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ABSTRACT The integration of the BeiDou Navigation Satellite System(BDS) and the Inertial Navigation
System(INS) can provide a more reliable and accurate navigation service than either system alone. The
deeply coupled architecture for BDS and INS integration has more superior performance than the loosely
coupled or the tightly coupled. Owing to the complicated dynamic scenario and the nonlinear system’s noise
uncertainty, the adaptive Kalman filter(AKF) algorithm is often adopted in the deep integration(DI) system.
The adaptive Sagewindowmethods including innovation-based adaptive estimation(IAE) and residual-based
adaptive estimation(RAE) are widely applied in AKF algorithms, but they have several limitations. We pro-
pose an improved adaptive unscented Kalman filter(AUKF) based on forgetting-factor-weight smoothing
and multi-factor adaptation to overcome these limitations. Compared with the Sage window methods,
the improved AUKF algorithm is immune to the quantity change of the satellites concerning integration
and more sensitive to present dynamic. Furthermore, it can reduce the computation and storage burden
in implementation. A simulation test based on a software platform and the deeply integrated BDS/INS
navigation system is carried out to evaluate the performance of the improved AUKF. Simulation results
show that the improved AUKF algorithm outperforms the extended Kalman filter(EKF) and has a similar
performance with the RAE-AUKF.

INDEX TERMS Adaptive UKF, BDS, deep integration, INS, navigation.

I. INTRODUCTION
The BeiDou Navigation Satellite System(BDS) plays an
important role in the Global Navigation Satellite Sys-
tem(GNSS), and it has made great progress in recent years.
The BDS has been able to provide positioning and navigation
service to global users since December 28, 2018. The signal
of satellites is not subject to error accumulation by nature,
but it is susceptible to interference, jamming, multipath and
blocking obstacles. In contrast, the Inertial Navigation Sys-
tem(INS) is self-contained and inherently immune to exterior
interference and environmental disturbances [1]. However,
caused by biases and random noise, error accumulation of
the INS easily leads the navigation solution to diverge with
time. Therefore, the INS needs to be calibrated by the INS
alignment and/or integration algorithms [2].
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Considering both the advantages and drawbacks of GNSS
and INS, integration of GNSS and INS can supply more
accurate and reliable navigation information than either sys-
tem alone. There are mainly three integrated architectures
named loosely coupled, tightly coupled, and deeply coupled,
respectively. The loosely coupled integration uses position
and velocity estimations from GNSS and INS to form mea-
surements. This architecture is sub-optimal in preventing out-
ages (i.e., with less than four satellites in sight) [3], [4]. The
tightly coupled architecture adopts pseudo range and doppler
differences between GNSS and INS as the integration filter’s
input information. The performance of the tightly coupled
architecture is improved [4] compared with the loosely cou-
pled one, especially in degraded satellite constellations. In the
deep integration(DI) architecture, the dynamic assistant infor-
mation from INS is fed back to tracking loops. Substantial
improvements in the performance of noise suppression can
be achieved in the deeply coupled architecture, compared to
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a traditional loop filter [5]. Generally, the deeply coupled
integration can be classified into two architectures named
centralized filtering architecture and federated filtering archi-
tecture [6], [7]. The centralized filtering architecture com-
bines the in-phase and quadrature correlator components as
measurements [8]–[10], and the federated one utilizes outputs
from discriminators or pre-filters as measurements [11]–[13].
The system architecture proposed in this paper is a federated
one based on [13].

The deep integration of BDS and INS introduces
nonlinearity into the system model so that the traditional
linear Kalman filter(KF) is not suitable for the integration
filtering. The Extended Kalman Filter(EKF) is one of the
most popular methods for sensor integration. The EKF was
first applied in sensor fusion by Willner et al. [14], and
it has become one of the most popular filtering methods
because of its efficiency and accuracy. In the EKF algorithm,
the first-order Taylor series expansion is adopted. In this
expansion, nonlinear models’ Jacobian matrices are calcu-
lated, and the high order terms are abandoned. Caused by
the first-order linearization process, the EKF easily suffers
from performance degradation, especially in strong nonlinear
systems. On account of high maneuverability in high-speed
applications, it is difficult to neglect the high-order nonlinear
items. The propagation process of the system error should
be modeled by the nonlinear system model. As a result,
the filtering method for strong nonlinear systems is required
for the integration of GNSS and INS [15].

The Unscented Kalman Filter which was first proposed by
Julier et al. [16] is regarded as a better alternative for the
integration of BDS and INS. The UKF introduces a mini-
mal set of sigma points which are chosen deterministically
to approximate the probability distribution of the nonlinear
model by ‘‘unscented transformation’’(UT) instead of relying
on analytical linearization of the system. Unlike the lineariza-
tion process of the EKF, the UT does not need to calculate
the partial derivatives. Additionally, the posterior mean and
covariance of the Gaussian random variable can be approxi-
mated with second-order accuracy [17]. The UKF has higher
estimation accuracy and convergence than EKF [18], but the
UKF filtering solution will be unstable if stochastic errors
are involved in the pre-defined kinematic and measurement
model [19].

