challenging due to the hetero-
geneity of devices. For example, battery-powered devices can
use stored energy for operations, while capacitor-embedded
devices relay on energy supplies at every slot to work due
to their high self-discharge rate. A lack of interoperability
among those devices would significantly increase the com-
plexity and cost of IIoT deployment and operation. Since
many of the tasks in IIoT (e.g., safety monitoring in food
industries) require an uninterrupted supply of energy, sched-
ule and interoperability have to be not only continuous and
seamless, but also provide high performance.

2) REAL-TIME PERFORMANCE
Given the dynamic environment and mission-critical applica-
tions, IIoT typically has stringent data freshness requirements
on proper collection of ambient data and timely delivery of
control decisions. An example of such a service is fault detec-
tion whose timelines are important to prevent the entire man-
ufacturing from being hindered. A time-slot based dynamic
data schedule would play a critical role for IIoT to achieve the
desired real-time performance. However, the data collected
from the environment are usually in large volumes and raw
form. Not all data are favorable for analysis and diagnosis.
It is pivotal to extract interpretable information and reduce
the data set to a manageable size before further operations.
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FIGURE 2. Network architecture and key components of wireless powered MEC for IIoT.

3) RESILIENCE AT SCALE
The time-slot based schedule would require frequent feed-
back of network state information, leading to considerable
network overheads which take up the bandwidth for desired
data transmission. Although most of the feedback is of small
size, a massive number of devices contribute to an explosive
overhead that could prevent the system from working. As a
result, most of the time, we could only obtain partial and
outdated knowledge of network state for system optimization.
The design under wireless powered MEC in IIoT is required
to be scaled to respond to environmental disturbances in the
presence of incomplete information.

4) LOW COST AND COMPLEXITY
The capital expenditure (CAPEX) is one of the most impor-
tant concerns that stakeholders have in IIoT. It determines
that the computational capability of edge nodes cannot be
infinite, which necessitates specific and meticulous design to
match the data to be offloaded and to be processed. Mean-
while, the massive IIoT devices have to offload most of their
computing demands to the edge and only operate some simple
but necessary calculations locally. Therefore, the algorithm
performed at IIoT devices needs to be capable of supporting
the optimization of data services with low computational
complexity.

C. FUTURE IIoT ARCHITECTURE AND PROPOSED
COMPONENTS
The future IIoT architecture would be in tandem with tra-
ditional cloud-based networks in a hierarchical manner to
drive efficiencies and launch new business models [3], [24].
However, the integration of the cloud, WPT, MEC, and IIoT
remains challenging in terms of data update, energy sup-
ply, and resilient computation. Therefore, to meet network
requirements and address the challenges, we propose a novel

integration network architecture for IIoT with wireless pow-
ered MEC on the basis of the Industrial Internet Reference
Architecture proposed by IIC [24]. In this subsection, we also
present the main component design of the proposed integra-
tion architecture and illustrate the advantages of the frame-
work.

1) NETWORK ARCHITECTURE OVERVIEW
Figure 2 illustrates the overview of the proposed architecture,
which adopts decentralized control on the system level to
meet the desired network requirements. The architecture con-
sists of four layers: data awareness, edge, cloud and visualiza-
tion layers. At the bottom of the network, the data awareness
layer is a combination of sensing systems that comprises
plenty of wireless sensors and smart devices. Those devices
are retrofit into existing infrastructures to collect and extract
useful data from the changing environments over time and
offload the data to the edge layer for analysis. The analysis
results will then be forward to the cloud layer for aggregation
and be shown to the manufacturing decision-makers through
the visualization layer.

The edge layer is comprised of two sub-layers. The lower
sub-layer consists of edge nodes that have direct associa-
tion with groups of sensors. Edge nodes in this sub-layer
are responsible for powering devices with wireless energy
signals, performing timely data analysis, and controlling
dynamic schedules on the basis of time-varying channels. The
upper sub-layer takes the role of an intermediate computing
controller. The group of edge nodes in the upper sub-layer
sustain the workloads during peak hours and report data
processing results to the cloud layer. It is worth mentioning
that the edge layer here has similar characteristics as hier-
archical edge computing [11] in aggregating peak loads, but
is different in layer function since the lower sub-layer also
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takes the responsibility for WPT. The detailed edge node
architecture is discussed below.

