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ABSTRACT With the rapid growth of data scale and diversification of demand, people have an urgent desire
to extract useful frequent itemset from datasets of different scales. It is no doubt that the traditional method
can solve the problem. However, the relationships among datasets of different scales are not fully utilized.
A fast approach proposed in this paper is as follows: the frequent itemsets on the large-scale data are directly
inferred based on the frequent itemsets that are belonged small-scale datasets, instead of mined from the
large-scale dataset again on condition that the frequent itemsets on the small-scale datasets have been mined.
We conduct extensive experiments on one synthetic data and four UCI data sets. The experimental results

show that our algorithm is significantly faster and consumes less memory than these leading algorithms.

INDEX TERMS Up-scaling, up-scaling frequent itemsets, frequent itemset mining, data mining.

I. INTRODUCTION

To analyze customer’s buying behavior-based transactions
database, Agrawal et al. first presented frequent itemset
mining in 1993 [1], that is one of the critical data mining
tasks and has widely used in many other significant data
mining tasks including mining associations and correlations,
classifying, clustering, etc. Since then, frequent itemset min-
ing has been a hot field that has attracted a great deal of
attention of researcher. After Apriori proposed, there are
several improved algorithms because Apriori needs to scan
the database repeatedly. These algorithms have a common
feature: generating candidate itemsets. So, filtering cand-
idate itemset is a challenging task. FP-growth algorithm is a
classic representative that does not generate candidate item-
sets and compresses the database representing frequent items
into FP-tree, which retains the itemset association infor-
mation [2]. In recent years, to enhance the efficiency of
mining frequent itemset, three kinds of the data structure
are presented by Deng et al., named Node-list, N-list, and
Nod-eset. FIN based Nodeset consumes less memory because
the Nodeset structure requires only the pre-order(or post-
order) [3]. Despite the above advantage of Nodeset, two
data structures (DiffNodeset [3] and NegNodeset [4]) are
proposed by Deng et al. and Aryabarzan et al., and there are
two algorithms named dFIN and negFIN based the former
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data structures respectively. Extensive experimental results
show that dFIN and negFIN have the same speed but ming
frequent itemset faster, compared with the state-of-the-art
algorithms [4].

The same problem or system can be perceived at different
levels of specificity (detail), depending on the complexity of
the problem, available computing resources, and particular
needs to be addressed [5]. Assuming you have nationwide
patient information, you need to give both city and coun-
try managers some advice on which diseases that the same
person suffers from, where the data onto each city is named
small-scale data, and the data onto the whole country is
named large-scale data. So, there is an urgent need to mine
frequent itemsets on different scale datasets. It would be a
pity that the traditional mining algorithm is first applied to
discover frequent itemsets from the small-scale datasets, and
then to from the large-scale dataset later. On the other hand,
the scheme does not use the relationship between small-scale
data and large-scale data. In this paper, a new framework(up-
scaling) is proposed: the frequent itemsets on a small-scale
datasets is used to directly infer the frequent itemsets on a
large-scale dataset, instead of secondary mining on a large-
scale dataset.

The contributions of this
follows:

1) This paper presents a novel framework for addressing
the issue that one mines frequent itemsets from different scale
datasets.
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2) We propose the new algorithm mining frequent itemsets
from the large-scale dataset, which depends on the frequent
itemsets belonged to the small-scale datasets, not original
data.

3) Experimental results show that the framework and the
algorithm are efficient and violently reducing memory con-
sumption with similar accuracy, especially in the case of short
frequent itemsets, and the framework is better than the current
optimal algorithm.

The rest of this paper is organized as follows: Section II
discusses related work to mine frequent itemsets. Section III
describes our problem and the framework is proposed in
section IV. Section V shows the experimental results. The
conclusions and some future research directions are given in
section VL.

Il. RELATED WORK

Frequent itemset mining is the first and foremost step of
association rule mining [6]. In association rules mining and
Frequent itemset mining literature, frequent Itemset mining
methods are mainly divided into two main categories: 1) algo-
rithms that mine frequent itemset that takes advantage of
the horizontal data format. 2) algorithms that mine frequent
itemset that takes advantage of the vertical data format.