The uncertainty of the process noise and measurement
noise reduces the system positioning performance and
dynamic adaptability. If the statistic properties of the sys-
tem are set unchanged, it may result in performance
degradation or even divergence. One of the effective
approaches is applying the adaptive Kalman filters(AKFs).
Sage and Husa proposed adaptive Bayes estimation algo-
rithms with unknown prior statistics for filtering which are
called the innovation-based adaptive estimation(IAE) and
residual-based adaptive estimation(RAE) [20]. The Sage
window methods reevaluate the noise covariance matrixes
of the predicted state and the measurement vector, but it
requires the number of satellites tracked to stay constant.

Yang et al. developed a flexible AKF method based on the
adaptive factor calculated by utilizing innovation vectors or
difference between predicted and estimated states [21], [22].
In [23], an adaptive federated filter method is applied to the
PPP/INS integrated system to improve filter efficiency and
adaptivity. The experiment results show that the performance
of the filter is improved. It should be noted that all the
adaptive Kalman filtering methods above are related to the
linear state-space model.

Many adaptation methods related to the UKF have been
put forward by researchers in recent years. Gao et al. [24] pro-
posed an adaptive UKF(AUKF) by combining the windowing
and randomweighting concepts. The proposed adaptive UKF
outperforms the conventional one under the condition with-
out precise knowledge of system noise statistics. In [25],
an adaptation strategy is provided to develop a modified
Masreliez-Martin UKF for discrete-time nonlinear stochastic
systems. The proposed filter is easy to be implemented and
derivative-free. Gao et al. [26] presented a novel adaptive
UKF by employing the maximum likelihood principle(MLP)
and moving horizon estimation(MHE). The proposed adap-
tive UKF can achieve the online estimation of system noise
and improve robustness. Cho and Choi [27] reported a
sigma-point Kalman filter based on receding-horizon strat-
egy. The proposed filter can work even in the case of exit-
ing the unmodeled random walk of the inertial sensors.
Various situations indicate that the proposed filter can be
implemented in a low-cost DR/GPS integration system for
seamless land navigation.

In this paper, we propose an improved AUKF algorithm
to overcome the limitations of the Sage window methods.
The improved AUKF algorithm has similar performance with
the Sage window methods, but it is immune to the quan-
tity change of the visible satellites and more sensitive to
dynamic change compared with the Sage window method.
Additionally, it can reduce the computation and storage bur-
den. This algorithm is also applied in a deeply integrated
BDS/INS system in which the performance of the proposed
AUKF algorithm is evaluated. The following sections are
organized as follows. In section II, we first introduce the
deeply integrated BDS/INS model including dynamic model
and measurement model. Then in section III, we interpret
the basic procedures of the standard UKF, and an improved
AUKF algorithm is proposed. In section IV, we carry out
a simulation test based on a software receiver to compare
the performance of the proposed AUKF with the other
two types of Kalman filters. Simulation results and discus-
sions are presented. Finally, a conclusion comes as the last
section.

II. DEEPLY INTEGRATED BDS/INS SYSTEM MODEL
A. SYSTEM FRAMEWORK
Figure 1 illustrates the framework of the deeply integrated
BDS/INS navigation system. Firstly, the Intermediate Fre-
quency(IF) signal from the Radio Frequency(RF) is trans-
mitted to the receiver’s correlators. A local replica of the
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FIGURE 1. The framework of deeply integrated BDS/INS navigation system.

carrier is mixed with the IF signal to obtain in-phase and
quadrature-phase signals. The correlator then correlates the
processed signals with the one-half chip early, prompt,and
one-half chip late replica codes in each channel. Six I-Q
integration values for each channel can be obtained in every
integration interval, and they are further processed by pre-
filters. The pre-filters can estimate tracking errors and their
covariances to prepare for the integration filtering. Next,
the integration filter based on the adaptive UKF estimates
an error-state vector that can periodically correct the INS
outputs, biases of the Inertial Measurement Unit(IMU), and
receiver clock status. Specific force and angular rate mea-
surements from the IMU are delivered to the Inertial Nav-
igation Processor, and high frequency position and velocity
estimations are calculated. Finally, utilizing ephemerides,
the receiver’s position and velocity estimations are projected
along the line of sight of each satellite. Numerically Con-
trolled Oscillator(NCO) commands are generated with the
assistance of dynamic information from the INS. The loop of
the whole system is closed. Because all the channels share
dynamic information, which is called the vector tracking
architecture, the tracking and positioning performance of the
deeply integrated system is improved.

