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ABSTRACT Accurate positioning of the shearer remains a challenge for automation of the longwall coal
mining process. In this paper, the popular Ultra-wideband (UWB) positioning system that has attracted
considerable attention is adopted to obtain the target node location. Unfortunately, localization accuracy
is still unsatisfactory and unreliable in mixed line of sight (LOS) and non-line of sight (NLOS) scenarios.
To ameliorate localization accuracy of UWB for complicate underground environment where the positioning
scenarios suffered from frequently switching among LOS, NLOS, and mixed LOS-NLOS condition,
the novel positioning algorithm GMM-IMM-EKF was proposed. Gaussian mixed model (GMM) was
employed to re-estimate the measurement distance, and two parallel variational Bayesian adaptive Kalman
filters (VBAKFs) under the structure of interacting multiple model (IMM) was utilized to smoothen the
result of GMM to eliminate the LOS and NLOS errors, respectively. Then, the position of the target node
was determined by exploiting extended Kalman filter (EKF) based on the outcome of IMM-VBAKF. The
proposed approach was assessed by exploiting UWB P440 modules. Comparative experimental verification
demonstrated that GMM-IMM-EKF strategy outperformed other positioning approaches, which can effec-
tively reduce the adverse effect of NLOS errors and achieve higher positioning accuracy in underground
environment with LOS/NLOS/LOS-NLOS transition conditions.

INDEX TERMS Ultra-wideband, variational Bayesian adaptive Kalman filter, Gaussian mixed model,
interacting multiple model, underground environment.

I. INTRODUCTION
The shearer, a key equipment of a fully mechanized mining
face (FMMF), played an important role in the coal production
process. Monitoring of the shearer’s position was of extreme
significance for realizing the mining automation [1], [2]. The
position and attitude of shearer can be usually determined by
the inertial navigation positioning system (INS) or the inertial
measurement units utilizing a combination of accelerometers
and gyroscopes in the coal mine, which was because a global
navigation satellite systemwas incapable for the underground
environments [3]. When the pure inertial information was
used in a free-inertial mode, the positioning error accumu-
lated over time due to the typical drifting of the inertial
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sensor, albeit for a high-performance positioning system [4].
In order to obtain the higher localization accuracy of shearer,
other positioning technologies have been utilized to assist
the INS. Fortunately, the popular Ultra-wideband (UWB)
technology, providing high accuracy on distance estimation
and high-speed wireless data transmission, decreasing the
effect of phenomena such as non-line-of-sight propagation
and multipath [5], has enormous potential for the application
of the underground environment.

To date, numerous researchers have conducted extensive
studies on underground environment localization utilizing
UWB positioning system. Yang et al. [6] proposed a sta-
ble INS/UWB integrated positioning system of the shearer
using the multi-model intelligent switching method based
on a tightly coupled integrated model and a decision tree
fault-tolerant model. Qin et al. [7] studied a distributed
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UWB-based localization system in the underground mines,
and the distributed localization algorithm based on particle
swarm optimization was proposed for underground mines
and implemented on the blind node. Xie et al. [8] designed
the UWB monitoring platform for underground localization
to realize accurate and reliable positioning of the under-
ground moving targets. Fan et al. [9] presented that the
UWB positioning strategy for the shear was proposed to
eliminate accumulative error produced by INS and the cor-
responding coupling model was established. Results demon-
strated that the position of the shearer can be real-timely
tracked by integrated positioning strategy, and positioning
precision met the demand of actual working condition.
Unfortunately, above mentioned approaches of target local-
ization in line of sight (LOS) condition were difficult to
yield satisfactory accurate position estimation and generated
unreliable final estimation results due to non-line of sight
(NLOS) error.

The surface and architecture of underground mine were
usually irregular, and the FMMF kept dynamically changing
frequently, making the signal propagation fall into reflec-
tion, diffraction, and scattering, which were referred to as
NLOS paths. When the signal transmission channel between
target node and anchor nodes (ANs) was in NLOS sce-
nario, the measured distance was larger than that of LOS
measurement due to the fact that the signal travelled longer
path or time than direct link, causing additional positive
bias which was called NLOS error. To handle with the
NLOS error and enhance the positioning accuracy, NLOS
error identification and NLOS error elimination were usu-
ally regarded as the two major approaches to deal with
NLOS error. The NLOS identification attempted to distin-
guish between LOS and NLOS conditions, and was com-
monly based on range estimates [10], [11] or on the channel
impulse response [12]–[14]. For the case of NLOS error
elimination, several related approaches have been proposed
to alleviate the adverse impact of NLOS measurement error.
Chen [15] developed an algorithm to mitigate the NLOS
errors by residual weighting when the range measurements
corrupted by NLOS errors were not identifiable. Yu and Guo
[16] proposed the Taylor-series-based weighted least squares
algorithm under the assumption of knowledge of NLOSmea-
surements. Li and Zhang [17] proposed that the coordinate’s
position obtained in the joint positioning were estimated as
unscented Kalman filter (UKF) algorithm observations, and
the measurement of the UKF update equation was modified,
so that the algorithm can adapt the localization of NLOS envi-
ronment. García et al. [18] took full advantage of the skew-
ness of the estimated channel impulse response as a parameter
to detect the NLOS condition and the extended Kalman filter
(EKF) for accurate positioning in harsh environments. Shao
et al. [19] proposed that the Kalman filter (KF) was used
to eliminate the random NLOS delay caused by irregular
devices, and then the parameter fitting and geometric method
was employed to restrain the errors caused by the fixedNLOS
delay in the locating area.

Underground environment was comparatively complicate
and should be taken into consideration owing to the presence
of obstructions such as hydraulic support, rough roadway
walls, equipment, and moving pedestrians. When the mobile
target moved along the FMMF, the propagation conditions
inevitably changed between LOS and NLOS (LOS-NLOS)
alternatively over the passing time. The frequently switching
LOS and NLOS condition would cause serious measure-
ment error for distance estimation, which was due to the
fact that the measurement error characteristics varied for the
case of LOS, NLOS, and LOS-NLOS, making the tradi-
tional NLOS positioning algorithm incapable to satisfy the
requirements of underground localization only considering
the single LOS or NLOS conditions. Consequently, in this
paper, to reduce the measurement error and enhance the
localization accuracy, a novel localization approach frame-
work was proposed to handle with the dynamically changing
propagation channel between ANs and the moving target
node for underground environment with frequent transition of
LOS/NLOS/LOS-NLOS scenarios. The main contributions
of this study were exhibited as following:

(1) We proposed a novel approach to deal with the fre-
quently changing propagation channel among LOS, NLOS
and LOS-NLOS scenarios for the underground environment.

(2) We used the GMM-based algorithm for calculating the
initial state probabilities of the LOS andNLOS condition, and
eliminating the interference of LOS-NLOS situation, which
was beneficial to obtain themore accuratemeasured distances
between the target node and corresponding AN.

(3) Based on IMM structure, we employed two paral-
lel VBAKFs smoothening the result of GMM to allevi-
ate the LOS and NLOS errors, respectively, and then the
more accurate distances estimation were acquired. Subse-
quently, we conducted comparative experiments to demon-
strate the superiority of the proposed algorithm. Experimental
results manifested that the NLOS error and localiza-
tion accuracy can be significantly ameliorated with high
robustness.

