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ABSTRACT This paper addresses the trajectory tracking problem for constrained high dynamic electro-
hydraulic actuator in the presence of time-varying parameters, high frequency external load interference,
measurement noise and some unmeasurable states. An adaptive robust optimal control scheme is proposed
for the electro-hydraulic actuator in legged robot. The framework of our presented scheme is based on a
linear time-varying model predictive controller (LTV-MPC) embedded with a multi-scale online estimator
(MEKF). With fast- varying and slow- varying time scales, the MEKF part is used not only for measurable
states filtering and unmeasurable states estimation, but also for time-varying parameters and external load
interference estimation, which will be integrated into the mpc model in real time. The LTV-MPC part is a
trajectory tracking controller designed by constrained MPC with an approximate high-precision real-time
model and a rapidly solved cost function, which guarantees that the input and output constraints are satisfied
during the receding horizon and optimal control process. Finally, with a series of highly dynamic conditions,
the comparison experiment results show that the proposed controller has a simple design process, strong
adaptive robust performance and trajectory tracking performance, which verifies the effectiveness of the
control scheme.

INDEX TERMS Multi-scale online estimator, linear time-varying model predictive controller, electro-

hydraulic actuator.

I. INTRODUCTION

Electro-hydraulic actuators are extensively used in heavy-
duty electromechanical systems and legged robots, for their
high load capacity and large power density ratio [1]-[7].
Presently, classical PD control method has been extensively
chosen in designing position controller of electro-hydraulic
actuators for most legged robots. However, in situations
when parameter uncertainties and unknown load disturbances
cannot be neglected, the system would exhibit unexpected
dynamic behavior and be difficult to meet the performance
requirements. In electro-hydraulic actuator system, uncer-
tainties are mostly caused by changes in unknown vis-
cous damping, physical characteristics of the valve, effective
bulk modulus and external load force [8]. Moreover, some
parameters and external load changes are significant under
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different operating conditions [9]. In order to improve track-
ing performance, several mainstream model-based control
schemes have appeared in recent literature, such as adap-
tive robust control [10], [11], active disturbance rejection
control [12], the method combining Nussbaum function and
adaptive control [13], adaptive backstepping control[14], and
sliding mode control [15] and adaptive extended interference
observer [16], etc. However, these schemes face some com-
mon problems. (1) When the system is disturbed by high
frequency and large external load, the adaptive method has
the problem of high gain feedback.When system parameters
change, the ESO(Extended state observer)-based controller
has not only poor estimated performance, but also compli-
cated parameter adjustment. (2) In full-state feedback,the
impact of measurement noise is rarely considered and fil-
tered. Practices show that measurement noise has become
the core issue in achieving high tracking performance in
some cases. The measurement signals are usually polluted
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by heavy noise, which seriously affects the control perfor-
mance.These schemes are based on the theoretical design of
noise-free, however, in practice, only various low-pass filters
are used to mitigate the effect of noise, causing severe phase
lag in the high-frequency range. (3) All of these schemes are
based on full state feedback, which means that in addition
to displacement signal, velocity and pressure signals should
be required. When the actuator cannot install all of these
sensors due to cost and/or structural size restrictions, such
model-based control methods are difficult to realize directly.
(4) Their control laws are fixed after design and not related
to the physical limit constraints of the actuator, which make
the transient tracking performance unsatisfactory in practical
situation. In recent years, many literatures have considered
the above issues. In [17], [21], Yao and Gu et al. used
ESO (Extended state observer) to estimate the unmeasurable
state of the electro-hydraulic system for the model-based
controllers. Yao et al. [18] proposed a desirable compensa-
tion adaptive approach to alleviate the noise, the adaptive
compensation and the regressor in the controller depend on
the desired trajectory and online parameter estimates only.
Hence, the effect of measurement noise can be reduced and
then high control performance is expected.

Inlegged robot applications, the leg performs a large swing
motion at a frequency of 3.3 Hz (high frequency). At the mean
time, the external load force of actuator changes significantly
from —1500(N) to 2000 (N). In addition, the system parame-
ters such as equivalent flow coefficient, viscosity coefficient
and effective bulk modulus also have large time-varying char-
acteristics. The system parameters and external load force
are collectively referred to as parameters in this paper. Fur-
thermore, since the robot design has set strict upper limit on
the actuator structural size and weight, it needs to be ensured
that only displacement, driving force and acceleration sensors
with very small volume and weight are configured in the actu-
ators, resulting in the problems that velocity and pressures are
not measured and the measurable state (displacement) and
signal (driving force) contain noise. All in all, the designed
control scheme required for the actuator can provide the
suitable tracking performance by (a) effectively overcoming
the time-varying parameters, external load interference and
measurement noise, (b) solving the problem that some states
are not measurable, (c) constraining the control input and
system output within corresponding ranges, and (d) providing
a real-time computational optimal control action. Therefore,
this actuator needs a more robust and optimal control scheme
to to meet all these requirements (a)-(d).