B. INTEGRATION FILTER MATHEMATICAL MODEL
The principle of the deeply coupled BDS/INS integration is
to employ pre-filters’ outputs as measurements to estimate
the error of the INS and the receiver clock status. Details
about the pre-filter model can be found in [6], [13]. In this
section, the mathematical model consisting of a dynamic
model and a measurement model is established for the deep
integration system. The dynamic model is derived from
the inertial navigation equations and the IMU error equa-
tions. The measurement model is constructed by utilizing the
pre-filters’ output information.

TABLE 1. The tate vector of the BDS/INS integration Kalman filter.

1) SYSTEM DYNAMIC MODEL
The state vector of the integration filter is a 17-state
one which includes INS errors and receiver clock errors.
The components of the state vectorXk are defined as follows,
and they are explained in Table 1.

Xk = [δϕ δvn δp εb ∇b δbclk δdclk ]Tk (1)

where the superscript ‘‘T ’’ means matrix transposi-
tion, and the subscript ‘‘k’’ means at the epoch of k .
δϕ = [δϕE δϕN δϕU ]T represents the vector of pitch, roll, and
yaw misalignment angles. The term δvn = [δvE δvN δvU ]T is
the velocity error vector expressed in n-frame. The position
error vector is expressed as δp = [δL δλ δh]T where L, λ, and
h represent latitude, longitude, and height respectively. In this
paper, the body frame(b-frame) is selected as ‘‘Right-Front-
Up’’, and the local navigation frame(n-frame) is defined
as ‘‘East-North-Up(ENU)’’. The n-frame means the actual
navigation frame, and n′ is the navigation frame estimated
by the receiver. i-frame represents the geocentric inertial
frame, e-frame is the Earth-Centered Earth-Fixed(ECEF)
frame.

The classic INS error propagation model is based
on the assumption that the misalignment angles are
small. Nevertheless, this assumption may be broken
by environmental disturbances and sensor errors [28].
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Stochastic nonlinearities from high-maneuverability or sud-
den environment changes need to be considered. A nonlinear
dynamic model is adopted to avoid small angle assumption
and improve the robustness of the filter [29]. The nonlinear
system dynamic model of INS is written as

δϕ̇ = C−1ω [(I − Cn′
n )ω

n
in + δω

n
in − C

n′
b δω

b
ib]

δv̇n = (I − Cn′
n )C

n
n′ f

b
ib + δv

n
× (2ωnie + ω

n
en)+

Vn
× (2δωnie + δω

n
en)+ C

n′
b δf

b
ib

δL̇ =
1

RM + h
δvN −

vN
(RM + h)2

δh

δλ̇ =
secL
RN + h

δvE +
vE secL tanL
RN + h

δL

−
vE secL

(RN + h)2
δh

δḣ = δvU

(2)

where Cn′
n is the rotation matrix from n-frame to n′-frame.

Similarly, Cn
n′ and C

n′
b are also rotation matrixes. ωnin is the

rotation velocity of the n-frame with respect to i-frame solved
in n-frame. δωnin is the error vector of the angular velocity
ωnin, and δω

b
ib is the error vector of ωbib which is measured

by the gyro. δωbib is composed of gyro constant drift error
εb and Gaussian white noise. ωnie is the rotation velocity
vector of e-frame with respect to i-frame solved in n-frame,
and δωnie is the error vector of it. ω

n
en stands for the rotation

velocity vector of n-frame relative to e-frame, and δωnen is
the corresponding error. f bib is the specific force sensed by
the accelerometer resolved about the b-frame, and δf bib is the
error vector of f bib. δf

b
ib consists of the accelerometer bias

error∇b and Gaussian white noise. RM is the median radius,
and RN is the normal radius.C−1ω is the transformation matrix
from the relative angular velocity to the Euler angle error.
When the small angle assumption is valid, we can getCω ≈ I
and I − Cn′

n ≈ (δϕ×), and the linear system dynamic model
can be established.

The gyro bias error and accelerometer bias error are set as
random constants, which is expressed as{

ε̇b = 0

∇̇b
= 0

(3)

The receiver clock model is shown as followsδḃclk = δdclk + wbδḋclk = −
1
τclk

δdclk + wd
(4)

where wb and wd are Gaussian white noise for clock bias and
drift. δdclk is modeled as first-order Markov process, and τclk
is the time constant.

Combining (2) to (4), the discrete-time form after dis-
cretization of the nonlinear dynamic model of the deeply
integrated BDS/INS system can be summarized as follows

Xk = f (Xk−1)+W k−1 (5)

where f (·) represents the nonlinear function andW k−1 is the
process noise vector.