In the first categorized algorithms, apriori, the basic
algorithm for finding frequent itemsets, is firstly pro-
posed by Agrawal and Srikant [7], which motivates
many researchers to study this field. It adopts an iter-
ative approach known as a level-wise search, where
k-itemsets are used to explore (k + 1)-itemsets. Apriori algo-
rithm often needs multiple passes over dataset and produces
many candidate itemsets that are eventually pruned. For the
problem that Apriori generates too many candidate itemsets,
Park introduces the DHP algorithm that can reduce the num-
ber of candidate itemsets and improve efficiency by using
a hash, function and bit vector [8]. To reduce the number
of scanning the dataset, Savasere proposes a partitioning
algorithm [9], which can obtain all frequent itemsets by
scanning the dataset twice. First, The partitioning algorithm
divides the dataset into several non-overlapping partitions
and the frequent itemsets for each partition are computed.
Then, another pass over the dataset is performed to acquire
the support of the candidates and the frequent itemsets can
be discovered. Y. Djenouri et al. propose SSFIM [10], which
scans the transactional database when discovering frequent
itemsets once. It has a unique feature to allow the generation
of a fixed number of candidate itemsets, independently from
the minimum support threshold, which intuitively allows to
reduce the cost in terms of runtime for large databases. Toivo-
nen presents the Sampling algorithm [11] based on the fact
that trade off some degree of accuracy against efficiency.
It uses the sampling method to extract an appropriate number
of samples from the original dataset, and then mine fre-
quent itemsets from the samples. The above all algorithms
need to generate candidate itemsets. The classic and basic
algorithm that doesn’t need to generate candidate itemsets is
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the FP-growth algorithm [2]. It stores essential information
about frequent itemset in a tree-based data structure, namely
frequent pattern tree (FP-tree). Like the FP-growth algorithm,
other algorithms [12]-[14] employ the pattern growth method
to discover frequent itemsets.

In the second categorized algorithms, Generating frequent
k-itemsets by intersecting the TID sets of every pair of
frequent (k-1)-itemsets, which is the essence of the Eclat
algorithm [15] by Zaki 2000. Eclat algorithm can recursively
partition large classes into smaller ones until each class can
be maintained entirely in the memory. Then, each class is
processed independently in the breath-first fashion to com-
pute the frequent itemsets. The main problem of Eclat is that
when the intermediate results of vertical TID lists can become
too large to be store in the memory. Burdick ef al. propose
to MAFIA [16] that converts the original data into binary
vectors, and obtains the support through the ““and operation”,
so as to improve the operation speed. When the data set is
dense, these algorithms will generate a lot of redundant items,
Pasquier er al. [17] propose closed frequent itemsets where
frequent itemsets are computed. With the introduction of
diffset technology, the algorithm [ 18] by Zaki that its memory
requirements were reduced. It only keeps track of differences
in the tids of a candidate pattern from its generating frequent
patterns. The diffsets drastically cut down the size of memory
required to store intermediate results.

Recently, to mine frequent itemsets in the presence of
missing items and overcome these limitations of FT-Apriori,
Shariq Bashir proposes FT-PatternGrowth [19], which adopts
a divide-and-conquer technique and projects a big database
into several databases and mines FT frequent itemsets in
each small database. EAFIM [20] that uses the Apache Spark
framework to achieve parallelism is an improved version
of the apriori algorithm. Yasir, Muhammad, et al. propose
the HARPP [21], which adopt the concern of pow set and
dictionary data structures, and the D-GENE [22], which sus-
pends the process of ITTL generation till the completion
of transaction pruning phase, discovering frequent itemsets
from sparse datasets.

The drawback of these methods is that it requires exces-
sive time consumption or construct complex data struc-
tures [23] or dominates only in a specific scenario, so its effi-
ciency needs to be improved. In this paper, we introduce the
method(up-scaling) that computes frequent itemsets of the
large-scale dataset depending on the frequent itemsets which
belonged to small-scale datasets, not original data. So, our
method is efficient and requires less memory consumption.