II. RELATED WORKS
Generally speaking, the more accurate ranging quality,
the higher positioning accuracy. To enhance the measure-
ment distance quality, in [20], a Gaussian Mixture Model
(GMM) was proposed to re-estimate the measurement dis-
tance by considering the different Gaussian components with
respect to LOS and NLOS ranging estimation, which has
been demonstrated that the GMM approach has the ability of
filtering NLOS errors from a set of NLOS corrupted range
estimations. Qing et al. [21] adopted GMM algorithm to
describe the LOS and NLOS propagation effects in order to
overcome the problem of LOS and NLOS propagation identi-
fication in existing approaches. Zhang et al. [22] propounded
that both ranging measurement and step length estimation
were modeled using GMM, and one maximum likelihood
estimator was developed. However, the GMM approach may
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underestimate the true distance if there existed few NLOS
measured distance [20].

On the other hand, to achieve the mobile target node
localization in the mixed with LOS and NLOS conditions,
KF [23], EKF [24], UKF [17], particle filters (PF) [25], and
cubature Kalman filter (CKF) [26] were proposed to reduce
the NLOS error. These algorithms can be applied to track a
mobile target in non-stationary random processes, but they
required a specific localization parameter at varying time
points, and meanwhile became non-convergent in some cir-
cumstances [27]. The variational Bayesian [28] (VB)-based
filtering estimators have been extensively adopted in the state
estimation problem in the presence of unknownmeasurement
noise. In [29] a VB adaptive Kalman filter (VBAKF) was
proposed to jointly estimate the state and variances of the
measurement noise. In [30] a modified VB noise adaptive
KF was developed by designing a novel dynamic model for
tracking the variances of measurement noise. Huang et al.
[31] used the KF for LOS measurement distance filtering,
and the modified VB approximation adaptive KF was pro-
posed for NLOS condition filtering to estimate the mean
and measurement noise covariance to eliminate the influence
of NLOS.

However, due to the frequent transformation LOS and
NLOS, the performance of the positioning system was weak,
indicating that a single filter was insufficient to obtain
the more accurate position. The interacting multiple model
(IMM) algorithm has been demonstrated as one of the most
effective approaches for estimation in dynamic system under
uncertain environmental conditions [32]. Employing IMM
algorithm exhibited better positioning performance than that
of single dynamic model [33]. The IMM with different filter
approaches such as KF, EKF, PF, CKF, UKF, and the hidden
Markov models were utilized to realize the mobile location
estimation. Xiang and Zhou [34] presented an interactive
multiple model of UKF to estimate the target state in parallel
to address target tracking inmixed LOS/NLOS condition, and
the average consensus was employed to estimate global infor-
mation contribution through information interaction between
neighbors. Chen et al. [35] put forward that the combining
EKF with the IMM scheme was used to smooth range esti-
mation between the corresponding base station and mobile
station in the rough wireless environment to mitigate the
NLOS effects on the measurement error. Zhang et al. [36]
proposed IMM-EKF algorithm that two KFs were adopted
in parallel to accurately smoothen the distance measurement
and meanwhile the EKF method was utilized to estimate the
target’s location, which was able to adapt the dynamically
changing condition between LOS and NLOS due to the two
KFs’ interaction so that large NLOS ranging errors are fur-
ther reduced. Chang and Fang [37] proffered the EKF and
PF along with a three-model IMM algorithm were utilized
and compared for mobile station tracking, and the result
showed that the IMM-PF algorithm outperformed the IMM-
EKF algorithm. Fritsche et al. [38] proposed that the IMM-
EKF method was capable of coping with LOS and NLOS

FIGURE 1. Localization algorithm flow chart.

conditions modeled by employing a two-state Markov chain,
where the LOS and NLOS errors were described by different
noise models.

The aforementioned localization approaches based on
IMM estimation commonly required to set a fixed value
for the initialization of state probability. Simultaneously,
the above researchers usually concentrated on the trans-
mission channels between the target node and ANs under
the LOS and NLOS situations, easily ignoring the influ-
ence of the mixed LOS-NLOS condition when the sur-
rounding environment was more complicate and changeable,
such as the underground mine environment, causing to the
lower precision and lower effectiveness during the process
of localization. To bridge the above-mentioned research gap
and achieve satisfactory positioning result for underground
environment, in this paper, the novel algorithm framework
for mobile localization was proposed by considering the
problem of the constant initial state probability and the
propagation conditions for LOS, NLOS, and LOS-NLOS
scenarios. More specifically, we employed the GMM-based
approach to eliminate the effect of LOS-NLOS situation
on distance estimation so that the communication channel
switched between LOS and NLOS scenarios and the initial
state probability can be obtained for LOS and NLOS con-
ditions, respectively. Subsequently, a VBAKF-based IMM
framework, using the estimated state probabilities based on
the GMM result and a Markov process with two interac-
tive modes involvement LOS and NLOS conditions, was
introduced to smooth the distance in order to obtain the
higher ranging quality. Finally, EKF algorithm was adopted
to calculate the target’s position according to the smoothed
result of VBAKF-based IMM method. To further verify the
outstanding performance of the proposed method, the least
square (LS) and two-stage Maximum Likelihood (TSML)
approaches were executed to compute the target’s position.
According to the aforementioned description, the proposed
positioning algorithm flow chart of this paper was depicted
in Fig.1.
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III. BACKGROUND AND GAUSSIAN MIXTURE MODEL
A. RECEIVED MEASUREMENTS
The actual distance donated by ri between the target node and
the ith AN is described as follows:

ri =
√
(x − xi)2 + (y− yi)2 + (z− zi)2 (1)

The measurement distance between the target node and the i
th AN for LOS can be expressed as:

d̂ losi = ri + vi (2)

where vi is the measurement noise obeyed a Gaussian distri-
bution with zero mean and variance σ 2

los. In NLOS condition,
due to the presence of obstacles in the direct path, the signal
requires to be reflected and refracted to reach the ANs, so that
the signal propagation path is increased, resulting in measure-
ment distance larger than true distance. Thus, measurement
distance is given by:

d̂nlosi = ri + vi + binlos (3)

where vi is modeled as Gaussian distribution with zero mean
and σ 2

los variance. TheNLOS error b
i
nlos is assumed to be inde-

pendent, which is usually considered to obey the Gaussian
distribution N (µb, σ 2

b ).
Thus, the ranging error can be expressed as following:

δi =

{
vi LOS
vi + binlos NLOS

(4)

The corresponding probability density function with respect
to ranging error δi for LOS and NLOS conditions, respec-
tively, can be expressed as the following form:

plos(δi) =
1√

2πσ 2
los

exp

(
−

δ2i

2σ 2
los

)
(5)

pnlos(δi) =
1√

2π (σ 2
los + σ

2
b )

exp

(
−

(δi − µb)2

2(σ 2
los + σ

2
b )

)
(6)

The measurement error can be modeled as a mixture Gaus-
sians distribution in mixed LOS-NLOS condition, in which
the distributions of LOS and NLOS measurement errors are
represented by various Gaussian components.

