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ABSTRACT Accurate tool condition monitoring (TCM) is essential for the development of fully auto-
mated milling processes. This is typically accomplished using indirect TCM methods that synthesize the
information collected from one or more sensors to estimate tool condition based on machine learning
approaches. Among the many sensor types available for conducting TCM, motor current sensors offer
numerous advantages, in that they are inexpensive, easily installed, and have no effect on the milling process.
Accordingly, this study proposes a new TCM method employing a few appropriate current sensor signal
features based on the time, frequency, and time − frequency domains of the signals and an advanced
monitoring model based on an improved kernel extreme learning machine (KELM). The selected multi-
domain features are strongly correlated with tool wear condition and overcome the loss of useful information
related to tool condition when employing a single domain. The improved KELM employs a two-layer
network structure and an angle kernel function that includes no hyperparameter, which overcome the
drawbacks of KELM in terms of the difficulty of learning the features of complex nonlinear data and avoiding
the need for preselecting the kernel function and its hyperparameter. The performance of the proposed
method is verified by its application to the benchmark NASAmilling dataset and separate TCM experiments
in comparison with existing TCM methods. The results indicate that the proposed TCM method achieves
excellent monitoring performance using only a few key signal features of current sensors.

INDEX TERMS Tool condition monitoring (TCM), milling process, current sensor, kernel extreme learning
machine (KELM), angle kernel.

I. INTRODUCTION
Milling is a common and efficient machining operation
employed in modern industrial manufacturing for fabricat-
ing various mechanical parts, such as flat surfaces, grooves,
threads, and other complex geometric shapes. Cutting tools
are key components in machine milling operations that
are inevitably subject to wear during milling and therefore
present conditions that vary over their effective lifetimes [1].
However, Konstantinos et al. [2] and Karandikar et al. [3]
have determined that cutting tools are typically used for only
50%–80% of their effective lifetimes owing to excessive tool
wear and breakage (i.e., tool faults). These tool faults are
major causes of unscheduled downtime in milling processes
and typically account for 7%–20% of the total downtime [4].
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In addition, tools and tool changes account for 3%–12%
of the total processing cost [5]. As such, tool faults have
negative direct (capital) and indirect (time loss) effects on
milling performance. Therefore, the timeliness of detecting
tool conditions is critical to provide effective information for
implementing scheduled tool replacement decisions without
interrupting normal machine operations [6]. As a result, tool
condition monitoring (TCM) has become an essential task in
industrial milling processes for scheduling operations based
on objective tool condition evaluations [7].

Researchers have investigated TCM in milling processes
for over thirty years based on either direct or indirect mon-
itoring methods. Direct monitoring methods adopt optical
components for visual inspection and are not suitable for
industrial manufacturing settings due to the expense of the
optical equipment involved and the interference of cutting
fluid and cutting chips [8], [9]. Therefore, indirect monitoring
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methods have been widely adopted. Indirect TCM methods
are data-driven methods that synthesize the information col-
lected from one or more sensors to estimate tool condition
based on machine learning approaches [10].

This study first considers past efforts focused on indirect
TCM methods using various sensors in Section 2 and dis-
cusses their limitations. The problems associated with these
past efforts are addressed by the theoretical framework and
learning algorithm of the TCMmethod proposed in Section 3.
The prediction performance of the proposed method is veri-
fied in Sections 4 and 5 by its application to the open-access
benchmark NASA milling dataset [11] and separate TCM
experiments in comparison with several methods. Conclu-
sions are given in Section 6.

II. LITERATURE REVIEW
A. SENSORS
Numerous types of sensors have been employed to obtain
signals for conducting indirect TCM, such as cutting force,
vibration, acoustic emission (AE), and motor current sensors.