2) EDGE NODE AND DEVICE ARCHITECTURE
The realization of the IIoT depends on incorporating some
important building blocks. Keeping all of the network
requirements in mind, we propose the edge node and device
architecture for a wireless powered MEC network as shown
in Fig. 2. Besides the energy transfer module (ETM) and the
edge computing module (ECM) that used for wireless power
transfer and data processing, we envision three other key
modules: data service, energy harvesting and storage, as well
as decision making and configuration modules.

a: DATA SERVICE MODULE (DSM)
This module offers data service such as data collection, stor-
age, and transmission. Rather than collecting and transmit-
ting the large volume of raw data to the upper layer, DSM
adds value to the transmitted data through context-aware
data filtering. Only fresh data favorable for analysis are
stored. Its distributed database provides faster data retrieval
and enhanced scalability compared with centralized storage,
which in turn facilitates the location-awareness and task-
awareness [25].

b: ENERGY HARVESTING AND STORAGE MODULE (EHSM)
For devices in the data awareness layer, this module is the
only source of energy due to devices’ small size and manu-
facturing cost considerations. It captures the power signals
emitted by edge nodes, converts them into electric energy,
and stores the energy for later use. While for edge nodes,
the module serves as a good supplementary source other
than grid power. Perpetual residual energy harvested from the
natural environment (e.g., solar and wind power) or industrial
process (e.g., mechanical vibration and industrial waste heat)
could be stored to reduce the operational expenditure (OPEX)
of industries’ electricity bills.

c: DECISION MAKING AND CONFIGURATION
MODULE (DMCM)
As the core of scheduling algorithm implementer, this module
is capable of supporting resource allocation optimization and
determining when to collect and transmit data. On the basis
of the dynamic requirements of systems, it can capture the
decision-making rules and parameters, make optimal assign-
ment of energy, communication and computing resources,
and then send the decisions to other modules for execution.
Similar to DSM, the decision making and resource configura-
tion also work in a distributed manner, depending only on the
available knowledge of network state the edge node or device
holds.

3) FEATURES OF THE PROPOSED ARCHITECTURE
The proposed architecture is similar to but distinct from the
conventional cloud-edge-user architecture we usually come
across. First, it aims to stand in a stakeholder’s point to pro-
vide a complete network that could be applied in IIoT, from a

macroscopical framework to microcosmic components. Sec-
ond, unlike conventional architectures, the proposed one con-
siders the three most unique features that is vital for wireless
powered MEC in IIoT as highlighted in the following.

a: AGE-AWARE DATA UPDATE
Data age, which measures the amount of time elapsed since
the data was generated, is an important metric to quantify data
freshness [26]. It is also the basis for providing real-time ser-
vices in IIoT. On the basis of the age of the data stored at the
DSM,DMCMat a device canmake its own decision to collect
new data and discard the stale one in a distributed manner.
Given the finite data storage of devices, those operations will
provide memory for fresher data, thus provide more favorable
information for system analysis and control. The distributed
decision also contributes to devices to adaptively tune their
update frequency so as to meet the age demands of data ser-
vices. Moreover, the data update can reduce the transmission
demands and release the burden on wireless transmission
with little or even no damage on the system performance,
since the dropped data often reflect some outdated or useless
information.

b: GREEN AND SUSTAINABLE ENERGY SUPPLY
Edge nodes can harvest green energy like solar from the ambi-
ent environment as a supplementary for grid power. Although
highly variable and unpredictable, the green energy can still
be directly employed for some delay-tolerant services [27] or
be stored in EHSM before it accumulates to a certain level
for use. Different from edge nodes with relatively compli-
cated facilities to collect energy, low-cost devices such as
sensors and actuators depend on edge nodes to continuously
recharge their EHSMs throughWPT to prolong lifetime.With
the assistance of DMCM, the recharging process becomes
controllable and is thus suitable for maintaining system sus-
tainability.

c: HIERARCHICAL AND RESILIENT COMPUTATION
The multi-tier data process is supported by the hierarchical
structure in the edge layer, by which device/service profiles
can be formed at their respective domains through informa-
tion extraction from long-term behaviors. When there are
simultaneous computational requirements from a vast num-
ber of wireless devices, the light-weight edge node that has a
direct connection with wireless devices may be incapable of
dealing with the surging workloads, leading to long latency
and instability. In this case, the heavy-loaded edge node
can deliver its tasks to edge nodes at the upper sub-layer
according to the latency constraints of services. Hence, pro-
viding resilient processing ability for time-varying computing
demands.