B. RECEIVED MEASUREMENTS GMM FILTER
Without loss of generality, let dm={d1m, d

2
m, d

3
m, . . . d

K
m }

donate the data set of K sample distance estimates between
target node and the mth AN. For the LOS distance estima-
tion, the probability density function of the measurement
distance was commonly modeled as a Gaussian distribution
[39], namely, flos(dm) ∼ N (rlos, σ 2

los), where rlos donates
the true distance, σ 2

los is of LOS variance. Meanwhile,
it has been proved that the measured distance in NLOS
scenario still obeyed a Gaussian distribution, fnlos(dm) ∼
N (rnlos, σ 2

nlos)[39], where rnlos = rlos + bnlos. Thereby,
the GMM method was proposed to characterize the effects
of LOS /NLOS/LOS-NLOS in this paper so as to more

accurately describe the influence of the realistic underground
environment, and the N -order GMM probability density
function of measured distance dm can be expressed as:

f (dm; θm) = um,1flos +
N∑
n=2

um,nfnlos,n

=

N∑
n=1

um,n2(dm; rm,n, σm,n) (7)

where

2(dm; rm,n, σm,n) =
um, n
√
2πσm,n

exp

(
−
(dm − rm,n)2

2σ 2
m,n

)
donates the Gaussian probability distribution of each sub-
distribution; um,n donates a mixed weight which satisfies∑N

n=1 um,n = 1; rm,n is the distance between the target node
and ANs, and it is the mean of each GMM components;
σm,n stands for the standard deviation; N denotes the total
number of types of different error distributions, including
LOS error and varying intensity of NLOS error. The model of
probability density function can be successfully established
based on appropriately selecting the component of the GMM,
setting the suitable mixed weights, means and covariances,
which can achieve a smooth approximation to the probability
density function of the measured distance.

All measurement distances between the target node and
the mth AN can be categorized by quite different Gaussian
distributions allocated certain probabilities, and the centers
of each category were the mean of Gaussian distribution, and
the covariance matrix was considered as the corresponding
dispersion. The parameter estimation of GMM components
can be obtained by a given set of measurement distance
according to a certain criterion, so that the determined GMM
can best describe the probability distribution of the distance.
To estimate the GMM components (um,n, rm,n and σm,n), the
expectation maximization (EM) algorithm was applied to
perform effectively parameter estimation, which was defined
as an iterative two step algorithm for finding the optimal
parameter that maximize the log likelihood function [40].
The involvement related parameters of iterative process of
EM estimation, mixing probabilities um,n, means rm,n, and
standard deviations σm,n are given by:

um,n =
1
K

K∑
k=1

um(n |k ) (8)

rm,n =

∑K
k=1 um(n |k )dm,k∑K
k=1 um(n |k )

(9)

σm,n =

√√√√∑K
k=1 um(n |k )(dm,k − rm,n)(dm,k − rm,n)T∑K

k=1 um(n |k )
(10)

where um(n |k ) indicates the posteriori probability, expressed
as follows:

um(n |k ) =
um,n2(dm; rm,n, σm,n)∑N
i=1 um,i2(dm; rm,i, σm,i)

(11)
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Note that the aforementioned equations executed both the
expectation step (E step) and the maximization step (M step)
synchronously and iteratively updated E and M steps. The
iteration stopped when the likelihood function achieved the
maximum, then the GMM components parameters can be
obtained. Thus, the initialization of GMM parameter, mainly
including the mixed weight, average, covariance, and the
number of categories, played a prominent role in increasing
the precision of EM algorithm. As the EM algorithm was
usually sensitive to the selection of the initial parameter, effi-
cient initialization was significant preliminary process for the
future convergence of the algorithm to the best global maxi-
mum of the likelihood function [41]. The inappropriate initial
value made the EM algorithm easy fall into local maximum.
K-means clustering was preferred for solving the initializa-
tion problem and provided better initial values. As a result,
in this paper, to overcome the drawback of EM algorithm, K-
means clustering was exploited to find the initial parameter
value for an EM algorithm. Interested readers should consult
the literature [42] for more details of involvement compre-
hensive description of the K-means clustering approach.

The measurement distance data can be distinguished LOS
and NLOS measurement by using the K-means clustering
algorithm when the measurement environment was subject
to the mixed LOS/NLOS/LOS-NLOS scenarios, enabling the
measurement condition only involve the LOS and NLOS
ranges. The LOS distances can be estimated in LOS-NLOS
condition by employing the proposed GMM-based method,
therefore the ranging quality was improved by estimating the
measured distance according to the Gaussian component of
LOS estimations in GMM. Furthermore, the corresponding
probabilities of LOS and NLOS measurement (um,1, um,2)
with respect to ANm can be obtained, which will be applied
to compute the mixing probability for IMM smoother in the
following section.

IV. VBAKF-BASED IMM SMOOTHER
A. STATE MODEL
The range state vector between ANm and the target node at
epoch k +1 is defined as follows:

Dm(k + 1) = [dm(k+1), ḋm(k+1)]T m = 1, 2, . . . ,M (12)

where dm(k + 1) and ḋm(k + 1) denotes the distance and
the velocity of target node with regard to the mth AN,
respectively, and M donates the number of the ANs. The
measurement distance state-space model is represented as the
following linear dynamic equation:

Dm(k + 1) = FDm(k)+ Bwd (k) (13)

Zm(k + 1) = ADm(k + 1)+ r(k + 1) (14)

where

F =
[
1 T
0 1

]
, B =

[
T 2
/
2

T

]
,

and A = [1, 0], T donates sample period; wd (k) donates the
process noise [36], which is modeled as zero-mean Gaussian

sequences with the covariance matrices Q; r(k+1) represents
the measurement noise whose covariance is R̂k in mixed
LOS/NLOS situation.

B. VBAKF ALGORITHM
In the conventional KF algorithm, the statistical moment of
measurement noise was invariant and certain, enabling the
performance of the traditional KF degrade because of the
fact that in the actual environment the measurement noise
might change with the time. The communication channel
between the moving target node and corresponding AN was
easily susceptible to affect by NLOS propagation condition
due to the complex underground environment filled with
large numbers of hydraulic supports and equipment, causing
unknown and uncertain NLOS measurement noise. Hence,
the VBAKF algorithm that can solve the estimation problem
with unknown and time-varying measurement noise, was
proposed to ameliorate the performance of AKF algorithm,
by considering not only the change of noise, but also the vari-
ation of the predicted error covariance. The VBAKF was the
combination of variational Bayesian (VB) andAKF; that was,
measurement noise variances were approximated by VB, and
system states were updated by AKF, which can estimate the
measurement noise and system state. The VB approximation
was a recursive approach that can approxi- mate the posterior
distribution. Under the assumption that the dynamic models
of the state and the noise covariance were mutually inde-
pendent, the joint posterior probability density function with
regard to the range state D(k+1) and the measurement noise
covariance R̂(k) at epoch k+1 can be expressed as following
[26],

p(D(k + 1), R̂(k + 1)
∣∣∣D(k), R̂(k) )