In the last decades, Model Predictive Control (MPC) has
been proven to provide the best interference attenuation con-
trol strategy for complex dynamic systems [19], so it is
fully suitable for the constrained tracking control of actu-
ators. Therefore, this paper focuses on the MPC scheme,
which has the advantages that other methods mentioned
above do not have, namely, constrained receding horizon
and dynamic optimal tracking control. In recent years, due
to these advantages, MPC has been initially applied in

VOLUME 8, 2020

electro-hydraulic servo systems. On the premise of full-state
feedback, Yuan et al. [20] developed a hybrid controller with
proportional integral control (PIC) and model predictive con-
trol (MPC) for a electro-hydraulic servo system. In this paper,
firstly PIC is played as an inner-loop controller to tune the
nonlinear system to obtain a completely new similar linear
system, and secondly MPC is acted as an outer-loop con-
troller to improve the dynamic and static performance of this
new system. However, the model parameters are estimated
offline in this design, without considering the time-varying
parameters and dynamic external load interference. And the
model used in MPC is a fixed model, which has nothing to
do with the current state trajectory. Zad et al. [21] proposed a
robust model predictive controller for a direct drive hydraulic
position servo system in presence of unknown dynamics and
uncertain nonlinearities. However, the disturbance estima-
tion mechanism is not considered in the design resulting
in limited tracking performance when fully relying on the
fixed model of MPC. In fact, as a model-based method,
MPC relies on accurate models to predict the future evolution
of state variables to generate the optimal control sequence,
so unavoidable time-varying parameters and large external
interference will affect the accuracy of MPC controllers.
In [22], Gu and Yao et al. developed a method combining
extended state observer (ESO) and unconstrained MPC based
on prior model to achieve improved tracking performance
for state and large disturbance estimation. However, not only
the complex parameter adjustment of ESO requires a certain
amount of time and experience to try it out, but also once the
prior model parameters used in ESO change, the estimated
state and disturbance have large errors.

Inspired by the above literatures, this paper proposes an
adaptive robust MPC trajectory tracking control scheme for
constrained high dynamic actuators in legged robot, which
aims to achieve the following objectives.

(1) Overcoming the time-varying system parameters, large
and severe external load interference and measurement
noise.

(2) Estimating the unmeasurable states.

(3) Making the input and system output satisfy the con-
straints.

(4) Reducing the design and calculation complexity of the
control scheme.

The developed control scheme consists of two parts:
Firstly, the first part is a multi-scale online estimator (MEKF)
of states and parameters with fast and slow time scales,
only using the real-time collected displacement, accelera-
tion and force data for implementing the (1), (2) as shown
at the bottom of the next page, and (4) purposes. This
estimator is an optimization algorithm based on extended
kalman filtering. It not only requires low initial parame-
ter accuracy, but also has a mechanism for dynamically
adjusting weights, which simplifies the system design pro-
cess. Secondly, the second part is a linear time-varying
model predictive controller (LTV-MPC) with fast calcula-
tion capability and approximately high precision, which is

95919



IEEE Access

J. Huang et al.: Model Predictive Trajectory Tracking Control of Electro-Hydraulic Actuator in Legged Robot

used to eliminate the system output error while satis-
fying the input and output constraints for implementing
the (3) and (4) purposes. In order to show the superiority
of our proposed control scheme (MEKF-MPC), we have
selected four controllers for comparison, namely PD con-
troller, ADRC controller, MPC controller based on a pri-
ori model, and MPC with ESO estimator, which have been
analyzed and compared the control performance from four
aspects: disturbance estimation, tracking accuracy, tracking
delay and anti-disturbance capability. In addition, the esti-
mated performance of ESO and MEKF has been compared.
Through the comparison test results with high dynamic
working conditions, We found that only the proposed
MEKF-MPC scheme can simultaneously achieve effec-
tive suppression of parameter time-varying, high-frequency
large-load interference and noise, at the same time, achieve
the simplified system design and high-precision trajec-
tory tracking control while satisfying the input and output
constraints.

The remainder of this paper is organized as follows. The
single leg inverse kinematics and the actuator dynamic model
are described and the actuator control problem is formu-
lated in Section II. While Section III proposes the overall
framework and calculation process of the control scheme,
a multi-scale online estimator is introduced for states and
parameters in Section IV, followed by Section V, which
designs a linear time-varying MPC controller for the actuator.
Experiments are done for validation in Section VI. Finally,
Section VII summarizes the main conclusions and future
work.