III. SYSTEM MANAGEMENT OF ENERGY,
COMMUNICATION AND COMPUTING RESOURCES
In IIoT, system performance depends on efficient joint
optimization management of energy, communication, and
computing resources. Due to the time and spatial coupling
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among multiple resources, the integration of wireless pow-
ered MEC into IIoT makes the management more intricate
and challenging than the conventional cloud-based system,
especially for the data awareness and edge layers. Specifi-
cally, on the one hand, the transfer and storage of energymake
system decisions at different time slots are dependent on each
other. For example, exhausting a sensor’s energy at the current
slot would prevent the sensor from transmitting data at the
next slot, even if wireless channels become better as time goes
by. On the other hand, the tradeoff for bandwidth allocation
between WPT and offloading are doubly coupled with avail-
able computational capacity at edge nodes. A mismatch of
uplink rate and available computational capacity would either
result in backlog at edge sides or lead to unsatisfactory low
throughput.

Generally, there are two effective ways to solve the time
and spatial coupling problem: deep reinforcement learn-
ing (DRL) based technologies (e.g. deep Q-learning) and
Lyapunov optimization. Due to the time-varying nature of
wireless environments, models of DRL-based technologies
require an online learning process [7], which is computation
and storage demanding. Very deep learning method may not
be suitable for edge nodes with limited computation capacity
in IIoT. In [28], the authors proposed a deep learning-based
online offloading framework for wireless powered MEC,
which makes real-time and optimal offloading even in a fast
fading environment. However, since DRL-based technolo-
gies are largely black boxes and have low interpretability,
businesses would rather continue to employ methods that
can provide lower bound of optimal performance. Lyapunov
optimization is an ideal one for them. It is high interpretability
and can decouple the original coupling problem over inde-
pendent time slots and transfer the major concern of system
management to the following three subtasks.

A. JOINT DESIGN OF UPLINK AND DOWNLINK
TRANSMISSION
A typical model of wireless powered MEC is depicted
in Fig. 3, where the single-antenna edge node transfers
energy (downlink) and receives offloaded data (uplink) in
a slot-based time division multiple access (TDMA) manner.
At each time slot, there are two different phases: the WPT
phase and the data offloading phase. In the firstµ0(t) fraction
of time, the edge node empowers all the wireless sensors
through energy signal broadcast. The sensors then use the har-
vested energy to transmit their collected data to the edge node
in a non-overlap sequence. The edge node and its covered
wireless devices together form a small cell.

As edge nodes in IIoT are usually connected with a stable
power grid, energy consumption concerns in the joint design
are mostly coming from the device side. Generally, a device’s
energy consumption Etotal comprises of four parts:

Etotal = Ecol + Etrans + Elocal + Ecir . (1)

where Ecol , Etrans, Elocal and Ecir represents the energy
consumption for data collection, data transmission, local

FIGURE 3. The wireless powered MEC network. (a) network model.
(b) protocol for downlink WPT and uplink data offloading.

processing and basic circuit operations, respectively. In IIoT,
data transmission often dominates the total energy consump-
tion, especially when intensive processing is prohibited by
local components [29]. The transmission relays on the energy
harvested from the WPT phase. Although the non-linear EH
model achieves a better performance in reality to reflect the
circuit sensitivity limitations and current leakage [30], many
related works still adopt the linear EH model for its better
treatability and simplicity [13], [17], [18], [29].

Individual devices are selfish and short-sighted. When it
comes to resource assignment, it is hard for them to achieve
consensus in a distributed manner, since they are inclined
to maximize their own interests, resulting in the prisoner’s
dilemma. Therefore, in each small cell, the edge node takes
the role to jointly coordinate the time portion allocation for
uplink and downlink. For fairness concerns, there are typi-
cally three schemes to tackle the doubly near-far problem in
WPCN: 1) deploying devices physical location delicately [8];
2) leveraging device cooperations [18]; and 3) designing
fairness embedded system utility functions [20], [29]. Unlike
WPCN, which only considers the doubly near-far problem,
wireless powered MEC in IIoT also needs to put device het-
erogeneity and available computing resources in mind during
its scheduling mechanism design. When the data backlog at
an edge node is much larger than its served device, the device
should be prohibited from offloading until more computing
resources are released.