2) MEASUREMENT MODEL
Pre-filters can provide tracking error estimations and their
covariances. The discrete form of the measurement model is
given by

Zk = Hk · Xk + Vk (6)

where Zk is the measurement vector, Hk is the observation
matrix, and Vk is the measurement noise vector.
In the deeply coupled integration, the NCO commands are

generated using INS status information. Therefore, the track-
ing errors of tracking channels contain the information of the
INS’s residual errors. Code phase error and carrier frequency
error estimations from pre-filters are taken as measurements
of the integration filter. The measurement vector Zk at epoch
k is defined as

Zk = [δρ, δρ̇]Tk
= [δρ1, δρ2, . . . , δρN , δρ̇1, δρ̇2, . . . , δρ̇N ]Tk (7)

δρi =
c

fcode
δτi (8)

δρ̇i =
c

2π fcarr
δωi (9)

whereN is the tracking channel number, and i = 1, 2, . . . ,N .
i means the ith channel of all N tracking channels. The
pseudo range error vector δρ and the doppler error vector
δρ̇ are the converting results of (8) and (9). In (8) and (9),
c is the speed of light, δτi is the code phase error estima-
tion from the ith channel, and δωi is the carrier frequency
error estimation. fcode and fcarr represent code frequency
and carrier frequency, respectively. The noise covariance
matrixRk is directly related to the pre-filters’ state covariance
matrixes [13].

The measurement matrix Hk is given in (10).

Hk =

[
ON×6 Hρ1 ON×6 Hρ2
ON×3 H ρ̇1 ON×9 H ρ̇2

]
k

(10)

and Hρ1, Hρ2, H ρ̇1 and H ρ̇2 are defined as follows

Hρ1 = −


u1
u2
...

uN

 · C1,Hρ2 =
[
1N×1 ON×1

]
(11)

H ρ̇1 = −


u1
u2
...

uN

 · C2,H ρ̇2 =
[
ON×1 1N×1

]
(12)

where OM×N is a zero matrix of size M × N , and similarly
1M×N is an M × N matrix full of ‘‘1’’. ui = [ex ey ez]i
is the unit vector of line-of-sight direction from user to the
ith satellite. C1 and C2 are transformation matrixes between
different frames.
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III. IMPROVED ADAPTIVE UNSCENTED KALMAN FILTER
A. STANDARD UKF
Considering the following nonlinear system model with
additive noises{

Xk = f (Xk−1)+W k−1

Zk = Hk · Xk + Vk
(13)

where Xk and Zk are the state vector and measurement vector
at epoch k . f (·) is the nonlinear function of the process
model, and Hk is the measurement transposition matrix.
W k−1 and V k are the process and measurement noises. They
are assumed as additive zero-mean Gaussian white noise with
covariances Qk and Rk , which is shown as follows

E[W k ] = E[V k ] = 0
E[W kVT

j ] = 0

E[W kWT
j ] = δkjQk

E[V kVT
j ] = δkjRk

(14)

where δkf is the Kronecker-δ function.
The UKF uses unscented transform technique to approx-

imate the probability distribution of the nonlinear system
state. A set of weighted sigma points whose sample mean
and covariance match those of the priori distribution is deter-
ministically chosen. Then the nonlinear system function is
applied to the sigma points to yield the transformed samples.
By using the weighted mean and covariance of the trans-
formed samples, the predictedmean and covariance are calcu-
lated [30]. The calculation steps of the UKF are summarized
as follows [31], [32]
step 1: Initialization of the state vector and covariance

matrix. {
X̂0 = E[X0]
P̂0 = E[(X0 − X̂0)(X0 − X̂0)T ]

(15)

step 2: Calculation of the sigma points.
In this step, the symmetric sampling strategy based on the

Cholesky decomposition is adopted [33]. Assuming the state
estimate X̂k−1 and the error covariance matrix P̂k−1 at epoch
k − 1 are given, the sigma points can be selected as
χ i,k−1= X̂k−1, i=0

χ i,k−1= X̂k−1 + γ (P̂k−1)
1
2
i , i=1, 2, . . . , n

χ i,k−1= X̂k−1 − γ (P̂k−1)
1
2
i−n, i=n+ 1, n+ 2, . . . , 2n

(16)

where (P̂k−1)
1
2
i denotes the ith column of the square root of

matrix P̂k−1. n is the element number of the state vector. γ is
a scale factor which is defined as

γ =
√
n+ λ (17)

where λ = α2(n + κ) − n is a scale factor, and κ is a
secondary parameter which is usually equal to or greater than
zero [31]. The parameter α determines the spread of the sigma

points around X̂k−1, and it is usually a positive value smaller
than 1(e.g., 0.0001 ≤ α ≤ 1).
step 3: Time Update.
The weights of sigma points are shown as

W n
0 = λ/(n+ λ)

W c
0 = λ/(n+ λ)+ (1+ α2 − β)