IlIl. PROBLEM DESCRIPTION
Before presenting our problem statement, let’s start with
enlisting some necessary notations used in this paper.

A dataset D of size |D| consists of disjoint subsets
Dy,Dy, ..., Dg, whose size are [Dq], |D2|, ..., |Dx| respec-
tively, where D is named large-scale dataset and Dj is named
small-scale datasets. Let T = {I;, I, ..., I} be an itemset.
every transaction element S of D is not empty such that
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S C T. supND is defined occurrence frequency of some
itemset S in D and support is the percentage of S appearing,
that to say support = supND / |D]|.

Definition 1 (Frequent Itemset of Small-Scale Datasets):
if 3x Let x € t, t € Dj, Tsupport; computed by (1) that
comes from [11] is minimum support threshold, p is prob-
ability parameter and adjustable and x satisfies x.surpport >
Tsupport;, where Tsupport is minimum support threshold on
large-scale dataset D, D; is a small-scale datasets of D and
x.supNDj is occurrence frequency of x in Dj, x.supportD; =
x.supND; / |Dj|, all x form frequent itemsets of Dj,
notated SCFJ;, otherwise, x does not satisfy x.surpportD; >
Tsupport;, x is infrequent itemset of small-scale datasets D;.

1
In— @)
2(Dil p
Definition 2 (The Estimated Value of Infrequent Itemset of
the Small-Scale Datasets): if itemset x is infrequent of D; but
frequent of Dj, X’s estimate value of occurrence frequency in
D; is as follows

x.supND; = Zj#’xescnj

Tsupport; = Tsupport —

Wi; x x.sup ND; ()

where Wj; is the similarity weight between D; and D; and
W=l

Definition 3 (Frequent Itemset of the Large-Scale Dataset):
let the x’s value of occurrence frequency in D is computed
according to (3), if x.supND/|D| > Tsupport, then x is defined
as frequent in D and all x form frequent itemsets of D, notated
LCFIL.

n n
x.supND = Z x.supND; + Z x.sup ND;j
i=1,xeSCFI; Jj=1,x¢SCFI;
3)

According to [24], it is obvious that if itemset x is frequent
in D then there is at least one D; that is small-scale datasets
and x is also frequent in D;.

Definition 4 (Potential Large-Scale Frequent Itemset(PL-
SFI)): Let PLSFI = Uj{x is frequent in D;}. then frequent
itemset of the large-scale dataset(LSFI) LSFI € PLSFI.

Definition 5: (Similarity of Two Sets): if A and B are two
definite sets, their similarity M(A, B) is as follows

M(A,B) = |ANBJ|/|AUB| “)

where |A| is the number of the elements in A.

Problem 1: let LSFI is the set of the frequent itemset in
D. The ultimate objective of this paper is finding the function
up-scaling (PLSFI, Tsupport) which can reveal all large-scale
frequent itemsets in D, that is to say LSFI = up-scaling
(PLSFI, Tsupport).

Fig. 1 shows two methods that can get the frequent itemsets
of the large-scale dataset. It is the intuitional method that
translating small-scale datasets into the large-scale dataset,
then getting frequent itemsets from the large-scale dataset.
Another method is finding frequent itemsets from the small-
scale datasets, then translating the frequent itemsets which
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FIGURE 1. Two methods of acquiring frequent itemsets of the large-scale
dataset.

multi-scale SCFI,
dataset
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T

Tsupport
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FIGURE 2. The overall framework of mining frequent itemsets of
multi-scale dataset.

are mined from small-scale datasets into the final result that
is frequent itemsets of the large-scale dataset. Our method is
the latter. Specifically, we propose the up-scaling algorithm
that depends on the frequent itemsets that have been mined
from, the small-scale dataset, not the raw large-scale dataset.