1) CUTTING FORCE
The progressive wear of cutting tools during the milling
process increases the roughness of the cutting surface, and
this leads to a corresponding increase in the applied cutting
force. Many studies [1], [12], [13] have demonstrated that the
cutting force is very sensitive to changes in tool condition and
can therefore accurately estimate the tool state. For example,
Wang et al. determined that the cutting force signal is themost
stable and reliable signal among all commonly employed
sensor signals that are closely related to tool wear [14].
Huang et al. employed a piezoelectric dynamometer to mon-
itor the cutting force of an end milling operation [15].
Bulent et al. adopted a rotary dynamometer to capture the
cutting forces in three dimensions and the torque of the drive
moment on a rotating tool [16]. However, cutting force sen-
sors are difficult to apply in industrial settings because their
physical properties are not appropriate for conducting TCM
whenmillingmedium and large workpieces, such that milling
processes monitored by cutting force sensors are limited to
relatively small physical workpiece sizes [17]. In addition,
Koike et al. established that cutting force monitoring inter-
feres with the motion control of the spindle and stage in
a milling machine by reducing its rigidity [18]. Moreover,
the expense of commercial dynamometers can unacceptably
increase manufacturing costs [19], [20].

2) VIBRATION
Vibration sensors are widely employed in TCM because they
are inexpensive, easily installed, and provide similar periodic
signal shapes to those of cutting force sensors [21]–[23].
Besmir et al. established that the level of vibration generated
during the milling process increases with increasing dete-
rioration in the tool condition [24], and the feasibil-
ity of adopting vibration signals for TCM in milling

processes has been demonstrated by numerous subsequent
studies [25]–[28]. For example, Hsieh et al. demonstrated that
variations in tool conditions during micro-milling processes
can be distinguished according to spindle vibration accel-
eration signals when used in conjunction with appropriate
feature extraction and classifiers [29]. Madhusudana et al.
adopted a tri-axial integrated piezoelectric accelerometer on
the spindle housing to capture the spindle vibration accel-
eration signal during face milling [30]. Gao et al. achieved
good tool condition diagnostic accuracy by adopting a laser
vibrometer to acquire the vibration displacement of a tool
holder [31]. However, the characteristics of milling processes
limit the accuracy of TCM methods employing vibration
sensor signals. First, vibrations are generated during machine
operation even when the tool is not engaged in cutting,
as during an air-cut operation. In fact, effectively distinguish-
ing air-cut operations from actual cutting operations remains
a significant challenge in TCMmethods employing vibration
sensor signals. Second, vibration signals are difficult to filter
and are therefore prone to providing erroneous data [24].
Finally, the position of sensor installation and cutting-fluid
conditions can affect the vibration signal, which greatly com-
plicates the training process, and can lead to inaccurate mon-
itoring results [9].

3) ACOUSTIC EMISSION
Sensors based on AE are particularly suitable for conducting
TCM in milling processes because the resulting signals are
not mechanically disturbed, have a superior sensitivity to
the those of cutting force and vibration sensor signals, and
propagate at a frequency much greater than the characteris-
tic frequency caused by cutting, which reduces interference
[32], [33]. Hassan et al. demonstrated the potential of AE
signals for detecting the unstable crack propagation preced-
ing tool chipping/breakage within a time span on the order
of 10 ms [34]. Vetrichelvan et al. demonstrated that the AE
signals obtained from sensors located on the top surface of the
tool holder can effectively monitor crater wear in the cutting
surface [2]. Mathew et al. experimentally demonstrated with
1-tooth, 2-tooth, and 3-tooth milling cutters that AE signals
exhibit marked responses to changes in tool condition such
as tool breakage and tool chipping [35]. Ren et al. established
that AE signals captured inmicro-milling processes are easily
recorded and provide very rapid responses to changing con-
ditions in the contact between the tool and workpiece [36].
However, intermittent cutting duringmilling processes results
in AE signal spikes when individual teeth enter or exit the
workpiece, which greatly complicates the analysis of AE
signals [32]. In addition, AE sensors are highly sensitive to
environmental noise [37], which increases the difficulty of
extracting valid signal feature information.