B. AGE AWARE DATA UPDATE DECISION
Intuitively, collecting data once transmission bandwidths for
delivery are allocated (i.e., zero-wait policy) is the ideal
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way to provide up-to-date information. However, when data
transfer is positively correlated over time, which is a common
condition in IIoT, the zero-wait policy would be far from the
freshest [31]. Besides, the data collection does not happen
in an instant but lasts for a continuous amount of time.
It determines that devices have to use the DSM to enqueue
the gathered data before their transmission, and drop the
stale data waiting in the queue when there are new sam-
ples arriving. A frequent data update (i.e., collection and
discard) can keep freshness, but it also leads to a waste of
device resources. For instance, continuous data collection and
discard processes would deplete available energy for data
offloading, which hampers the lifetime of wireless devices.
To handle this, a utility function that consists of two parts is
required. The first part is a monotonically increasing profit
function of collected data volume as more data means more
valuable information. The second part is a monotonically
decreasing function of the discarded data volume, which
represents the price for data dropping. On the basis of the
utility function, the DMCM in each device can make their
own decision to adaptively tune its update frequency to meet
the age requirements of different data services in a distributed
manner. Although the distributed decision is suitable for
devices to adapt to the time-varying environment, a low
complexity algorithmmust be carefully designed considering
devices’ limited processing capability.

C. SCALABILITY AND PRACTICAL CONSIDERATIONS
As mentioned above, the joint design of uplink and downlink
transmission in each cell requires a centralized schedule. It
could avoid the selfish and short-sighted decision made by
individual devices, and achieve an optimal resource allo-
cation with a comprehensive knowledge of network states.
Nevertheless, to obtain the network knowledge requires fre-
quent state feedback (e.g., queueing data backlog report) from
wireless devices. The feedback would occupy the bandwidth
for data offloading, which may exacerbate the problem of
scarce transmission bandwidths in IIoT and even prevent
the system from working when a vast amount of devices
are connected. Besides, the time difference between state
collection and computation makes the obtained state infor-
mation at the edge layer not always up-to-date. In practice,
feedback delay from devices to the edge node causes the
network state information to be at least a time slot duration
late. Therefore, in practical implementation, the system has
to use partial and outdated network state information for
optimization. For this reason, we can proceed to optimize
system performance by approximating the latest feedback as
the current network state information, and using asymptotic
optimization to diminish the optimality loss caused by the
approximation.

In this article, we consider the TDMA protocol illustrated
in Fig. 3 because the current industrial wireless standards
(WirelessHART, ISA100.11a, and WIAPA) are all TDMA-
based [32]. The proposed architecture and resource man-
agement method in this paper can thus be easily applied to

a real industrial scenario. When the number of edge nodes
and wireless devices is not proportional, TDMA manner
alone may not able to support that a massive number of
connectivity demands. In this case, grant-free nonorthogonal
multiple access (NOMA) is a good supplementary option.
We can replace each wireless device in Fig. 3 to a cluster of
devices that share the same bandwidth during their allocation
time portion. Within each cluster, devices employ grant-free
NOMA to increase the connection numbers. However, apply-
ing NOMA in IIoT may still need a long way to go before its
technology becomes mature.

IV. CASE STUDY
In this section, we consider a case in precision agricul-
ture, where sensors are deployed to measure soil nutrients,
humidity, and temperature of a greenhouse for boosting pro-
ductivity. Besides throughput, precision agriculture also pays
attention to device fairness and data freshness, since unfair
or stale data collection and offloading cause data locality and
resource waste. Given the importance and complexity of the
resource management between the edge and device layers,
we only consider the scenario of a single edge node. The pro-
posed approaches can be readily extended to the scenario with
multiple edge nodes by applying frequency reuse techniques
for different edge nodes.