IV. PROPOSED FRAMEWORK AND THE PROPOSED
ALGORITHM
A. THE OVERALL FRAMEWORK
The ultimate objective of this paper is to reveal all frequent
itemsets belonged large-scale dataset basing on the frequent
itemsets which have been mined on small-scale datasets.
We can observe the overall framework shown in fig. 2. In this
paper, discovering the frequent itemsets of large-scale dataset
is divided into the following five steps:

1) Mining the frequent itemsets for each small-scale
dataset.

2) Calculating the similarity between small-scale datasets.

3) Constructing the potential frequent itemset of large-
scale dataset.

4) Estimating the support value of some itemsets on small-
scale datasets where they are infrequent.

5) Filtering frequent itemsets for the large-scale dataset.

B. PROPOSED ALGORITHM

Based on three formulas in section 3 and the overall frame-
work, up-scaling frequent itemsets of the large-scale dataset
is described in Algorithm 2. In particular, we use the
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Algorithm 1 (Frequent Itemsets Mining of Small-Scale
Datasets)

Input: D;(i =1, ..., k), Tsupport, p(0 < p < 1)

Output: frequent itemsets on D; SCFLii =1, ...,k)

1: foreach D; do begin

2:  computing Tsupport; according (1)

3: endfor

4: foreach D; begin

5:  SCFI; = getFrequentltemsets(D;, Tsupport;)

6: endfor

l

est_supMatrix<-NULL

R

SLFI,
Tsupport

similarity
matrix yes
PLCFI,

supMatrix<-NULL

yes
xEPLCFI

modify
supMatrix

delete x
end

FIGURE 3. The flow diagram of the up-scaling algorithm.

Modify
est_supMatrix

—
filter
est_supMatrix

similarity of frequent itemsets of the small-scale datasets
instead of their similarity, in this algorithm.

Algorithm 1 products with the frequent itemsets of small-
scale datasets using traditional data mining methods, which
is the input data source of Algorithm 2.

The flow diagram of up-scaling frequent itemsets can be
seen in Fig. 3. It is visible that the time consumption of
the constructing supportMatrix and est_supMatrix is dom-
inant in the up-scaling algorithm. The time complexity of
them is same, ®(m x k), where m is the cardinality of
the set of PLSFI, k is constant and k << m on a specific
scenario. memory consumption mainly consists of inputting
small-scale frequent itemsets and constructing supportMa-
trix and est_supMatrix, so the space complexity of the
up-scaling algorithm is ®(ma-x(kFI, m x k)), where kFI
= Zi'{:l |LCFI;| and |LCFI;| is the cardinality of the set of
LCFI.
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Algorithm 2 (Up-Scaling Frequent Itemsets)
Input: SCFL(i =1, ..., k), Tsupport
Output: frequent itemsets on D(LSFI)
1: foreach SCFI;, SCFI; do begin
2:  computing Mj; = M(SCFI;, SCFI;) according
3: endfor
4: PLCFI = |-, SCFI;
5: foreach x € PLCFI do begin

6: foreach SCFJ; do begin

7 if x € SCF]; then do supx; = x.supNDi
8: else supx; = 0

9: endfor

10:  num = the number of that supxi is nozero
11:  list(num, supxi, ..., supxy)
12:  add list to supportMatrix

13: endfor
14: foreach x € supportMatrix do begin
15: sum=0
16:  foreach supx; in x do begin
17: if supxi = O then do
18:
. 1D, n sup xj
est_supxi = |D;| x g X Zi:lMij X D]
19: if est_supx; > Tsupport; x |Dj| then do
est_supx; = Tsupport; x |Dj|
20: else est_supx; = supx;
21: sum = sum + est_supx;
22:  endfor

23:  list(sum,est_supxfp, ..., est_supx,)

24:  add list to est_supMatrix

25: endfor

26: foreach x € PLCFI, list_item in est_supMatrix do begin
27: add sum/|D] to list_item

28: if sum/|D| > Tsupport then do add x to LCFI

29: endfor

C. CASE STUDY

To familiarize the readers with the proposed algorithm,
we demonstrate the algorithm through the transactional
datasets which consist of Dy, D,, D3 and Dy, and are shown
by fig.4.