4) MOTOR CURRENT
Because the cutting force increases with increasing tool wear,
the current drawn by the electric motors of a milling machine
undergoes corresponding increases [38]. Motor current
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sensors are considered to be more suitable for industrial
manufacturing settings than cutting force sensors due to their
relatively simple application and lack of installation effects on
machining operations [39], [40]. Ghosh et al. demonstrated
that TCM methods based on current sensor signals provide
monitoring results that are fairly comparable to methods
based on cutting force sensor signals in actual industrial TCM
applications [8]. Stavropoulos et al. demonstrated that motor
current signals correlate more strongly with tool wear than
vibration signals [20]. Ammouri et al. established a TCM
index based on the measured current values of the spindle and
drive motors of a milling machine [38]. Hassan et al. pro-
posed an effective signal processing technique for applying
spindle motor current signals to describe tool wear conditions
under different cutting parameters in high speed roughing
milling operations [41]. However, current sensors are less
commonly employed for TCM in milling processes than the
above three types of sensors. because motor current signals
include a considerable amount of noise, which obstructs the
detection of small fluctuations in the cutting force, and the
application of filtering typically results in the loss of high-
frequency components [18], [42]. Teti et al. suggested that the
proportion of spindle power required for material removal is a
very small component of the total power, and that temperature
increases inherent in electrical motors under load influence
power consumption [43]. Specifically, the spindle current
and voltage frequency in high-speed milling processes could
be modified by a pulse-width modulation (PWM) module
when using a 400-Hz 2-pole induction spindle motor to gen-
erate superimposed signals for maintaining a set rotational
speed [44].

The limitations associated with the single-sensor TCM
applications discussed above have generated an increas-
ing interest in multi-sensor TCM [45], [46]. For example,
Torabi et al. applied the signals obtained from dynamometer,
accelerometer, and AE sensors to conduct TCM for a ball
nose milling process [47]. Downey et al. developed a TCM
system based on AE, vibration, and cutting force signals [48].
Jahromi et al. applied the signals derived from cutting force,
accelerometer, andAE sensors for conducting TCM in a high-
speed milling process [49]. Sohyung et al. applied three-
axis dynamometer, three-axis accelerometer, AE, and current
sensors for TCM in an end milling process, and demonstrated
that the diagnosis accuracy was greater than that obtained
using any of the single sensors [49]. Hassan et al. presented
a generalized, nonintrusive multi- signal fusion approach for
real-time tool wear detection by using unprocessed spin-
dle motor current, voltage, and power signals directly [44].
However, while the use of multiple sensors can enhance
the richness of information indicative of potential tool wear
levels, the production and maintenance costs and the diffi-
culty of maintenance in industrial machine milling operations
increase when adoptingmultiple sensors, and the interference
caused by sensors in the milling process increases with an
increasing number of sensors.

B. MONITORING MODEL
The rapid development of artificial intelligence technology
in recent years has led to the use of many AI models to pre-
dict tool-wear conditions based on sensor signal data. These
predominantly include artificial neural networks (ANNs),
hidden Markov models (HMMs), support vector machine
(SVM), and kernel extreme learning machine (KELM). More
recently, deep learning technologies such as convolution neu-
ral networks (CNNs) and recurrent neural networks (RNNs),
with wide applications in image processing and other fields,
have emerged as alternative AI models in TCM for milling
processes.

Many studies have applied ANNs and HMMs to TCM in
milling processes with outstanding results [33], [51], [52].
Deep neural networks such as CNNs [53], [54] and RNNs
[55], [56] have also been applied with considerable success.
However, ANN- and HMM-based TCM models have several
drawbacks [57], [58]. First and foremost, they require a large
number of training samples to obtain accurate monitoring
performance, which is time-consuming and costly for indus-
trial milling operations. Second, they require the preselection
of critical parameters. For example, the number of hidden
layers of an ANN and the number of neurons in each layer
(i.e., the network structure) are critical to the performance,
but the selection of network structure depends on researcher
experience and is not directly related to the tool-wear pro-
cess. As such, selecting the optimal network structure for
conducting TCM in milling operations from among the many
possible structures remains an unsolved issue. In addition,
an accurate determination of the tool state duration distribu-
tion in the milling process is critical to the performance of
HMM, although no truly objective means for determining this
distribution presently exists.

In contrast to the above-discussed AI models, SVM and
KELM have generated considerable interest in TCM research
because of their superior performance with small sample
sizes [59]. An SVM applies statistical learning theory to map
input samples in the original space to a high-dimensional
feature space nonlinearly using a kernel function and thereby
constructs a linear algorithm corresponding to the solution
in the original space. A KELM was proposed for use in
a single hidden layer feed-forward neural network (SLFN)
with a kernel function that learns quickly, and its learning
accuracy and speed have been demonstrated to be greater than
those of other models such as SVM, ANN, and HMM in var-
ious applications, including classification, regression, time
series forecasting, and fault diagnosis [60], [61]. Moreover,
the KELM tends to achieve not only the smallest training
error but also the smallest norm of the output weights. Unfor-
tunately, KELM suffers from two drawbacks. First, as a spe-
cial case of SLFNs, KELM has a shallow architecture that
fails to completely extract the inherent features in raw data
(particularly microarray data) like deep architectures [62].
Second, similar to SVM, the selection of the kernel function,
such as a Gaussian kernel, polynomial kernel, or sigmoid
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FIGURE 1. Framework of the proposed TCM method.