W n
i = W c

i = 1/[2(n+ λ)], i = 1, 2, . . . , 2n

(18)

where W n
i and W c

i represent the weight of the mean and
covariance, respectively. β incorporates prior knowledge of
the distribution of X , and β = 2 when X is normally
distributed [34].
The sigma points are instantiated through the dynamic

model f (·) to get the set of the transformed samples

χ−i,k = f (χ i,k−1), i = 0, 1, 2, . . . , 2n (19)

The predicted mean X−k and covariance P−k are updated asX̂
−

k =
∑2n

i=0
W n
i χ
−

i,k

P̂
−

k =
∑2n

i=0
W c
i (χ
−

i,k − X
−

k )(χ
−

i,k − X
−

k )
T
+ Qk

(20)

where the superscript ‘‘−’’ means the prior.
step 4: Measurement Update.
Since the measurement model is a linear one, the mea-

surement update process can be performed as the standard
Kalman Filter. The measurement update process at epoch k
is shown as follows

Ẑ
−

k = Hk X̂
−

k (21)

P̂
−

Z ,k = Hk P̂
−

k H
T
k + Rk (22)

Kk = P̂
−

k H
T
k (P̂
−

Z ,k )
−1 (23)

X̂
+

k = X̂
−

k + Kk (Zk − Ẑ
−

k ) (24)

P̂
+

k = P̂
−

k − Kk P̂
−

Z ,kK
T
k (25)

where the superscript ‘‘+’’ represents the posteriori.Kk is the
Kalman filter gain at epoch k .

B. IMPROVED ADAPTIVE UKF
The Sage window methods [20], [35] including
innovation-based adaptive estimation(IAE) and residual-based
adaptive estimation(RAE) estimate the covariance matrixes
by a moving window. Because the noise matrixes are reevalu-
ated and adjusted according to the real data, the Sage window
method improves the performance of the Kalman filter and it
is widely applied. However, the Sage window method has
several limitations itemized as follows [36], [37]
• Since the Sage window method evaluates the covariance
matrix by a moving window, the response of the adap-
tive evaluation is delayed. The historical innovation or
residual sequences contribute equally to the evaluation,
which makes the adaptive mechanism insensitive to the
dynamic change.

• The smoothing method implies that the number of
the measurements should have the same dimension.
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Once the number of measurements changes(e.g. some
tracking channels lose lock due to building blocks),
the method will fail to work. This essential problem
may lead the IAE and RAE unusable in the dynamic
condition.

• To estimate the innovation or residual sequence covari-
ance matrix, we have to use the innovation or residual
sequences and covariance matrixes of m epoches where
m is the window width. It causes a significant storage
and computation burden especially when the dimension
of the matrix is high.

An improved AUKF algorithm is proposed in this
section to overcome these limitations. This adaptive filtering
algorithm contains two steps including Q-Adaptation and
R-Adaptation. The adaptation process of the system noise
matrix Qk and the measurement noise matrix Rk is presented
next.

1) Q-ADAPTATION
The innovation vector vk at epoch k is expressed as

v−k = Zk − Ẑ
−

k (26)

The estimation of the system noise matrix only using the
innovation vector at the current epoch is written as follows.
To guarantee Q̂cur,k to be positive definite, an approximation
is adopted here [38].

Q̂cur,k ≈ Kk Ĉcur,v−k
KT
k (27)

where the subscript ‘‘cur’’ means ‘‘current’’, and the innova-
tion covariance matrix Ĉcur,v−k

at epoch k is estimated using

the current innovation vector v−k as follows

Ĉcur,v−k
= v−k (v

−

k )
T (28)

In order to eliminate the noise correlation and reduce
computation burden, Ĉcur,v−k

is supposed to be a diagonal
matrix as follows

Ĉcur,v−k
= diag{v−k ◦ v

−

k } (29)

where ‘‘◦’’ represents the Hadamard product operation, and
diag{a} means a diagonal matrix whose diagonal elements
consist of the vector a.

However, the estimation Q̂cur,k is noisy, because Q̂cur,k
is estimated only using the innovation sequence at current
epoch without smoothing. Hence, Q̂cur,k is not suitable for
application in AUKF. A smoothing window method whose
window width is m based on forgetting factor weights is
implemented here. The smoothing estimation of the system
noise matrix at epoch k + 1 is given

Q̂k+1 =

∑m
j=1 µjQ̂cur,k−j+1∑m

j=1 µj
(30)

where µj is the jth element of the weight vector. µj can be
prepared before the filter begins to work, and it is defined as

µj =
1− d

1− d j+1
(j = 1, 2, . . . ,m) (31)

FIGURE 2. The forgetting factor weights vector.