Let Tsupport = 0.6, p = 0.5, according to (1), we com-
pute the support threshold of the small-scale datasets
(Tsupport; = 0.39, Tsupporty; = 0.40, Tsupport; = 0.41,
Tsupports = 0.38). In the first step, frequent itemsets of D;
are mined by apriori algorithm, as shown by fig.5.

In the second step, based on the four frequent itemsets as
shown by fig.5 and according to Definition 5, the similarity
matrix is computed as follows:

1.0,0.77,0.64, 0.75
0.77, 1.0, 0.69, 0.54
0.64, 0.69, 1.0, 0.54
0.75,0.54,0.54, 1.0

VOLUME 8, 2020
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TID  List of Item_IDs TID  List of Item_IDs TID  Listof ltem_IDs TID  List of ltem_IDs
TO1 11,12,14 TO1 12,13,14 To1 11,13,14 To1 11,13,14
T02 11,12,13,16 T02 11,12,16 T02 11,13,14 T02 11,12,13,16
T03 11,12,13,14 T03 11,12,14 103 112,314 103 11,12,14
To4 12 Toa 11,12,13,14 T04 12,13,14 T04 1,12,13
TO5 11,13,14
TO5 11,12,13,14 TO5 11,12,13,14 105 1121314
TO6 11,12,14 TO6 11,12
T06 1,12,14,15 TO6 11,12,15
T07 11,12,13,14 T07 11,12,13,15
T07 11,12,14
07 13,14,15 TO8 11,12,14,15 D4
T08 11,12,13,14 T08 11,12,14
TO9 12,13,14,15
b1 T09 11,12,13,14,15 10 23045
D2 D3
FIGURE 4. Sample of the transactions datasets.
ItemSet  SupportND1 ItemSet  SupportND2 ItemSet ~ SupportND3 ItemSet  SupportND4
{11} ’ 1 8 11 7
{11} {11} 1} 7
{12} 7 (12} 9 (12} 7
12 6
i3} > {13} 4 (13} 8 12}
14 6
fay {14} 7 {14} 10 {13} >
{11, 12} 7
{11, 12} 8 {11, 13} 5 {14} 3
{11, 13} 4
{11, 14} 6 {11, 14} 7 {11, 12} 6
{11, 14} 5
{12,13} 4 12,13 5
12,13} 4 12,13} (11,13} 5
12, 14 7 {12, 14} 7
{12, 14} 5 12,14 {11, 14} 3
(13, 14} 4 {13, 14} 4 {13, 14} 8
{12, 13} 4
{11,12,13} 4 {11, 12, 14} 6 {11, 13, 14} 5
{11, 12, 14} 5 {12,13, 14} 4 {12,13, 14} 5 {11, 12, 13} 4

FIGURE 5. The support count of the small-scale data.

In the third step, based on every frequent itemsets of the
small-scale datasets and according to Definition 4, the poten-
tial frequent itemset of the large-scale dataset(PLSFI) is
constructed as follows: {{I1},{I12},{I3},{14},{I1,12},{I1,I3},
{11,14},{12,14}, {I2,13}, {I3,14},{I1,12,13},{I1,12,14} {11,
13,14}, {12,13,14}}

In the fourth step, we design the data structure which
can save the support value of itemsets on every small-scale
datasets, and estimate the support value of some itemsets of
the small-scale datasets where they are infrequent, which are
shown in Table 1 and Table 2.

In the last step, based on the support of the large-scale
dataset in Table 2 and according to Definition 3, the final fre-
quent itemsets of the large-scale dataset are held as follows:
{{11},{12},{13},{14},{11,12},{11,14},{12,14}}.