kernel, and its hyperparameter greatly impact its performance
with respect to the extraction of inherent features in raw
data. However, no theoretical basis exists for selecting the
kernel function objectively, and its hyper-parameter must be
manually preset or tuned by cross-validation (CV), such as is
the case for the kernel width in radial basis function (RBF)
kernels. As a result, it remains unknown whether KELM
can obtain optimal extraction results in the context of small
sample size.

III. PROPOSED METHOD
The purpose of this study is to develop a high performance
TCM method based on KELM with use of current sensors,
in which, the drawbacks of current sensor signal could be
reduced significantly and no need to preselect kernel function
and its hyperparameter in KELM.

A. FRAMEWORK OF THE PROPOSED METHOD
The proposed TCM method employs a few key current sen-
sor signal features based on the time, frequency, and time-
frequency domains of the signals and an advancedmonitoring
model based on an improved KELM to achieve excellent
TCM performance. Here, current sensors are deemed most
appropriate due to their low cost and simple installation that
has no effect on the milling process, while the selected multi-
domain features, which are strongly correlated with tool wear
condition, overcome the drawbacks associated with the use
of current signals described in Subsection 2.1 and the loss of
useful information related to tool condition when employing
a single domain. The proposed TCMmethod is schematically
illustrated in Figure 1. Its operation comprises three steps:
the first step is current sensor signal acquisition, where the
dynamic signals obtained from current sensors are collected
to depict the characteristics of themilling process. The second
step is feature extraction, where a few key statistical param-
eters in the time, frequency, and time-frequency domains of
the current sensor signals are extracted. The last step involves
monitoring the tool condition using an improved KELM. The
second and third steps are discussed in detail in the following
subsections.

B. FEATURE EXTRACTION
The three key statistical parameters associated with feature
extraction include the average amplitude (Tavg) of the spindle

motor current in the time domain, the mean of the power
spectrum (Fmps) in the frequency domain, and the average
wavelet energy of the first frequency band (E1) obtained using
the wavelet packet transform (WPT) with the db2 wavelet
basis function in the time-frequency domain. Here, the WPT
conducts a multi-level band division over the entire signal
band, which inherits the advantages of good time-frequency
localization from the wavelet transform (WT) and further
decomposes the high-frequency band to increase the fre-
quency resolution [63], [64]. As discussed in Section II,
the current increases with increasing cutting force as tool
wear becomes progressively severe. Therefore, changes in
the values of Tavg, Fmps, and E1 of the spindle motor current
correspond approximately to changes in tool wear, as can be
seen in Figures 2-4.

FIGURE 2. Relationship between the average current amplitude Tavg of
an AC spindle motor and the tool wear condition of the second tool in the
NASA milling dataset.

In the time domain, the value of Tavg is defined as follows:

Tavg =
∑n

i=1
xi/n (1)

where xi is the amplitude of the i-th current signal sample in
a collection of n samples in the sample set. As an example,
the relationship between the values of Tavg obtained for the
AC spindle motor current and the tool wear values in the
NASA milling dataset is shown in Figure 2. The results in
the figure indicate that the peaks in tool wear with respect to
cut number are strongly correlated with the peak values of
Tavg with a correlation coefficient R = 0.3779.
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FIGURE 3. Relationship between the mean of the power spectrum Fmps
of an AC spindle motor and the tool wear condition of the second tool in
the NASA milling dataset.

FIGURE 4. Relationship between the average wavelet energy of the first
frequency band E1 of an AC spindle motor and the tool wear condition of
the second tool in the NASA milling dataset.