Consider ten sensors (represented by N ) whose distances
from the edge node are di = i+ 2 meters. The parame-
ters used in the simulation are taken from 3GPP specifi-
cations [33], [34] and existing synthetic data set [18], [20],
to capture the features of practical dynamic environments.
Specifically, the channel is modeled after the Rayleigh fading
model in [20] with 0.2MHz bandwidth and 10−9W receiver
noise power. The transmission power of the edge node is 2W
and the energy harvesting efficiency of devices is set as 0.8.
Without loss of generality, we denote the utility function of
data update as

∑
i∈N [log(ai+1)−βidi], where log(·) denotes

the natural logarithm, βi is the price for data dropping, and
ai(t) and di(t) are the amount of data collected and dropped
at time slot t , respectively. Using such a function with a
decreasing marginal utility for different sensors can ensure
system fairness, as a preference for some devices violates
the utility maximization principle. For fairness consideration,
different sensors’ prices for dropping data are assumed to be
the same and denoted as β. The aim of the optimization is to
maximize the long-term time-average of the utility function
under the following constraints:
1) The data backlogs in any device i ∈ N at time slot

t (henceforth referred to as Qi(t)) and the amount of
data waiting to be processed at the edge node (referred
to as S(t)) should always maintain stable. In another
word, the long-term average expectation of all Qi(t)
and S(t) need to be bounded by a finite value. In this
case, no node in the system would be overloaded with
endless data arrival.

2) The energy consumption of each device should not
exceed what it has harvested.
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FIGURE 4. Working procedure for resource management between data awareness and edge layers.

Unfortunately, the objective function of the problem involves
functions of time averages, thus cannot conform to a tradi-
tional drift-plus-penalty framework employed in Lyapunov
optimization. To address this issue and achieve age aware-
ness, virtual queues [26] and ε-persistent service queues [29]
are introduced to transform the original problem to a standard
Lyapunov optimization form. Subsequently, we can decouple
the equivalently transformed problem into three deterministic
per-slot sub-problems as we discussed in Section III, which
can be efficiently solved by convex optimization techniques
and Lambert W function [18]. In each slot duration, the step
by step workflow is illustrated in Figure 4 and described
below.

Step 1 (Information Exchange): The edge node broad-
casts its data backlog information to all sensors under its
coverage. Sensors that have a long data backlog then send
their pilots to the edge node for channel measurements and
give feedback of their device state for resource allocation.
As only a small portion of devices that have long data backlog
need to send feedback, much system overheads could be
avoided.

Step 2 (Data Update): On the basis of the optimization
decision made by DMCM, DSM at each individual sensor
collects or drops data according to the optimization results
ai(t) and di(t). The computational complexity of the opti-
mization is O(1), which is suitable for resource-limited sen-
sors.

Step 3 (Wireless Power Transfer): The DMCM at the
edge node determines the optimal time portions based on the
edge node’s state and the outdated information exchanged
in Step 1. Subsequently, the edge node’s ETM takes µ0(t)
fraction time of the slot to recharge the EHSMs of sensors by
emitting a baseband signal.

Step 4 (Data Offloading): With the harvested energy,
DSMs at sensors use their allocated time portions to offload

in turns. At the edge node side, arrived data will first be
queued into the node’s DSM, and then transfer to the ECM
for processing.

For comparison, we stimulate two benchmark approaches:
1) optimal downlink only [20], where downlink WPT time
portions are optimized with all sensors having equal offload-
ing time, and 2) proportional fair [26], where the allocation of
time portions is based on proportional fairness method with-
out the ability to discard stale data. Besides, for self-contrast,
the proposed mechanism with different data dropping price
β is also simulated to illustrate its self-adaption. The
numerical results are obtained by averaging over 1000 inde-
pendent realizations, in which wireless channel and back-
ground computing capacity are randomly selected within
certain boundaries [20], [26] to model the real dynamics
in IIoT.

FIGURE 5. The average system throughput comparison of benchmarks
and the proposed approach.