= p(D(k + 1) |D(k) )p(R̂(k + 1)
∣∣∣R̂(k) ) (15)

Then, the VB approximation of the free-form is utilized to
approximate the joint filtering distribution of the state and
covariance matrix, expressed as following:

p(D(k + 1), R̂(k + 1) |Z (k + 1 |k + 1) )

≈ Q(D(k + 1))Q(R̂(k + 1)) (16)

where Q(D(k + 1)) and Q(R̂(k + 1)) indicate the unknown
approximating densities. The VB-approximation can be
executed by minimizing the Kullback-Leibler divergence
between the approximation part Q(D(k + 1))Q(R̂(k + 1)) and
the true posterior p(D(k + 1), R̂(k + 1) |Z (k + 1 |k + 1) ),
given by:

KL[Q(D(k + 1))Q(R̂(k + 1))∥∥∥p(D(k + 1), R̂(k + 1) |Z (k + 1 |k + 1) ) ]

=

∫
log

(
Q(D(k + 1))Q(R̂(k + 1))

p(D(k + 1), R̂(k + 1) |Z (k + 1 |k + 1) )

)
×Q(D(k + 1))Q(R̂(k + 1))dD(k + 1)dR̂(k + 1) (17)
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Thus, the minimum of KL divergence with regard to the
probability densities Q(D(k + 1)) and Q(R̂(k + 1)), respec-
tively, can be obtained by remaining the other part fixed [43],
expressed as following:

Q(D(k + 1))

∝ exp(
∫

logp(Z (k + 1),D(k + 1), R̂(k + 1) |Z (k + 1| k))

×Q(R̂(k + 1))dR̂(k + 1 )) (18)

Q(R̂(k + 1))

∝ exp(
∫

logp(Z (k + 1),D(k + 1), R̂(k + 1) |Z (k + 1 |k ))

×Q(D(k + 1))dD(k + 1 )) (19)

The above coupled equations cannot be solved directly,
nevertheless, the integrals in the exponentials of equation (18)
and (19) can be expanded, respectively, expressed as follows:∫

log p(Z (k + 1),D(k + 1), R̂(k + 1)∣∣∣Z (k + 1 |k ))Q(R̂(k + 1))dR̂(k + 1)

= −
1
2
(Z (k + 1)− F(k + 1)D(k + 1))T

〈
(R̂(k + 1))−1

〉
R̂

×(Z (k + 1)− F(k + 1)D(k + 1))

−
1
2
(D(k + 1)− D̂(k + 1 |k ))T (P(k + 1 |k ))−1

×(D(k + 1)− D̂(k + 1 |k ))+ C1 (20)∫
log p(Z (k + 1),D(k + 1), R̂(k + 1)

|Z (k + 1 |k ))Q(D(k + 1))dD(k + 1)

= −

m∑
i=1

(
3
2
+ αk+1,i) ln(σ 2

k+1,i)−
m∑
i=1

βk+1,i

σ 2
k+1,i

−
1
2

m∑
i=1

1

σ 2
k+1,i

〈
(Z (k + 1)−F(k+1)D(k + 1))Ti (Z (k+1)

−F(k+1)D(k + 1))i〉D+C2 (21)

where 〈·〉D =
∫
(·)Q(D(k + 1))dD(k + 1), 〈·〉R̂ =∫

(·)Q(R̂(k + 1))dR̂(k + 1) and C1, C2 denotes constant val-
ues.

According to the relevant literature [29], the probability
densitiesQ(D(k+1)) andQ(R̂(k+1)) subjected to a Gaussian
and inverse Gamma distribution, respectively, which can be
represented as following:

Q(D(k + 1)) = N (D(k + 1); D̂(k + 1),P(k + 1)) (22)

Q(R̂(k + 1)) =
m∏
i=1

Inv− Gamma(σ 2
i
|αi, βi) (23)

According to the reference [29], the parameters of equation
(23) can be described as following:
Prediction:

αi(k + 1 |k ) = ραi(k) (24)

βi(k + 1 |k ) = ρβi(k) (25)

Update:

αi(k + 1) = 0.5+ αi(k + 1 |k ) (26)

βi(k + 1) = βi(k + 1 |k ) (27)

where ρ donates a change factor in (0, 1]. The ranging noise
covariance matrix can be expressed as follows:

R̂i(k + 1) = diag

(
β
(i)
1 (k + 1)

α
(i)
1 (k + 1)

, . . . ,
β
(i)
m (k + 1)

α
(i)
m (k + 1)

)
(28)

Iterate the following update equations with respect to the
residual covariance Si(k+1), Kalman gainGi(k+1), ranging
residual Vi(k + 1), state estimate D̂i+1(k + 1 |k + 1), covari-
ance Pi+1(k + 1 |k + 1) and parameter βi+1(k + 1), say N ,
steps are set as i = 0,. . . , N , expressed as following:

Si(k + 1) = APi(k + 1 |k )AT + R̂i(k + 1) (29)

Gi(k + 1) = Pi(k + 1 |k )AT Si(k + 1)−1 (30)

Vi(k + 1) = Zi(k + 1)− AD̂i(k + 1 |k ) (31)

D̂i+1(k + 1 |k + 1) = D̂i(k+1 |k )+Gi(k+1)Vi(k+1) (32)

Pi+1(k + 1 |k + 1) = Pi(k + 1 |k )−Gi(k+1)APi(k+1 |k )

(33)

βi+1(k + 1) = βi(k + 1 |k )+ 0.5[(Zi(k + 1)

−D̂i+1(k + 1))2 + (APi+1(k + 1 |k

+1)AT )ii] (34)

where ii indicates diagonal elements of the matrix.

C. DISTANCE FILTERING BASED ON IMM APPROACH
The single filtering model was insufficient to smooth the
estimated distances obtained from the output of the GMM
method effectively due to the quite different measurement
errors between LOS and NLOS scenarios. Consequently,
IMM architecture algorithm that employed two parallel self-
adjusting VBAKFs to smoothen the distance measurement
errors with respect to LOS and NLOS conditions separately,
was put forward to re-estimate the measured distance to
generate higher precision ranging distance between the tar-
get node and the corresponding AN. When the target node
mounted on the shearer moved along the scraper conveyor
direction, the communication environment between the target
node and ANs frequently alternated between LOS and NLOS
which can be considered as a Markov process with two
interactive modes due to the harsh underground environment.
Markov chain consisted of two states, as depicted in Fig.2.
Here, we let i and j (i, j = 1, 2) represent the mode variable,
where i, j = 1 donates the LOS mode, and i, j = 2 donates
the NLOS mode. The transition probabilities pij represents
the conditional probability of states transition from state i at
epoch k to state j at epoch k +1. Di (k) represents the input
of the state mode i at epoch k . The state mode at epoch k+1
can be updated according to the following rule:

D1(k + 1) = λ11 · D1(k)+ λ21 · D2(k) (35)

D2(k + 1) = λ12 · D1(k)+ λ22 · D2(k) (36)
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FIGURE 2. Markov switching chain for LOS/NLOS scenarios.

FIGURE 3. The architecture of VBAKF-IMM algorithm.