Il. PROBLEM FORMULATION

A. ONE-LEG INVERSE KINEMATICS

With three joints driven by electro-hydraulic servo actuators,
the kinematics of a single leg in legged robot is shown in
Fig.1. And then a mathematical description of the kinematic
chain is obtained based on the D-H method. Among them,
the coordinate system 00 is fixed at the geometric center
of the body, where the positive direction of xgp axis coin-
cides with the robot’s forward direction, the positive direction
of zpo axis is opposite to the direction of gravity, and the
Yoo axis conforms to the right-hand rule. The coordinate
systems 0, 1, 2, 3 and f correspond to the side swing, hip and

R

FIGURE 1. The single leg kinematics.

knee joints, calf end and foot end, respectively. The position
transformation from body coordinate system to foot end
coordinate system is as follows:

Xf
Yf
if
lp — I sin 0y — I3 sin(6 + 63)
=| Wo+ (I + b cosbH + I3cos(6, + 63) + R)sinf; |,
—Hy — (I1 + [ cos 6, + I3 cos(0y + 63) + R) cos 61
(D

where [;, (i = 0,1, 2,3) are the length of each link, and
0;, (i = 1,2,3) are the angles of joint. Wy and Hy are the
relevant dimensions of the body, and R is the radius of the
hemispherical foot end.

From (1), the joint angle commanded signals are
comput-ed as follows.

Set x, = [Xa1, Xa2, Xz3]7 as the actuator displacement vec-
tor in the driver space. The conversion relationship between
joint space 6 and driver space x, is as follows:

Xq = h(), 3)

yr—Wo

01 = arctan(—
zr + Ho

(zr + Hp)/ cos 0;

(lo — xf)l3 sin 63 — <+ll LR

) (I + I3 cos 63)

6, = arccos

13 + 213 cos 63 + 13

03

95920

lo — x7)? + ((zr + H, O+ +R?>— 12— 12
Arecos ((o xp)* + ((zr o)/Z;OZS 1+14 ) 5 — 13 @
213

VOLUME 8, 2020



J. Huang et al.: Model Predictive Trajectory Tracking Control of Electro-Hydraulic Actuator in Legged Robot

IEEE Access

where

\/a%erf—Za]bl cos(qi1—61)—ci

T
h() = \/a%+b§ —2azb; cos(qa1 + ) —th—gn)—c2

\/a§ +b3 —2azb3 cos(r —03—q31 —q32) —C3
ai, bi, ci(i = 1,2,3) are the position dimensions of joint
space. g;i(i,j = 1, 2, 3) are the angles of joint space.

B. ELECTRO-HYDRAULIC ACTUATOR DYNAMICS

The actuator consists of the servo valve and actuating cylin-
der. In legged robot application, the servo valve works in the
3.3 Hz frequency band (far less than the natural frequency
of servo valve (120 Hz)), so the servo valve is modeled as a
proportional link and the higher order dynamics is ignored
here. Then the actuator dynamics is composed of the pro-
portional model of servo valve and the fourth-order model
of valve-controlled cylinder system. The state variables are
set as x = [x1,x,x3,x4]7 = [xp, Xy, P1, P2]", and the
open-loop state equation is obtained [10], [23].

X =x

“

X3 = 76(— p1X2 — Cip(x3 — Xx4) + q1)
1

X4 = —(Apxa + cip(xz — 1) — o),
Va

0 KquJ/Ps —x3u >0
whetedqr = Kqus/x3 — Pou <0
Kqus/x4s —Pou >0
= Kqus/Py — x4 u <0
Vo = Voo + App(L — Lo) — Apzx1. xp is actuator output
displacement, X, is velocity, Py and P are two cavity pres-
sures, K; is equivalent flow coefficient, u is control signal
for valve, P; and Py respectively are the supply and return
pressures, m is the mass of actuator rod, B), is viscosity coef-
ficient, A,y and Ay respectively are the piston and rod areas,
Vo1 and Vjy are the pipeline volumes of piston and rod cavity
respectively, L is actuator total stroke, Lo is piston initial
position, B, is effective bulk modulus, c;, is internal leakage
coefficient. Under normal operating conditions, the actuator
is free from external leakage. Fy, is the external load force
on the piston. The external load force includes inertial force,
Coriolis force, gravity, friction force of rigid joint and inter-
ference force, which exhibit high dynamic characteristic with
the change of cylinder displacement and joint angle. In this
paper, the above forces are combined into one as an external
load force, which also exhibits high dynamic characteristic.
Based on the analysis of the first-order trajectory sensi-
tivity and parameter change characteristics, this paper has
selected fast-varying parameter set Op; = [Be, F, 117 and
slow- varying parameter set 05, = [Kg, BP]T [24]. Fur-
ther, this paper sets the fast varying parameter set 6y =
[Be, FL]T and the states [xp,)'cp,Pl,Pz]T on the same fast

Vi = Vo1 +ApiLy + Apixy,
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scale for estimation, and the slow varying parameter set
Osiow = [Ka, B,,]T on the slow scale for estimation.