In the frequency domain, the value of Fmps is defined as

Fmps =
∑n

i=1
Pi/n (2)

where Pi is the power spectrum of the signal sample corre-
sponding to xi obtained by the fast Fourier transform (FFT).
The relationship between the value Fmps obtained for the
AC spindle motor current and the tool wear condition in the
NASAmilling dataset is shown in Figure 3. Again, the results
in the figure indicate that the peaks in tool wear with respect
to cut number are strongly correlated with the peak values of
Fmps (R = 0.6203).

In the time-frequency domain, the value of E1 is calculated
using the db2 basis function as follows:

E1 =
1
n

n∑
k=1

(d1,k )2 =
1
n

n∑
k=1

(
∫
w1,k (t)x(t)dt)2 (3)

where d1,k denotes the wavelet packet coefficients of signal
x(t), and w1,k(t) are the wavelet packets localized at 2k in the
scale of 2. The relationship between the value E1 obtained
for the AC spindle motor current and tool wear condition in
the NASA milling dataset is shown in Figure 4. These results
also indicate that the peaks in tool wear with respect to cut

number are strongly correlated with the peak values of E1.
(R = 0.6051).

C. IMPROVED KERNEL EXTREME LEARNING MACHINE
The KELM problem can be expressed as minimizing an
objective function [61]:

min
γ,ε

1
2
||β||2F +

C
2

n∑
i=1

||εi||
2

s.t. εi = yi − βT f (xi), ∀i (4)

where β = [β1β2 . . . βL]T is the vector of output weights
between the L nodes of the hidden layer and the output node,
||•||F is the Frobenius norm, εi is the training error of the
i-th training sample, C is the regularization parameter that
facilitates a tradeoff between the norm of output weights and
training errors, (X,Y)= {(x1, y1), (x2, y2), . . . , (xn, yn)} is the
training sample set, and f (xi) = [f (xi1)f (xi2) . . . f (xiL)]T is
the hidden-layer output vector with respect to xi. Here, f (•)
is a form of feature mapping that maps the input data from
the original dimension space to the L-dimensional hidden-
layer feature space. The optimal value of β (β̂) that minimizes
Eq. (4) can be efficiently solved as follows:

β̂ = 8T (
I
C
+88T )−1Y (5)

where 8 is the hidden layer output matrix, I is an identity
matrix, and Y is the dependent value vector in the train-
ing samples. Because the sensor signals in TCM are high-
dimensional, nonlinear, and heterogeneous, the feature map-
ping φ(·) is unknown. Therefore, we define a kernel matrix
for the extreme learning machine (ELM) using Mercer’s con-
ditions, as follows:

9 = 88T
= {ϕi,j}, ϕi,j = φ(xi)φ(xj) = k(xi, xj) (6)

Then, the prediction score for test point x is determined as
follows.

y′x=φ(x)8
T (
I
C
+88T )−1Y =

 k(x, x1)...

k(x, xn)


T

(
I
C
+9)−1Y

(7)

In this context, which is similar to the context of SVM, φ(·)
need not be known. Instead, a common kernel function, such
as a Gaussian, linear, or polynomial kernel, can be used.
In addition, the dimensionality L of the feature space (number
of hidden nodes) need not be explicitly given.

However, as discussed in Section 2, KELM underperforms
with respect to the extraction of inherent features in raw
data. The discussed drawbacks of KELM are addressed in
the present work by proposing an improved KELM denoted
as two-layer angle KELM (TAKELM), which introduces an
angle kernel function to avoid manual presets or tuning of
the kernel function hyperparameter. The TAKELM architec-
ture is illustrated in Figure 5. In detail, the input layer in
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FIGURE 5. Architecture of the proposed two-layer angle KELM (TAKELM).

the training phase consists of the independent variables xi
of the training samples X, and each variable xi includes
3 × Ns feature parameters, where Ns denotes the number
of applied current sensors. The two hidden layers consist of
the optimization of two output weight vectors, where one
is the weight between hidden layer 1 and the hidden input
layer assigned according to Eq. (5) using the angle kernel k0,
and the other is the weight between hidden layer 2 and the
output layer assigned according to Eq. (5) using the angle
kernel k1. The output layer consists of the tool wear values
yi corresponding to xi. In the testing phase, the input layer
consists of one independent variable x‘ to be predicted in
the testing samples, which includes nine features (i.e., three
features per sensor for three current sensors), and the output
layer is the predicted tool wear values y‘ assigned according
to Eq. (7).