FIGURE 4. UWB P440 module.

where λ11 = p11
/
(p11+ p21), λ21 = p21

/
(p11+ p21), λ12 =

p12
/
(p12 + p22), and λ22 = p22

/
(p12 + p22), which are

the normalized transition probabilities, and pij satisfies the
relations: p11 + p12 = 1 and p22 + p21 = 1.

The proposed VBAKF-based IMM smoother mainly con-
sisted of five steps: computation the mode probability,
input interaction, mode-matched filtering, mode probability
update, and output combination, as shown in Fig. 3.

1) COMPUTATION THE MODE PROBABILITY
The mixing probability is calculated as:

um,i|j (k + 1 |k ) =
pijum,i(k)

b̄m,j
(37)

where pij donates the state transition probability, and b̄m,j
donates the normalized mode probability, which can be com-
puted according to the following equation:

b̄m,j =
2∑
i=1

pijum,i(k) (38)

2) INPUT INTERACTION
The initial condition of the state vectors D̂m,0j(k + 1 |k ) and
the corresponding covariance matrices Pm,0j(k + 1 |k ) can
be calculated for the jth mode-match filter of mth AN based
on the input mixing probabilities, respectively, which can be
expressed as following:

D̂m,0j(k + 1 |k ) =
2∑
i=1

um, i|j (k + 1 |k )D̂m,i(k |k ) (39)

Pm,0j(k + 1 |k ) =
2∑
i=1

um,i|j (k + 1 |k )× {Pm,i(k |k )

+[D̂m,i(k |k )− D̂m,0j(k + 1 |k )]

×[D̂m,i(k |k )− D̂m,0j(k + 1 |k )]T } (40)

3) MODE-MATCHED FILTERING
The two parallel VBAKFs were utilized to filter the distance,
which was due to the fact that the measurement noise were
completely different between LOS and NLOS scenarios. One
VBAKF was formulated to filter the LOS measured distance
and another was designed to smoothen the NLOS ranges.
According to the above descriptions, the two mode-matched
VBAKFs were running simultaneously, and the entire filter-
ing procedure of the VBAKF was presented as following:

4) MODE PROBABILITY UPDATE
According to the innovation vector Vm,j(k + 1) and its corre-
sponding covariance Sm,j(k + 1), the likelihood function for
filter j can be computed as follows:

3m,j(k + 1) =
1√

2π
∣∣Sm,j(k + 1)

∣∣
× exp

(
V T
m,j(k + 1)Vm,j(k + 1)

2Sm,j(k + 1)

)
(41)

where Sm,j(k + 1) = HPm,j(k + 1 |k )HT
+ R̂

Then, the mode probability can be updated based on the
likelihood values and transition probability, expressed as fol-
lows:

um,j(k + 1) =
3m,j(k + 1)b̄m,j

bm
(42)

where bm =
2∑
i=1
3m,i(k + 1)b̄m,i
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Algorithm VBAKF algorithm
Prediction:

D̂m,j(k + 1 |k ) = FD̂m,0j(k + 1 |k )

Pm,j(k + 1 |k ) = FPm,0j(k + 1 |k )FT + R̂

αi(k + 1 |k ) = ραi(k)

βi(k + 1 |k ) = ρβi(k)

Update: First set

D̂(0)
m,j(k + 1 |k ) = D̂m,j(k + 1 |k ),

P(0)m,j(k + 1 |k ) = Pm,j(k + 1 |k )

αi(k + 1) = 0.5+ αi(k + 1 |k ),

β
(0)
i (k + 1) = βi(k + 1 |k ).

Iterate the following until the convergence (say, N times
for t = 1, 2, . . . , N )

R̂(t)(k+1) = diag

(
β
(t)
1 (k + 1)

β
(t)
1 (k+1)

,. . . ,
β
(t)
m (k+1)

α
(t)
m (k+1)

)
S(t+1)m,j (k + 1) = APm,j(k + 1 |k )AT + R̂(t)(k + 1)

G(t+1)
m,j (k + 1) = Pm,j(k+1 |k )AT

(
S(t+1)m,j (k+1)

)−1
Vm,j(k + 1) = d̂m(k + 1)− AD̂m,j(k + 1 |k )

D̂(t+1)
m,j (k + 1 |k + 1) = D̂m,j(k + 1 |k )+ G(t+1)

m,j (k + 1)

Vm,j(k + 1)

P(t+1)m,j (k + 1 |k + 1) = Pm,j(k + 1 |k )− G(t)
m,j(k + 1)

APm,j(k + 1 |k )

β
(t+1)
i (k + 1) = βi(k + 1 |k )+ 0.5[(Zi(k + 1)

−D̂(t+1)(k + 1))2

+(AP(t+1)(k + 1 |k + 1)AT )ii]

and set

βi(k + 1) = β(N)i (k + 1),

D̂m,j(k + 1 |k + 1) = D̂(N)(k + 1 |k + 1),

Pm,j(k + 1 |k + 1) = P(N)m,j(k + 1 |k + 1)

5) OUTPUT COMBINATION
The state estimation and error covariance estimation of the
measured distance for each AN from the result of two mode-
matched filters were combined with the respective mode
probabilities to yield the final state estimate D̂m(k+1 |k + 1)
and covariance estimate Pm(k + 1 |k + 1), expressed as fol-
lows:

D̂m(k + 1 |k + 1)

=

2∑
i=1

um, i(k + 1)D̂m,i(k + 1 |k + 1) (43)

Pm(k + 1 |k + 1)

=

2∑
i=1

um,i(k + 1)× {Pm,i(k + 1 |k + 1)

+[D̂m,i(k + 1 |k + 1)− D̂m(k + 1 |k + 1)]

×[D̂m,i(k + 1 |k + 1)− D̂m(k + 1 |k + 1)]T } (44)

Consequently, the final smoothed distance estimation for
ANm can be calculated from the estimation state vector
D̂m(k + 1 |k + 1), expressed as follows:

dm,IMM (k + 1) = AD̂m(k + 1 |k + 1) (45)

V. LOCATION CALCULATION
A. LEAST SQUARE METHOD
The more accurate estimation of the measurement distances
between the four individual ANs and target node can be
obtained from the outputs utilizing the GMM method and
VBAKF-based IMM smoother, and the location of the target
node was calculated by the LS approach. According to the
estimated distances dm,IMM (k + 1), the TOA positioning
model observation equations can be established as:

(x(k + 1)− x1)2 + (y(k + 1)− y1)2 + (z(k + 1)− z1)2

= d21,IMM (k + 1)

(x(k + 1)− x2)2 + (y(k + 1)− y2)2 + (z(k + 1)− z2)2

= d22,IMM (k + 1)
(x(k + 1)− x3)2 + (y(k + 1)− y3)2 + (z(k + 1)− z3)2

= d23,IMM (k + 1)
(x(k + 1)− x4)2 + (y(k + 1)− y4)2 + (z(k + 1)− z4)2

= d24,IMM (k + 1)
(46)

where (xi, yi, zi) donates the known coordinates of the anchor
node i (i = 1, 2, 3, 4), and (x(k+1), y(k+1), z(k+1)) donates
the position of the target node.