Generally, the constant d is satisfied with 0.90 < d < 0.99,
and d = 0.95 is adopted here. The forgetting factor weights
are plotted in Figure 2. As can be seen from the figure,
the weight decreases with the increase of index j, which
means that the term Q̂cur,k−j+1 closer to epoch k contributes
more to the estimation Q̂k+1.
Utilizing this forgetting-factor-weight-based smoothing

method, the sensitivity to dynamic change is improved com-
pared with the average smoothing method. Additionally,
instead of expensive storage and computation consumption
in the smoothing process of matrix Ĉcur,v−k

, the object of the
smoothing process is transformed into the diagonal elements
of Q. Hence, the computation and storage burden is reduced
in the Q̂k estimation process compared with the IAE and
RAE method. Furthermore, the window smoothing process
of the matrix Ĉv−k

in IAE and RAE requires that the number
of observations remain the same in the smoothing window.
The proposed AUKF algorithm avoids this limitation by
smoothing the diagonal elements of Q whose dimension is
constant.

2) R-ADAPTATION
The residual vector rk at epoch k is defined as

v+k = Zk − Ẑ
+

k

= Zk −Hk X̂
+

k (32)

where Ẑ
+

k is the posteriori estimation of the measurement
vector Zk .

The estimation of the residual covariance matrix Ĉv+k
is

derived from [35] as follows, and an adaptive scale factor
matrix Sk is adopted here for the adaptation of the mea-
surement noise covariance matrix R whose dimension is
(2N × 2N ).

Ĉv+k
= R̂

+

k −Hk P̂
+

k H
T
k

= Sk R̂
−

k −Hk P̂
+

k H
T
k (33)

where R̂
−

k is a prior estimation of R at epoch k , and R̂
−

k is a
diagonal matrix which is expressed as

R̂
−

k =

[
R−ρ,k ON×N
ON×N R−ρ̇,k

]
(34)

where R−ρ,k and R−ρ̇,k are related to pseudo range error and
pseudo range rate error, respectively. R−ρ,k and R−ρ̇,k are
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obtained from the pre-filters’ outputs before the integration
filter update [13].

Since Rρ and RPρ have different units, it is not appropri-
ate to adapt the matrix R as a whole. For precise filtering,
the components of the scale factor Sk for Rρ and RPρ should
be estimated separately. Sk is defined as

Sk =
[
s1,k · IN×N ON×N
ON×N s2,k · IN×N

]
(35)

where s1,k and s2,k are the adaptive coefficients at epoch k ,
and the posteriori estimation of R at epoch k is given

R̂
+

k = Sk R̂
−

k (36)

=

[
s1,k · R−ρ,k ON×N
ON×N s2,k · R−ρ̇,k

]
To estimate the adaptive coefficients s1,k and s2,k of Sk ,
calculate the trace of both sides of (33) and we can get

tr(Sk R̂
−

k )1:N
= tr(s1,k · R−ρ,k )

= tr(Hk P̂
+

k H
T
k )1:N + tr(Ĉv+k

)1:N

tr(Sk R̂
−

k )(N+1):2N
= tr(s2,k · R−ρ̇,k )

= tr(Hk P̂
+

k H
T
k )(N+1):2N + tr(Ĉv+k

)(N+1):2N

(37)

where tr(·)a:b represents the sum of the ath diagonal element
to the bth diagonal element of the related matrix.

Finally, the estimation of adaptive coefficients for
R-adaptation can be calculated from (37) as follows
ŝ1,k+1 =

tr(Hk P̂
+

k H
T
k )1:N + tr(Ĉv+k

)1:N

tr(R−ρ,k )

ŝ2,k+1 =
tr(Hk P̂

+

k H
T
k )(N+1):2N + tr(Ĉv+k

)(N+1):2N

tr(R−ρ̇,k )

(38)

Because the R-adaptation process is executed after UKFmea-
surement update, ŝ1,k+1 and ŝ2,k+1 estimated at epoch k are
prepared for epoch (k + 1). When epoch k = 1, both ŝ1,k and
ŝ2,k are equal to 1 for initialization.
On the purpose of overcoming the limitation 2(i.e. the mea-

surement number should remain the same) mentioned above,
the following smoothing method for the trace estimations of
residual covariance matrix tr(Ĉv+k

)1:N and tr(Ĉv+k
)(N+1):2N at

epoch k are presented as

tr(Ĉv+k
)1:N

= Nk ·

∑k
j=k−m+1 µk−j+1(v

+

j )
T
1:Nj

(v+j )1:Nj/Nj∑m
j=1 µj

tr(Ĉv+k
)N+1:2N

= Nk ·

∑k
j=k−m+1 µk−j+1(v

+

j )
T
Nj+1:2Nj

(v+j )Nj+1:2Nj/Nj∑m
j=1 µj

(39)

whereNj is the channel number at epoch j, the operation (·)a:b
stands for the ath element to the bth element of the related
vector. µj is the weight factor defined in (31).