Cho and Saul introduced a new kernel function denoted
as the arc-cosine kernel, which mimics the process flow in
large, multilayer neural nets [65]. The angle kernel function
measures the similarity between two vectors through their
angle. Let θ denote the angle between vectors x and y :

θ = cos−1
(

x · y
‖x‖ ‖y‖

)
(8)

A general n-th order kernel function in this family can be
written as follows:

kn(x, y) =
1
π
‖x‖n ‖y‖n Jn(θ ) (9)

where the angular dependences are captured by the func-
tions Jn(θ ). These functions are given by

Jn(θ ) = (−1)n(sin θ )2n+1
(

1
sin θ

∂

∂θ

)n (
π − θ

sin θ

)
(10)

In general, Jn(θ ) takes its maximum value at θ = 0 and
decreases monotonically to zero at θ = π .
The first two expressions of Jn(θ ) are given as follows:

J0(θ ) = π − θ (11)

J1(θ ) = sin θ + (π − θ ) cos θ (12)

However, the angular dependence is more complicated for
n > 1, which could affect the learning speed of TAKELM.
Therefore, the kernel function is truncated at n = 1 in the
present work. We also note the absence of any continuous
tuning parameter in Eqs. (11) and (12), which avoids the
drawback associated with manually presetting or CV tuning
of a hyperparameter. Thus, the k0 and k1 angle kernels are,
respectively, used as the kernel functions of the first and sec-
ond hidden layers in TA-KELM, as shown in Figure 5. These
kernels are given as follows:

k0(x, y) =
π − θ

π
(13)

k1(x, y) =
1
π
‖x‖ ‖y‖ (sin θ + (π − θ ) cos θ ) (14)

TABLE 1. Experimental cutting parameters of the NASA milling dataset.

IV. COMPARATIVE VALIDATION USING BENCHMARK
MILLING DATA
A. DESCRIPTION OF MILLING DATASET
The NASA milling dataset employed for validation test-
ing of the proposed TCM method was obtained from the
Matsuura machining center (MC-510V) during dry rough
milling processes of cast iron or stainless steel J45 work-
pieces using a six-tooth face milling cutter with KC710
carbide inserts under different cutting parameters. The indi-
vidual milling conditions are listed in Table 1. The parameter
selections were guided by industrial applicability and recom-
mended manufacturer settings. Therefore, the cutting speed
was set to 200 m/min and the spindle speed was 826 rpm.
Two different depths of cut were selected, that is, 1.5 mm
and 0.75 mm, and two feed rates were considered, that is,
0.0833 mm/tooth and 0.0417 mm/tooth. The dataset includes
sensor signals obtained from two vibration accelerometers,
twoAE sensors, and twoCTA213 current sensors clamped on
the cable connectors for measuring the AC current of the AC
spindle motor and the DC current of the DC spindle motor.
Sampling of the sensor signals was conducted using Lab-
VIEW, and the signals were directly transmitted to a computer
for storage. Each experimental case was initiated with a new
cutting tool, and the flank wear of each of the six inserts was
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FIGURE 6. Predicted tool wear values of several methods with the testing set derived from the NASA milling
dataset.

measured offline based on optical microscopy imaging after
each surface of the workpiece was completely finished. The
flank wear associated with the insert obtaining the maximum
flank wear value was used as the tool wear value. Here,
a completely milled surface represents a single milling stage,
and the number of milling stages varied depending upon the
milling parameters. Of the total number of 16 cases given in
the dataset, a total of 17 stages, including five stages in the
6-th case, six stages in the 8-th case, and six stages in the
16-th casewere not considered in this paper due to incomplete
measured tool wear data. This yielded a total of 150 complete
tool wear condition experimental datasets for the 13 cases
listed in Table 1. It should be noted that the reduction in
the total sample size from 167 to 150 has little impact on
the proposed algorithm, which is designed for use with small
sample sizes. In addition, the cutting parameters of the 6-th,
8-th, and 16-th cases are the same as those of the 15-th, 14-th,
and 5-th cases, respectively. As a result, the loss of these three
cases did not reduce the number of milling condition types in
the samples.