Equation (46) was transformed into a matrix form after
some mathematical manipulation, written as:

AX = B (47)

where

A =

 (x2 − x1) (y2 − y1) (z2 − z1)
(x3 − x1) (y3 − y1) (z3 − z1)
(x4 − x1) (y4 − y1) (z4 − z1)

, X =
 x(k + 1)
y(k + 1)
z(k + 1)

 ,
B =

1
2

 a2 − a1 + d21,IMM (k + 1)− d22,IMM (k + 1)
a3 − a1 + d21,IMM (k + 1)− d23,IMM (k + 1)
a4 − a1 + d21,IMM (k + 1)− d24,IMM (k + 1)

 and

ai = x2i + y
2
i + z

2
i .

The least square solution of the target node can be obtained,
expressed as following:

X = (ATA)−1ATB (48)
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B. TWO-STAGE MAXIMUM LIKELIHOOD ALGORITHM
The TSML algorithm was a two-step method to obtain the
location of the target node by employing the maximum like-
lihood approach, which has been proven that this method
can achieve the Cramér-Rao lower bound for the position
estimator [44]. To apply the TSML algorithm, the quadratic
system of equations (48) can be written as the following form:
−2x1x(k + 1)+ y1y(k + 1)+ z1z(k + 1)+ s(k + 1) = f1
−2x2x(k + 1)+ y2y(k + 1)+ z2z(k + 1)+ s(k + 1) = f2
−2x3x(k + 1)+ y3y(k + 1)+ z3z(k + 1)+ s(k + 1) = f3
−2x4x(k + 1)+ y4y(k + 1)+ z4z(k + 1)+ s(k + 1) = f4

(49)

where

f1 = d21,IMM (k + 1)− a1, f2 = d22,IMM (k + 1)− a2,

f3 = d23,IMM (k+1)−a3, f4=d24,IMM (k+1)−a4, and

s(k + 1) = x2(k + 1)+ y2(k + 1)+ z2(k + 1).

Equation (49) can be converted into the matrix, given by:

Gv = h1 (50)

where

h1 =


d21,IMM (k + 1)− a1
d22,IMM (k + 1)− a2
d23,IMM (k + 1)− a3
d24,IMM (k + 1)− a4

 , v =


x(k + 1)
y(k + 1)
z(k + 1)
s(k + 1)

 ,

G =


−2x1 −2y1 −2z11
−2x2 −2y2 −2z21
−2x3 −2y3 −2z31
−2x4 −2y4 −2z41


The weighted least-square solution of equation (50) can be
expressed as follows:

v = (GTW1G)−1GTW1h1 (51)

where

W1 = (4BTQB)−1 (52)

And Q represents a diagonal matrix whose diagonal entries
are the variances computed from the smoothed distance. B
donates a diagonal matrix whose entries are the smoothed
distance from the result of IMM filter.

Then, the element of v can be expressed as:
v1 = x(k + 1)+ e1(k + 1)
v2 = y(k + 1)+ e2(k + 1)
v3 = z(k + 1)+ e3(k + 1)
v4 = s(k + 1)+ e4(k + 1)

(53)

where e1(k+1), e2(k+1), e3(k+1) and e4(k+1) represent the
estimated errors with regard to v.

Then, square v1(k+1), v2(k+1), v3(k+1) and the objective
function with ψ as error vectors of w is constructed, which is
expressed as follows:

ψ = h2 −Mw (54)

where

M =


1 0 0
0 1 0
0 0 1
1 1 1

 , h2=

v21
v22
v23
v4

,w=

x̂21 (k + 1)

ŷ22(k + 1)

ẑ23(k + 1)

 , and

ψ =


2x̂(k + 1)e1(k + 1)+ e21(k + 1)

2ŷ(k + 1)e2(k + 1)+ e22(k + 1)

2ẑ(k + 1)e3(k + 1)+ e23(k + 1)

e4(k + 1)



≈


2x̂(k + 1)e1(k + 1)

2ŷ(k + 1)e2(k + 1)

2ẑ(k + 1)e3(k + 1)

e4(k + 1)


Then, the covariance matrix of the error vector ψ can be
computed as follows:

8 = E(ψψT ) = 4BT2 (GW1G)−1B2 (55)

Then, the weighted least square solution of equation (54)
that minimizes ψTW2ψ to produce more accurate position
estimate can be expressed as:

w(k + 1) = (MTW2M )−1MTW2h2 (56)

whereW2 represents a positive definite matrix [45], which is
given by:

W2 = [4BT2 (GW1G)−1B2]−1 (57)

where B2 donates the following diagonal matrix, expressed
as follows:

B2 =


x(k + 1) 0 0 0
0 y(k + 1) 0 0
0 0 z(k + 1) 0
0 0 0 0.5

 (58)

Because B2 contains the true coordinate position of the target
node, in practical scenarios the true value (x(k+1), y(k+1),
z(k+1)) of the target is not available [46], which is replaced
with their corresponding estimated values v1, v2, v3. Thus,
the desired estimate of the target coordinate position can be
calculated as: x(k + 1)

y(k + 1)
z(k + 1)

 =
√|w1(k + 1)|
√
|w2(k + 1)|
√
|w3(k + 1)|

 (59)
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C. EXTENDED KALMAN FILTER METHOD
Unlike the LS and TSML algorithms, the EKF aimed to
cope with nonlinear issue aroused by the covariance of mea-
sured distance and dynamic localization problem of the target
node, which can achieve position estimation in real-time by
employing the information of the objective. The basic idea
of EKF algorithm was to transform a nonlinear system into
an approximate linear system based on the first-order Taylor
series expansion. The main process of EKF positioning algo-
rithm is designed as follows:

The state space vector of the target node representation of
the form at epoch k+1 is given by:

X (k + 1) = [x(k + 1), ẋ(k + 1), y(k + 1), ẏ(k + 1),

z(k + 1), ż(k + 1)]T (60)

where (x(k+1), y(k+1), z(k+1)) and (ẋ(k+1), ẏ(k+1),
ż(k+1)) respectively, donates the coordinate and velocity of
the target node at epoch k+1.

The corresponding state model is given by:

X (k + 1) = 8X (k)+ Cv(k) (61)

where

8 =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

 ,

C =


T 2/2 0 0
T 0 0
0 T 2/2 0
0 T 0
0 0 T 2/2
0 0 T

 ,

and v(k) donates a white Gaussian process with zero-mean
and covariance matrix Q. The observation equation can be
considered as follows:

where (xm, ym, zm) stands for the coordinate ofmth AN, and
(x(k+1), y(k+1), z(k+1)) donates the target node’s estimation
coordinate calculated from the equation (61). Extending the
observation equation (62), as shown at the bottom of the next
page, in Taylor series and ignoring the two powers and higher
term, the matrix H can be constructed, expressed as follows:

H =


h1,x 0 h1,y 0 h1,z 0
h2x 0 h2,y 0 h2,z 0
h3,x 0 h3,y 0 h3,z 0
h4,x 0 h4,y 0 h4,z 0

 (63)

where

hm,x =
∂hm(X̂ (k + 1 |k ))
∂x(k + 1 |k )