Using the smoothing method in (39), the estimation pro-
cess is not subject to the change of the measurement num-
ber which is related to channel number Nk . Furthermore,
similarly with the Q-adaptation process, the later residual
sequence contributes more than the earlier one does to the
Sk estimation because of the property of µj. The storage
and computation burden is also reduced compared with the
Sage window method, because only the traces of the resid-
ual covariance matrixes Ĉv+k

in the smoothing window are
computed and stored.

By combining (39),(38), and (36), the R-adaptation process
is established.

The adaptation process of the proposed algorithm can be
summarized as Table 2.

IV. PERFORMANCE EVALUATION AND DISCUSSIONS
A. SIMULATION SETUP
In this section, a simulation is carried out to evaluate the
performance of the AUKF proposed in comparison with EKF
and RAE-based AUKF. The EKF is the most widely applied
in the nonlinear navigation system, and the RAE-based adap-
tive method is one of the Sage window methods. These three
algorithms are employed in a deeply integrated BDS/INS
system. In order to get better insights into the ability of the
proposed AUKF, the simulation test is implemented on a
Matlab-based software receiver on a PC, in which way the
navigation solution can be compared with the designed tra-
jectory, and the navigation error can be calculated precisely.
Since the dynamic information is fed back to the tracking
loops in the deep integration system, which is the main dis-
tinction between the tightly coupled and the deeply coupled
architecture, the simulation is designed at the Intermediate
Frequency(IF) signal level rather than depending on pseudo
range and doppler measurements.

Before showing the simulation results, a summary of
assumptions is made as follows.
• IF signals are generated with standard atmospheric
models. Satellite clock errors, multipath errors, and
ephemeris errors are not considered.

• Only scale factor errors, constant bias, and random walk
noise are considered for INS simulation. Askew instal-
lation errors, lever arm errors, and correlated bias errors
are not modeled in the simulation.

• The INS has been calibrated properly before the
integration filter begins to work.

The simulation framework is shown in Figure 3. This
figure mainly illustrates the generation procedure of IMU
measurements and IF signals. Each block stands for a module
with a explicit function. Different colors represent different
types of functions. The relationships among the modules are
also described in this figure.

The user dynamic is designed as shown in Figure 4.
Figure 4(a), 4(b), and 4(c) indicate the trajectory, velocity,
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TABLE 2. Adaptation process of the improved AUKF.

FIGURE 3. The framework of simulation scheme.

and attitude reference, respectively. Table 3 illustrates the
receiver initial status. The motion states of the receiver con-
tain acceleration, climbing, turning, circling, and uniform
moving.

In this simulation, raw IMU measurements without noise
are firstly generated with the trajectory, velocity, and attitude
references mentioned above. Then artificial measurement
noise is added to the raw measurements. The noise model
consists of scale factor errors, constant bias, and randomwalk
noise. The parameters of both accelerometer and gyroscope
of IMU are in accordance with the MEMS grade IMU [39]
and listed in Table 4.

Satellite position and velocity are calculated based on
actual BDS satellite ephemerides achieved from International
GNSS Service(IGS) products. The broadcast ephemerides
are recorded on 29th, January 2020 from BCEmerge. The
ephemerides are also utilized for positioning and integration

of the DI system. We select seven BDS visible satellites
for this simulation. The aeroview of these satellites at the
beginning epoch are expressed in Figure 5. The elevation
angles and azimuth angles are marked in turn in this figure.
The PRN numbers of each satellite are labeled on the right
side of the corresponding markers.

With the user’s and the satellites’ dynamic information,
the distance and doppler can be calculated. Then atmospheric
delay computed by standard atmospheric model are added
to obtain carrier phase and code phase in the simulation.
We adopts the BDS B3I signal format in the IF signal genera-
tion process, and the related parameters are listed in Table 5.
White gaussian noise is injected in the digital IF data based
on a prepared C/N0 value for all satellites. Finally, the digital
IF data is quantized and recorded in a text file to process later.

The DI BDS/INS system based on a software receiver
processes the IMU measurements and IF signals using
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FIGURE 4. Trajectory, velocity, and attitude reference of the receiver.

TABLE 3. Receiver initial status.

EKF, RAE-AUKF, and the proposed AUKF, respectively.
Simulation results and discussions are presented in the
following section.

B. RESULTS AND DISCUSSIONS
The prepared IF signals and IMU measurements are trans-
mitted into the deeply integrated BDS/INS system as shown
in Figure 3. We apply the Kalman filter methods including

TABLE 4. Accelerometer and gyroscope configuration parameters.

FIGURE 5. The aeroview of visible BDS satellites in the simulation.

TABLE 5. Parameters of IF signal.

EKF, RAE-AUKF, and Improved AUKF for signal process-
ing and integrating. The navigation solutions consisting of
attitude, velocity, and position estimations for each method
are then recorded.