V. EXPERIMENTS
To prove the effectiveness and efficiency of the up-
scaling approach, we conducted two groups of experiments.
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The purpose of the first group of experiments is to compare
the performance of the up-scaling algorithm against the dFIN
algorithm [3] and negFIN algorithm [4], which are leading
mining algorithms in the field of mining frequent itemsets
at present. In the second experiment, we select Apriori [1]
that is a classic frequent itemset mining algorithm as the
baseline algorithm to verify the accuracy of the up-scaling
algorithm.

A. DATA PREPROCESSING

Comparison experiments are assessed on five datasets, which
consist of one synthetic dataset and four real datasets. The
description of these datasets is shown in Table 3. To obtain the
small-scale datasets, we divide every dataset into four non-
overlapping partitions in two methods. The first method is
in terms of equal interval, i.e., the first partition consists of
record 1, record 5, and so on, the second partition consists
of record 2, record 6, and so on, and the second method is

97145
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TABLE 1. The support value of itemsets on every small-scale datasets.

NO  potential itemsets supND1 supND2 supND3 supND4  num of Nozero

1 {11} 7 8 7 7 4

2 {12} 7 9 7 6 4

3 {13} 5 4 8 5 4

4 {14} 6 7 10 3 4

5 {11,12} 7 8 0 6 3

6 {11,13} 4 0 5 5 3

7 {11,14} 5 6 7 3 4

8 {12,13} 4 4 5 4 4

9 {12,14} 5 7 7 0 3
10 {13,14} 4 4 8 0 3
11 {11,12,13} 4 0 0 4 2
12 {11,12,14} 5 6 0 0 2
13 {11,13,14} 0 0 5 0 1
14 {12,13,14} 0 4 5 0 2

TABLE 2. The support value and estimate support value of the itemsets on every small-scale datasets.

no potential itemsets supND1 supND2 supND3 supND4 support
1 {11} 7 8 7 7 0.85
2 {12} 7 9 7 6 0.85
3 {13} 5 4 8 5 0.65
4 {14} 6 7 10 3 0.76
5 {11,12} 7 8 4.14 6 0.74
6 {11,13} 4 3.35 5 5 0.51
7 {11,14} 5 6 7 3 0.61
8 {12,13} 4 4 5 4 0.5
9 {12,14} 5 7 7 2.64 0.64
10 {13,14} 4 4 8 2.44 0.54
11 {11,12,13} 4 3.12 3.15 4 0.42
12 {11,12,14} 5 6 4.14 2.64 0.52
13 {11,13,14} 2.57 3.12 5 1.88 0.37
14 {12,13,14} 2.65 4 5 1.78 0.4

that the data are directly quartered. Then frequent itemsets are B. EXPERIMENTAL SETTINGS
mined from the partitions basing different minimum support We compare the performance that is runtime and memory
threshold and parameter p. consumption of our method against the negFIN algorithm.
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10 15 20 25 30
Minimum support: %

FIGURE 6. Runtime comparison of the up-scaling against negFIN and dFIN.

TABLE 3. Description of the datasets.

NO Name of Type [T| D] Size of
dataset dataset (KB)
1 accidents Real 34 340183 34678
2 entree Real 11 4160 182
3 kosarak Real 8 990002 31279
4 retail Real 10 88162 4070
5 T40I110D100K  Synthetic 40 100000 15213

To make a fair comparison, these two algorithms have been
run on the same hardware and software conditions. Our
computer has the configuration of Inter(R) Core(TM) i7
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e Lp-5Cale

sl Ni2gFIN

retail
12
g 10
.
£ 6
T 4
E 2
0
5 10 15 20 25 30
Minimum support: %
accidents
0.7
06
g 0.5
c 04
203
Z 02
0.1

0 c—= o—= c—0
70 75 80 85 90 95

Minimum support: %

Dual-Core processors running at 2.8GHz and 16G RAM,
with the windows 10 x64 Home operating system. All algo-
rithms are coded in C/C++.