=
x(k + 1)− xm

Lm
,

hm,y =
∂hm(X̂ (k + 1 |k ))
∂y(k + 1 |k )

=
y(k + 1)− ym

Lm
,

hm,z =
∂hm(X̂ (k + 1 |k ))
∂z(k + 1 |k )

=
z(k + 1)− zm

Lm
, m = 1, 2, 3, 4,

and

Lm =
√
(x(k + 1)−xm)2+(y(k + 1)−ym)2+(z(k + 1)−zm)2

The key step of EKF approach can be executed as following:
1). Predicted state estimate

X̂ (k + 1 |k ) = 8X (k |k ) (64)

2). Predicted state error covariance

P̂(k + 1 |k ) = 8P(k + 1 |k )8T
+ CQCT (65)

3). Near-optimal Kalman gain

G(k + 1) = P̂(k + 1 |k )HT [HP̂(k + 1 |k )HT
+ HRHT ]−1

(66)

4). Updated state estimate

X (k + 1 |k + 1) = X̂ (k + 1 |k )

+G(k + 1)[DIMMm (k + 1)− hm(X̂ (k + 1 |k )] (67)

whereDm,IMM (k+1) = [d1,IMM (k+1 |k ), . . . , dm,IMM (k+
1 |k )]T donates the vector of estimated distance obtained
from IMM filter.

5). Updated state error covariance

P(k + 1 |k + 1)= P̂(k+1 |k )−G(k + 1)HP̂(k+1 |k ) (68)

Based on aforementioned process, the EKF algorithm was
utilized to predict and update the estimated position of the
target node, which not only realized the location estimation
of the moving target, but also further eliminate the influence
of the residual distance error on the positioning accuracy
after filtering themeasurement distance by IMMmethod. The
measurement errors caused by LOS, NLOS and LOS-NLOS
have been diminished significantly by taking advantage of the
combination of GMMfilter and IMM-based smoother, which
was beneficial to achieve relativelymore accurate and reliable
position estimation for the mobile target node in the mixed
LOS/NLOS/LOS-NLOS scenarios.

VI. EXPEROMENTAL RESULT AND ANALYSIS
A. UWB P440 MODULE LOCALIZATION EXPERIMENT
The UWB P440 module, employing the two-way time of
flight (TW-TOF) approach for ranging between two or more
modules, and providing a bandwidth of 3.1-4.8 GHz and the
center frequency of 4.3 GHz with the measurement accuracy
up to 50 px and the refresh rate up to 125 Hz [47], was
produced by the American time domain company, as shown
in Fig. 4. Hence, we selected the UWB P440 modules as the
target node and ANs. The target node was installed on the
fuselage of shearer. Four ANs were deployed in the roadway
at the end of the FMMF, and the shape of ANs was arranged
into V-shape deployment configuration which was regarded
as an excellent layout [48], as presented in Fig.5.

In order to verify the feasibility and effectiveness of the
performance of the proposed positioning algorithm for the
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FIGURE 5. Schematic diagram of UWB sensors deployment in the end of
the fully mechanized mining face.

FIGURE 6. UWB positioning system in the experiment environment.

mobile target node in this paper, the experiments were carried
out in underground roadway Laboratory of China University
of Mining and Technology, as depicted in Fig.6. There was a
sampling point along the set trajectory of the mobile target
node every 0.15 m and 500 measurements were collected
for each sampling point. At each localization point, the staff
moved backwards and forwards between the target node and
ANs to collect a group of LOS-NLOS measured distance
data during this process, as illustrated in Fig.7. The coordi-
nates of four ANs were set as AN1 (5.436, 0.614, 0.843),
AN2 (5.436, 4.821, 1.367), AN3 (6.945, 2.416, 1.857), AN4
(6.954, 2.416, 0.446), respectively, and the target node moved
along a straight path. The two-state Markov transition prob-
abilities were set as p11 = 0.95, p12 = 0.05, p21 = 0.05,

FIGURE 7. Schematic diagram of UWB sensor positioning experiment.

and p22 = 0.95. The measurement noise parameters in LOS
and NLOS conditions can be acquired by offline test, with
mean of LOS error µlos = 0, standard deviation of LOS error
σlos = 0.04 m, mean of NLOS error µnlos = 0.08 m, and
standard deviation of NLOS error σnlos = 0.12 m.

B. MEASUREMENT DISTANCE ERROR ESTIMATION
The measurement distance between the target node and cor-
responding anchor node can be measured by using UWB
P440 self-network. The localization algorithm can computed
the target node’s position. Nevertheless, if we directly used
the average ofmeasurement distance for localization inmixed
LOS-NLOS scenario, larger positioning error occurred. For
example, the measured distance data of anchor node AN1 at
the localization point 6 under the LOS situation companied
by the NLOS scenario due to the dynamic obstacles such
as the moving people was depicted in Fig.8, revealing that
the measured distances were effected by NLOS. If we only
took into consideration the LOS scenario ignoring the NLOS
existing in thus mixed LOS-NLOS situation, it would give
rise to large errors for distance estimated by utilizing themean
of all measurement distance, which would produce unreliable
positioning result. Consequently, we firstly adopted GMM
method to smoothen the measured distance and computed the
initial state probabilities of the LOS andNLOS scenarios, and
then the VBAKF-based IMMwas used to further improve the
estimated distance quality of the result of the GMM.

For all localization points of AN1, the estimated distance
error computed by using the mean directly, GMM and GMM-
IMM methods were illustrated in Fig.9. It can be observed
that GMM algorithm can effectively mitigate the error of
measured distance and obtain the better ranging quality in
the mixed LOS, NLOS, and LOS-NLOS situations. This was

zm(k + 1) = hm(X̂ (k + 1 |k ))

=

√
(x(k + 1 |k )− xm)2 + (y(k + 1 |k )− ym)2 + (z(k + 1 |k )− zm)2 (62)
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FIGURE 8. Measurement distance in mixed LOS and NLOS condition.

FIGURE 9. Estimated distance error computed by using mean directly,
GMM and GMM-IMM approaches.

because the GMM approach was capable to filter noise and
NLOS error from the measured distances including LOS
and NLOS measurement. After getting relatively accurate
distances, the VBAKF-based IMM was executed based on
the actual state probabilities of the LOS and NLOS scenarios
from the GMM to further ameliorate the ranging quality.
Compared with the techniques of using the mean to estimate
distances directly and GMM, the more accurate distance with
the lowest estimated distance error providing approximately
0.06m∼0.08m can be computed by using GMM-IMM. IMM
technique had the self-adaptive feature with adjusting the
probability of each model and combining with the weighted
fusion estimation of LOS and NLOS distance, which was
beneficial to further reduce the error of the estimated distance.

C. LOCALIZATION RESULT ANALYSIS
To overall assess the superiority of the proposed positioning
algorithm, the root mean square error (RMSE) was usually

FIGURE 10. Comparison of location estimation error by utilizing LS,
GMM-LS and GMM-IMM-LS positioning algorithms.