The navigation solution errors computed by comparing the
estimations with the references of trajectory, velocity, and
attitude are shown in Figure 4. The attitude errors, velocity
errors, and position errors are illustrated in Figure 6, Figure 7,
Figure 8, respectively. The IMU processing frequency is
200Hz, and the system solution output sample rate is 5Hz.
To verify that the improved AUKF is immune to the number
change of the satellites concerning integration, we control
the changing trend of the visible satellite number as shown
in Figure 9 when the improved AUKF is implemented.

The Figure 6 presents the attitude estimation errors of
the three Kalman filter algorithms. This figure reveals that
the attitude errors fluctuate with the changing trend of
user dynamics. As can be seen from this figure, the noisy
parts(t = 20∼28s and 36∼44s) correspond to the two cir-
cling motion states expressed in Figure 4. Similarly, changing
of the user motion state (e.g. accelerating, climbing, and turn-
ing) results in increase of attitude error more or less. Com-
pared with EKF, the adaptation strategy of RAE-AUKF and
the improved AUKF helps to alleviate the attitude estimation
error influenced by the changes of user’s movement direc-
tion. Additionally, the Yaw estimation errors of the improved
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FIGURE 6. The attitude error comparison among EKF, RAE-AUKF, and
Improved AUKF.

FIGURE 7. The velocity error comparison among EKF, RAE-AUKF, and
Improved AUKF.

AUKF are closer to zero compared with RAE-AUKF, which
indicates that the improved AUKF is more sensitive to the
change of heading direction. Moreover, it should be noted
that the mean values of the attitude estimation errors are not
equal to zero as expected. The main reason is that the grade of
the IMU in the simulation is selected as MEMS whose large

FIGURE 8. The position error comparison among EKF, RAE-AUKF, and
Improved AUKF.

FIGURE 9. The visible satellites number during the improved AUKF
process.

scale factor errors and constant bias have a strong influence
on accuracy of the IMU measurements.

Figure 7 illustrates the velocity estimation errors in the
ENU navigation frame, and Figure 8 shows the position
estimation errors in the ECEF frame. From these two figures,
we can draw the conclusion that the velocity and position
estimation errors of RAE-AUKF and improved AUKF are on
the same level. The EKF has larger estimation errors than the
RAE-AUKF and the improved AUKF.

The overall estimation of navigation solution error at epoch
k is defined as

||1x̂k || =
√
(1xk,1)2 + (1xk,2)2 + (1xk,3)2 (40)

where the subscripts ‘‘1, 2, 3’’ represent the three orthogonal
components’ indexes of the error vector 1x̂k . 1x̂k repre-
sents the attitude error, velocity error, or position error here.
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TABLE 6. Comparison of the navigation solution errors among EKF, RAE-AUKF, and Improved AUKF.

The RMSE of the navigation solution errors is expressed as

RMSE =

√√√√ 1
M

M∑
k=1

||1x̂k || (41)

where M is the total number of epochs.
The overall estimation errors of the navigation solutions

are compared next. RMSEs andmaximum absolute(Max Abs)
errors are computed and recorded in Table 6. From the error
statistics of the navigation solutions, we can conclude that
the improved-AUKF outperforms the EKF and has similar
performance with the RAE-AUKF in the accuracy of attitude,
velocity, and position estimations. There is no adaptation
process in the EKF, that is why it has the poorest performance
among the three algorithms. Although the RAE-AUKF and
the improved AUKF implement the adaptation process in
different manners, the two AUKF methods both extract noise
covariance information from the residual sequences of the
UKF, and that is the reason why they have similar perfor-
mance.

The total-time-cost statistics of adaptation processes are
also collected and recorded for RAE-AUKF and the improved
AUKF, respectively. With the same processor and simulation
conditions, the time cost is 0.2935s for RAE-AUKF and
0.1851s for the improved AUKF. The computation burden is
reduced when the improved AUKF is implemented.

V. CONCLUSION
The conventional Sage window method for Kalman filter
adaptation has limitations in application. We present an
improved AUKF algorithm to overcome these limitations
with application in the deeply integrated BDS/INS sys-
tem. A forgetting-factor-weight smoothing method and a
multi-factor adaptation method are adopted in the proposed
AUKF algorithm.Without loss of smoothness, the forgetting-
factor-weight smoothing method is more sensitive to the
present motion compared with the average one. The smooth-
ing failure problem caused by number changing of tracking
channels is avoided. Additionally, using the improved AUKF
algorithm, the storage and computation burden during the
adaptation process is reduced. A simulation test based on a
software receiver is carried out to evaluate the performance
of the proposed algorithm. The results show that the proposed
AUKF algorithm outperforms EKF and has similar perfor-
mance with RAE-AUKF in terms of attitude, velocity and
position accuracy. In future work, we will concentrate on its
real-time implementation on a hardware platform.
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