B. ANALYSIS AND RESULTS
The performance of the proposed TCM method was eval-
uated for both workpiece materials by dividing the sample
set corresponding to the two materials into training samples
and test samples according to the different cutting depths
and feed rates. As can be seen in Table 1, cast iron work-
pieces are employed in 8 cases (1–4, 9–12) and stainless
steel J45 workpieces are employed in 5 cases (5, 7, 13–15).

Therefore, the training set for cast iron was selected from
the 2-th, 4-th, 9-th, and 11-th cases while the training set
for stainless steel J45 was selected from the 5-th and 13-th
cases, and the remaining cases (i.e., 1, 3, 10, and 12 for cast
iron and 7, 14, and 15 for stainless steel J45) were used
as the testing set. As such, the training set included data
obtained for 74 milling stages, while the testing set included
that for 76 milling stages. In addition, the regularization
parameter C in TAKELM was optimized using a 10-fold CV
method.

The ground truth tool wear values and the predicted values
obtained from the proposed TCMmethod based on TAKELM
are shown in Figure 6. Here, the wear results obtained for
the 7 tools employed in cases 1, 3, 7, 10, 12, 14, and 15 are
listed in sequence. Qualitatively, the tool wear prediction
results are observed to agree well with the ground truth tool
wear data. In addition, TCM methods based on least squares
SVM (LS-SVM) and KELMwith current sensor signals were
applied to the NASAmilling dataset, and the Gaussian kernel
was selected as the kernel function in LS-SVM and KELM.
The regularization parameter C and the hyperparameter h
of the Gaussian kernel were optimized using a 10-fold CV
method. The tool wear prediction performances of the TCM
methods based on LS-SVM, KELM, and TAKELM were
evaluated according to several performance metrics includ-
ing the mean absolute error (MAE), root mean square error
(RMSE), and correlation coefficient (R). The results for the
three TCM methods are presented in Table 2. A comparison
of the results indicates that the proposed TCM method based
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FIGURE 7. Experimental setup.

FIGURE 8. Measurement instrumentation employed in the milling experiments.

TABLE 2. Several prediction performance indices of different TCM
methods for the NASA milling dataset.

on TAKELM provides superior tool wear prediction from the
standpoint of all performance metrics considered.

V. EXPERIMENTAL INVESTIGATIONS
A. DESCRIPTION OF EXPERIMENT
The experimental setup employed for conducting TCM
under various milling conditions is shown in Figure 7.

A three-axis VDL850A Vertical Machining Center (Dalian
Machine Tools Group, Dalian, China) was used for the
experiments. The cutting tool used in the experiments was
an uncoated three-tooth tungsten steel end milling cutter
(8 10 mm), and the workpiece material was #45 steel (carbon
content is about 0.45%). Because the motor was a three-
phasemotor, three current sensors were clamped on themotor
wires to measure the currents of the three phases of the
motor. In addition, several accelerometers were mounted on
the spindle and table for other research purposes. As shown
in Figure 8(a), the sensor signals were collected during tool-
wear testing at a continuous sampling frequency of 12 kHz
using an Avant MI-7016 data-acquisition instrument (Econ
Technologies Co., Ltd., Hangzhou, China) and stored on a
personal computer. As shown in Figure 8(b), the wear of each
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FIGURE 9. Tool images indicative of different tool-wear values.

FIGURE 10. Tool wear with respect to cutting time in the milling experiments.

individual flute of the cutting tool was measured offline using
a GP-300Cmicroscope (Gaopin Precise Instrument Co., Ltd.,
Suzhou, China) each time after completely finishing a work-
piece surface. The workpieces were uniformly sized such that
a surface was completely finished after five cuts, that is, three
forward cuts and two backward cuts. It is noteworthy that
we found the influence of the length of rake face wear (KB)
on the surface roughness of the workpiece after milling was
greater than that of flank wear (VB) and the depth of rake
face wear (KT). Therefore, KBwas employed as the tool wear
criterion in the experiments, and the tool wear value after each
cutting stage was defined as the maximum KB value of the
three teeth. Figure 9 illustrates the progression of tool wear
after finishing a single workpiece surface 1, 5, and 10 times
(i.e., 1, 5, and 10 milling stages). Figure 10 presents the tool
wear value with respect to cutting time. It can be seen that the
tool wear varies greatly under the same feed rate conditions.