FIGURE 11. Comparison of location estimation error by utilizing TSML,
GMM-TSML and GMM-IMM-TSML positioning algorithms.

used to evaluate the positioning error, expressed as follows:

RMSE =
√
(x − xr )2 + (y− yr )2+(z− zr )2 (69)

where (x, y, z) donates the estimated location of the target
node obtained by utilizing mentioned positioning algorithms,
respectively, and (xr , yr , zr ) represents the real coordinate.

To demonstrate the effectiveness and superiority of the
proposed GMM-IMM-EKF algorithm in this paper, different
position computation methods with respect to LS and TSML
under the framework of GMM-IMM algorithm were applied,
respectively. Moreover, these methods were compared with
the GMM-LS, GMM-TSML, GMM-EKF algorithm and their
corresponding single-model localization algorithms to fur-
ther understand the advantage of GMM-IMM technique.

The performance comparison with regard to the local-
ization error of the target node employing the different
algorithms was depicted in Figs.10-12. It was noted that,
the single LS, TSML, and EKF algorithms provided higher
localization error due to the influence of NOLS and mixed
LOS-NLOS condition. Compared to the approaches of

96358 VOLUME 8, 2020



B. Cao et al.: Novel Mobile Target Localization Approach for Complicate Underground Environment

FIGURE 12. Comparison of location estimation error by utilizing EKF,
GMM-EKF and GMM-IMM-EKF positioning algorithms.

FIGURE 13. The cumulative distribution function of localization error by
utilizing LS, GMM-LS and GMM-IMM-LS positioning algorithms.

utilizing the average value to estimate distance, the esti-
mation distance by utilizing GMM method got more accu-
rate distance estimation because the GMM approach had
the ability of filtering both noise and NLOS errors from a
set of NLOS damaged measurement distances [21], which
made the GMM-LS, GMM-TSML, and GMM-EKF algo-
rithms more accurate in terms of localization accuracy than
that of single positioning algorithm LS, TSML, together
with EKF. Synchronously, the GMM-IMM-LS, GMM-IMM-
TSML and GMM-IMM-EKF approaches can tremendously
diminish localization errors and achieve better positioning
accuracy by introducing the result of two different paral-
lel self-adjusting VBAKFs for LOS and NLOS condition
into the weighted fusion estimation in the IMM structure
compared with the GMM-LS, GMM-TSML and GMM-EKF,
respectively. Furthermore, the localization error of the GMM-
IMM-EKF algorithm was much smaller than that of GMM-
IMM-LS and GMM-IMM-TSML methods, exhibiting the
best positioning performance and robustness.

FIGURE 14. The cumulative distribution function of localization error by
using TSML, GMM-TSML and GMM-IMM-TSML positioning algorithms.

FIGURE 15. The cumulative distribution function of localization error by
utilizing EKF, GMM-EKF and GMM-IMM-EKF positioning algorithms.

The cumulative distribution function (CDF) of localiza-
tion errors obtained in the evaluation scenario with different
localization algorithms were presented in Figs.13-15. It was
straightforward to observe that, for the LS, GMM-LS and
GMM-IMM-LS algorithm, the localization error reached a
value of approximately 0.61 m, 0.41 m, and 0.39 m, respec-
tively, as the cumulative distribution probability was 90%;
that for TSML, GMM-TSML and GMM-IMM-TSML were
0.55 m, 0.52 m, and 0.43 m, respectively; that for EKF,
GMM-EKF and GMM-IMM-EKF were 0.58 m, 0.53 m,
and 0.3 m, respectively. Apparently, the positioning algo-
rithms under the framework of GMM-IMM outperformed
the GMM-based algorithm and direct localization algorithms,
and theGMM-IMM-EKF localization algorithmwas superior
to the other proposed algorithms. In other words, the GMM-
IMM-EKF technique was able to achieve higher positioning
accuracy in comparison with all localization algorithms and
the position of the target node can be estimated with relatively
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FIGURE 16. The improvement percentage of the average localization
error relative to the corresponding single positioning algorithms.

high accuracy for the underground mine environment in
LOS/NLOS/LOS-NLOS transition situations.

To have a better comparison of the mentioned localiza-
tion algorithms, the more detailed statistical localization
errors with respect to the maximum, minimum, average, and
standard deviation of localization error were summarized
in Table 1. According to these outcomes, it was observed
that LS, TSML and EKF approaches under the frame-
work of GMM-IMM was able to achieve the lowest aver-
age localization error, indicating that both GMM and IMM
made a tremendous contribution to distance reconstruction
and the positioning accuracy was significantly ameliorated.
As expected, the proposed GMM-IMM-EKF technique with
the lowest average localization error and standard devia-
tion exhibited the more excellent localization performance
than the compared methods, which was 0.1883 m and
0.0722 m, respectively, demonstrating that the GMM-IMM-
EKF method was more robust than other approaches

To further investigate the performance of the enhancement
of GMM-based approach and GMM-IMM-based algorithm
comprehensively, we calculated the improvement percentage
of the average localization error relative to the corresponding
single positioning algorithm, as depicted in Fig.16. It was
straightforward to see that the positioning accuracy of the
GMM-LS, GMM-TSML, and GMM-EKF were improved by
19.71%, 9.12%, and 14.34% on average localization error
compared with LS, TSML, and EKF, respectively, that for
GMM-IMM-LS, GMM-IMM-TSML, and GMM-IMM-EKF
were improved by 32.12%, 23.58%, and 60.41%, respec-
tively. Undoubtedly, the GMM-IMM-EKF approach signif-
icantly enhanced the localization accuracy compared with
the other approaches. The outstanding performance of the
proposed GMM-IMM-EKF technique was mainly due to
the smoothing of the measurement data and the mitigation
of the adverse effects of NLOS biases by both the GMM-
IMM and EKF in the mentioned approach, which was pro-
pitious to achieve higher accuracy than other positioning
methods.

TABLE 1. Comparison localization error (m).

VII. CONCLUSION
In this paper, to enhance positioning accuracy for complicate
underground environment in mixed LOS/NLOS/LOS-NLOS
scenarios, a novel approach GMM-IMM-EKF was proposed.
By adopting GMM algorithm to eliminate the effect of
LOSNLOS situation and two parallel self-adjusting VBAKFs
under the framework of IMM technique to alleviate the
LOS and NLOS errors, respectively, the measured distances
between target node and corresponding AN can be more
accurately re-estimated for frequent transitions between LOS,
NLOS, and LOS-NLOS situation. Then, with the smoothed
result of IMM-VBAKF, the EKF approach was utilized to
estimate the location of the target node. The experimental
verification demonstrated that GMM-based localization algo-
rithm performed better than that of the corresponding single-
model, and the positioning accuracy was significantly further
enhanced by exploiting GMM-IMM-based methods. Further-
more, the proposed GMM-IMM-EKF algorithm, showing the
highest improvement percentage of the average localization
and providing the lowest localization error as compared with
the other approaches, exhibited the best positioning perfor-
mance, which can effectively eliminate the interference of
severe NLOS errors and achieve higher positioning accuracy
in LOS/NLOS/LOS-NLOS transition conditions. For near
future research, we intend to further ameliorate and evaluate
the reliability of the GMM-IMMEKF algorithm in terms of
localization accuracy, enabling it apply to the underground
harsh environment.
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