Figures 5 and 6 show the system throughput and fairness
of the proposed and benchmark schemes with different V ,
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FIGURE 6. The fairness comparison of different approaches under varying
control parameter V.

where V is a control parameter that often used in Lyapunov
optimization to achieve a balance between different system
requirements. We use Jain’s fairness index [26] to measure
fairness. The closer the index is to one, the fairer the schedule
is. It can be seen that the proposed method with an infinite
β has better performance on both throughput and fairness
than the counterpart with β = 5, meaning a higher system
utility. This is because DSM is enforced to accumulate stale
data since the price for data dropping is unbearable when
β = ∞. The absence of the discard process leads to longer
data backlogs, increasing the opportunity for sensors to reach
the condition for offloading, consequently, promoting the
throughput. As expected, the optimal downlink only method
suffers from the doubly near-far problem [8], [9], hence is
unfair, since the differential channel states caused by dif-
ferent distances between the edge node and sensors are not
involved in its optimization. By contrast, the proposed and
the proportional fair algorithms are effective at dealing with
the problem and can ensure fairness with high throughput
when V is large. With a more comprehensive consideration
of data backlogs at different DSMs, the proposed mechanism
outperforms the proportional fair algorithm by 11 percent in
terms of throughput when V equals 900.

Higher throughput and fairness can be achieved when
V becomes larger, however, it is not the larger the better.
As illustrated in Fig. 7, the age of data increases linearly
with the growth of V . When V changes from 300 to 900,
the throughput of the proposed approach increases by 6.5%
at the cost of more than 28% rise in the data age. Besides,
we can also observe that, due to reluctant to discard stale data,
implementing the proposed approach with a larger β results
in an explicit increase in average age. Therefore, selecting
the appropriate V and β would be important for the proposed
method to meet the data freshness demands while realizing
high throughput with enough fairness. Nevertheless, even
with an infinite β (i.e., an unfavorable condition for keeping
freshness), the proposed approach still ensures data fresher
than the benchmarks, thanks to its adaptive to the stochastic
channels and awareness of data age.

FIGURE 7. The average age of data using the benchmarks and the
proposed approach.

V. FUTURE RESEARCH DIRECTIONS
The variability of IIoT network demands makes the ‘‘one-
size-fits-all’’ management approach inadequate. In differ-
ent wireless powered MEC scenarios, there remain several
important topics for further exploration.

A. TASK DEPENDENCY
It is a relationship between two tasks, describing how tasks
link to and rely on each other. During data offloading or
processing, a successor task could not be completed until
the predecessor task is finished. Obtaining internal and exter-
nal dependencies in IIoT is not easy since many devices
and nodes perform in a distributed manner. Arranging the
order of different tasks would require them to cooperate in
a more transparent and efficient way, which requires sophis-
ticated models beyond simply adopting a random computing
sequence.

B. MILLIMETER WAVE
Edge nodes and massive sensors are often closely deployed.
The wireless communication distance between them is usu-
ally short and line-of-sight, which is especially beneficial for
the implementation of millimeter wave (mmWave). Opera-
tions with mmWave can provide predictable and controlled
interference, thus ensure reliability and QoS. In addition,
the broad bandwidth of mmWave enables the system to sup-
port a large number of wireless devices. However, mmWave
also adds more complexity to the analysis of wireless chan-
nels and device discovery.

C. CONTEXTUAL INFORMATION MINING
Wireless devices, such as sensors on smart trucks and robots,
and even edge nodes can be in mobility. It would be difficult
to allocate system resources for applications with varying
locations and network topologies. Fortunately, mobility may
have certain temporal and spatial characteristics due to the
fixed workplace of factories. Contextual information can be
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mined to support intelligent management of wireless powered
MEC networks in IIoT.

VI. CONCLUSION
In this article, we studied the use of wireless poweredMEC as
a promising solution to provide sustainability and sufficient
computational capacity for IIoT. Use cases together with net-
work requirements for wireless powered MEC in IIoT were
discussed, on the basis of which we proposed a four-layer
system architecture. It has been shown that enabled by the
proposed integration architecture, IIoT has the potential to
provide age-aware data update, green and sustainable energy
supply, as well as hierarchical and resilient computation. An
efficient system resource management approach was also
presented to coordinate the coupling energy, communication,
and computing resources in IIoT. Numerical results from a
precision agriculture case verified the efficiency of our pro-
posed approach and emphasized the importance of a highly
efficient scheduling mechanism in IIoT. Finally, this paper
raised several challenging directions in the considered IIoT
scenario for future research.
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