A total of 14 operational conditions were generated with
a random combination of three cutting parameters: spindle
speed (2300, 2400, and 2500 rpm), depth of cut (0.4, 0.5, and
0.6 mm), and feed rate (0.058, 0.065, and 0.072 mm/tooth).
The operational parameters of each experimental case are

TABLE 3. Operational conditions in the experiment.

listed in Table 3. Each experimental case was initiated with
a new tool, and varying numbers of milling stages were
conducted until the degree of measured tool wear was at
least 1.7 mm. Each milling stage consisted of five cutting
passes for finishing a surface (i.e., three times forward and
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FIGURE 11. Predicted tool wear values of several methods with the testing set derived from the milling experiments.

two times back). Each experimental case involved 10 milling
stages, except for the 7-th case (11 stages) and the 14-th
case (7 stages), which represented data collected for a total
of 138 milling TCM samples.

B. ANALYSIS AND RESULTS
The signals obtained from the three current sensors corre-
sponding to the last cut in each milling stage were selected to
extract nine feature parameters (i.e., three feature parameters
per sensor for three current sensors).

Considering the sample size of different cutting parame-
ters, the sample set was divided into training samples and test
samples according to the different cutting depths and spindle
speeds. The training set included cases in which the spindle
speed was 2300 rpm or 2400 rpm and the cutting depth was
0.4 mm or 0.6 mm, while the testing set included cases in
which the spindle speed was 2500 rpm and the cutting depth
was 0.5 mm. Thus, the 1-st, 2-nd, 4-th, 5-th, 6-th and 8-th
cases were selected for the training set (Table 3), and the
remaining cases (i.e., 3, 7, and 9-14) were used as the testing
set. Therefore, the sample sizes in the training and testing set
were 60 and 78, respectively. In addition, the regularization
parameter C in TAKELM was optimized using a 10-fold CV
method.

The ground truth tool wear values and the predicted val-
ues obtained from the proposed TCM method based on
TAKELM for the testing set are shown in Figure 11. We note

TABLE 4. Several prediction performance indices of different TCM
methods for the milling experiments.

here that the prediction results agree particularly well with
the ground truth data. Same as Section IV, the proposed
TAKELM method was compared with LS-SVM and KELM.
The Gaussian kernel was selected as the kernel function
in LS-SVM and KELM. The regularization parameter and
the hyperparameter of the Gaussian kernel were optimized
using a 10-fold CV method. The MAE, RMSE, and R values
obtained for these TCMmethods are listed in Table 4. A com-
parison of the results in the table indicates that the proposed
TCMmethod based on TAKELMprovides superior tool wear
prediction from the standpoint of all performance metrics
considered. In fact, the MAE and RMSE values obtained
when using the proposed method are sufficiently small as to
represent a practically negligible prediction error.

VI. CONCLUSION
This study proposed a TCM method employing a few key
current sensor signal features based on the time, frequency,
and time-frequency domains of the signals and an advanced
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monitoring model based on an improved KELM to achieve
excellent TCM performance for monitoring milling pro-
cesses. Current sensors were deemed to be most appropriate
due to their low cost and simple installation that has no
effect on the milling process, while the selected multi-domain
features, which are strongly correlated with tool wear condi-
tion, overcome the loss of useful information related to tool
condition when employing a single domain. The proposed
TAKELM employs an angle kernel function that includes no
hyperparameter. This approach overcomes the drawbacks of
KELM in terms of learning the features of complex nonlinear
data and avoiding the need for preselecting the kernel func-
tion and its hyperparameter. The prediction performance of
the proposed method was verified by its application to the
open-access benchmark NASA milling dataset and separate
TCM experiments in comparison with TCM methods based
on the LS-SVM and KELM. The results demonstrate that the
proposed method outperforms the methods based on KELM
and LS-SVM and obtains prediction results with very small
errors. As such, the proposed TCMmethod achieves excellent
monitoring performance using only a few key signal features
of current sensors.

It must be noted that the NASA dataset and the separate
TCM experiments were both limited to cases involving low
spindle speeds (i.e., 826 and 2300-2500 rpm, respectively),
and only gradual changes in tool condition were observed.
Therefore, further investigation must be conducted for veri-
fying the effectiveness of the proposed TAKELM method in
high-speed milling and for monitoring other tool conditions
(e.g., chipping and breakage).
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