C. RUNTIME COMPARISON

The runtime comparison of up-scaling against negFIN and
dFIN is shown in fig. 6. In these figures, the X and Y axes
are the minimum support threshold and runtime, respectively.
As we know, with the increment in the value of the minimum
support threshold, there is the corresponding decrement in
execution time for these three algorithms. However, except
for entree dataset, the running time of up-scaling on the
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FIGURE 7. Memory consumption comparison of the up-scaling against negFIN and dFIN.

other four datasets vary very small. The main reason are
that the number of the frequent itemsets that are belonged
small-scale datasets on these datasets is small and the time
overhead of our algorithm mainly depend on the frequent
itemsets that are belonged small-scale datasets, not original
data. Up-scaling faintly outperforms both the algorithms for
the entree dataset when the minimum support value is set to
5%. Because, the number of the frequent itemsets severed our
algorithm as input is rough the same as that of raw data in
that case. NegFIN runs faster than dFIN on T40I10D100K
dataset for lower minimum support, and the two algorithms
spend almost the same time on the other four datasets.
The reason is that the amount of which the negFIN drive
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NegNodeset is more than that the dFIN drives the DiffNode-
set on T40I10D100K dataset, and the their amount is same
roughly on other datasets.

As we can see in these figures, it is evident that up-scaling
is more efficient than negFIN and dFIN. It should be noticed
that runtime of up-scaling means the total execution time,
which is the period between input and output of algorithm 2.
Given different values of p, experiment 1 evaluates the perfor-
mances of up-scaling on varying minimum support threshold,
where our method can improve the CPU perfor-mance by an
average of 73 percent against negFIN and 75 percent against
dFIN in our experiments. In addition, we also notice the fact
that for two different data partitioning methods, the running
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minsup% 3 6 9 12 15 18

T40110D100K p:b 5 10 15 20 25 30
kosarak min_sup% 5 10 15 20 25 30
p: 5 10 15 20 25 30

retail min_sup% 5 10 15 20 25 30
p:b 5 10 15 20 25 30

entrée min_sup% 5 10 15 20 25 30
p:b 5 10 15 20 25 30

accidents min_sup:% 70 75 80 85 90 95
p:Y 5 10 15 20 25 30

FIGURE 8. Parameter values on five datasets.

min_sup accidents

accu

P 70 75 80 85 90 95
5 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100%
15 100% 100% 100% 100% 100% 100%
20 100% 100% 100% 100% 100% 100%
25 100% 100% 100% 100% 100% 100%
30 100% 100% 100% 100% 100% 100%

FIGURE 9. The accuracy of the up-scaling algorithm on accidents, using
the first partition method.

min_sup T40110D100K

accur

p 3 6 9 12 15 18
5 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100%
15 100% 100% 100% 100% 2100% 100%
20 100% 100% 100% 100% 100% 100%
25 100% 100% 100% 100% 100% 100%
30 100% 100% 100% 100% 100% 100%

FIGURE 10. The accuracy of the up-scaling algorithm on T40110D100K,
using the second partition method.

time of the up-scaling algorithm is roughly equal. So, we do
not distinguish the two cases in fig. 5.

D. MEMORY CONSUMPTION COMPARISON

Fig. 7 compares up-scaling with negFIN and dFIN. As we
can see in this figure, the memory consumption of our
algorithm is much less than negFIN and dFIN. Because
our algorithm is mining the frequent itemsets of large-scale
dataset from the frequent itemsets which are belonged to
small-scale datasets, while the negFIN algorithm and the
dFIN algorithm are directly mining on the raw dataset
and our algorithm needs to construct the supportMatrix
and the est_supMatrix that is main components of mem-
ory consumption of up-scaling when negFIN constructing
set_enumeration_tree and frequent_itemset_tree [4] and
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min_sup kosarak

accur

p 5 10 15 20 25 30
5 100% 100% 100% 100% 100% 100%
10 100% 100% 100% 100% 100% 100%
15 100% 100% 100% 100% 100% 100%
20 100% 100% 100% 100% 100% 100%
25 100% 100% 100% 100% 100% 2100%
30 100% 100% 100% 100% 100% 100%

FIGURE 11. The accuracy of the up-scaling algorithm on kosarak, using
the second partition method.

min_sup retail

accur

D 5 10 15 20 25 30
5 94% 100% 86% 75% 100% 100%
10 94% 100% 86% 75% 100% 100%
15 94% 100% 86% 75% 100% 100%
20 94% 100% 86% 75% 100% 100%
25 88% 100% 86% 75% 100% 100%
30 88% 100% 86% /5% 100% 100%

FIGURE 12. The accuracy of the up-scaling algorithm on retail, using
the second partition method.

dFIN constructing PPC-tree [3]. It takes about the approxi-
mate space to construct data structures frequent_itemset_tree
and PPC-tree, as we can see in this figure, the memory
consumption of both algorithms is roughly the same. It is
obvious that the frequent itemsets on these datasets are much
smaller than the original dataset. In particular, the result
that minimum support threshold is 5% on the entree dataset
in fig. 7. shows that up-scaling consumes much more mem-
ory than other minimum support thresholds, that is because
minimum support threshold is set to 5%, the entree dataset
produces much more frequent itemsets which are belonged
to small-scale datasets than for the other mini-mum support
thresholds. It should be noted that for two different data par-
titioning methods, the up-scaling algorithm consumes almost
the same memory. Therefore, we use one histogram depicting
the two cases in fig. 7.

E. VALIDITY OF EFFECTIVENESS

In this part, we give parameter p and minimum support
threshold six different values with regard to the same dataset,
respectively, as shown by fig. 8. For the same dataset and
every partition method, we used up-scaling and Apriori
to conduct 36 experiments, respectively. Fig. 9. gives the
specific results from accidents in terms of the first parti-
tion method. The accur is expressed as the percentage of
|A|/|B|, where A and B are computed by up-scaling and
Apriori, respectively. The accuracy on the other four datasets
datasets partitioned by the first method is also 100% and the
figure display is omitting here. That is to say that up-scaling
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min_sup entree

accur

p 5 10 15 20 25 30
5 95% 95% 86% 93% 82% 57%
10 93% 93% 86% 93% 82% 57%
15 93% 92% 86% 93% 82% 57%
20 91% 90% 86% 93% 82% 57%
25 91% 89% 86% 93% 82% 57%
30 90% 89% 86% 93% 82% 57%

FIGURE 13. The accuracy of the up-scaling algorithm on entree, using
the second partition method.

min_sup accidents

accur

D 70 75 80 85 90 95
5 91% 87% 85% 100% 100% 100%
10 90% 87% 83% 100% 100% 100%
15 89% 87% 83% 100% 100% 100%
20 89% 87% 83% 100% 100% 100%
25 89% 87% 83% 100% 100% 100%
30 89% 86% 83% 100% 100% 100%

FIGURE 14. The accuracy of the up-scaling algorithm on accidents, using
the second partition method.

and Apriori discover the same frequent itemsets, which con-
firms the result generated by up-scaling in our experiments is
effective.

For the second partition method, the accuracy of our algo-
rithm is shown from fig. 10 to fig. 14. That is noticeable that
up-scaling is 100% accurate on two datasets, partially 100 %
on the other two datasets, and performs poorly on the entree.
We guess the reason is the data distribution of the entree is
Very uneven.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
Based on the requirements of mining frequent itemsets from
different scale datasets, this paper proposes a new frequent
itemsets mining framework. It just needs to mine all fre-
quent itemsets on small-scale datasets, and then accord-
ing to the frequent itemsets generate large-scale dataset’s
frequent itemsets, but no looking for frequent itemsets
from the large-scale dataset, thereby reducing the operating
costs. Because frequent itemsets decrease with the increase
of minimum support threshold, our algorithm that needs
to input frequent itemsets of small-scale datasets is espe-
cially suitable for situations with a high threshold. Exper-
imental results show that the framework is feasible and
effective.

In the future, our research directions as follows: (1) up-
scaling the cluster centers in clustering tasks, (2) up-scaling
function moving trends in regression analysis, (3) solving
some problem of industrial recommender systems basing
collaborative filtering (CF) [25]-[27].
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