Remark 1: For the dynamic model of the actuator, the con-
troller performance depends on the valid and accurate sensor
measurements. This means that the presence of measurement
noise will affect the performance of control system. There-
fore, the control scheme should be able to overcome and
suppress the measurement noise.

Remark 2: The model-based controller requires that all
model states are measurable and feedback. If some states
cannot be directly measured, it will cause trouble for the
implementation of the controller, so the control scheme must
be able to cope with the problem of unmeasurable states.

Remark 3: In the control process, the controller needs an
accurate system model, but in fact, the model parameters are
dynamically varying, so the control scheme must be able to
estimate and apply the model parameters in real time.

Remark 4: Since the system control input and output have
maximum and minimum limit constraints, the control system
needs to be able to satisfy the constraint requirements to avoid
problems such as inaccurate tracking due to input exceed-
ing the limit and hardware damage due to output exceeding
physical limits.

Remark 5: The control scheme should have fast calculation
performance, which can guarantee a real-time solution.

Overall, the control goal of this paper is to design an
adaptive robust optimal control scheme with the following
performances.

(1) The highly dynamic actuator can track the desired tra-
jectory with powerful estimation performance against
time-varying system parameters, large external load
disturbance with motion and measurement noise.

(2) The control scheme can solve the problem that some
states cannot be measured.

(3) The control action u can satisfy the constrained input
and output.

(4) The control scheme has fast real-time calculation
performance.

Ill. ADAPTIVE ROBUST OPTIMAL CONTROL SCHEME FOR
ELECTRO-HYDRAULIC ACTUATOR

Firstly, considering the estimation of dynamic parameters
(including system time-varying parameters and large exter-
nal load interference), measurement noise and unmeasured
states, a multi-scale online estimator (MEKF) for states and
parameters is designed to obtain model parameters and states
of nonlinear systems. Among them, the model parameters
include time-varying parameters and large external load inter-
ference. Secondly, combined with the state trajectory-based
linearization method and estimated states and parameters,
a linear time-varying model predictive controller (LTV-MPC)
is used to eliminate the desired trajectory tracking error in
the optimal control. And its advantage is that while the
system input and output are constrained, the receding hori-
zon optimization is used to compensate for the interference
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and deviation of the unknown distribution. So the MEKF
and LTV-MPC combined to obtain the MEKF-MPC control
scheme, and detailed algorithms will be explained in subse-
quent Section IV and V.

LTrajectory Planner ‘ -
J MEKF-MPC Measurement noises
N I
L Iverse TN ke }—umpu > Sensors |
. - Y - CNSors
Kinematics
4 - v

A

State vegtor X
Parameter vector &

| MEKF
h
Estimation
algorithm

FIGURE 2. Scheme framework.

The scheme framework in Fig. 2 shows how to use the pro-
posed control scheme. First, the planner and inverse kinemat-
ics are used to generate the desired trajectory of the actuator
during the leg swing period. Secondly, the MEKF estimator
is applied to estimate system states and parameters. Third,
the LTV-MPC is used to eliminate the desired trajectory
tracking error.

IV. THE MULTI-SCALE ONLINE ESTIMATOR FOR STATES
AND PARAMETERS

Under the condition of limited sensor configuration, aiming
at the problems for time-varying parameters estimation, mea-
surable states filtering and non-measurable states estimation
of electro-hydraulic actuators, based on the fast and slow
changing characteristics of states and parameters, this paper
innovatively proposes a multi-scale online estimator with
a fast-varying time scale (composed of a fusion KF and a
fast-varying time scale EKF) and a slow-varying time scale
(composed of a slow-varying time scale EKF) to realize the
real-time online estimation of actuator states and parameters.

A. SYSTEM DESCRIPTION

Firstly, the two measured values are the acceleration and
displacement signal of the axial movement for piston rod
(the same direction of two sensors). In this paper, the piston
rod is assumed to be a particle, and the axial displacement,
velocity and acceleration of piston rod are at the same cen-
troid point. Then the axial linear motion of piston rod is
described by the particle motion equation. After obtaining the
real-time signal of displacement and acceleration with noise,
the particle motion equation is used to estimate the particle
velocity as the axial velocity of piston rod, and filter the dis-
placement measurement signal. The measured acceleration is
taken as the input signal ug  ;, the measured displacement
is set as the output signal x,, and the state variables are set
as x1 = [x11, X12]T = [xp,fcp]T. Then the discrete time state
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equation is as follows.

X1,k i1 =F1000, k1w, k1) + o1k 1

(5)
Y,k 1 = Gi1(X1, &, 1, U1, k, 1) + VL k, I-
The detailed form
X11, k, [+1 X1k, 1+ Atxia, k1 + Aty /2
X12, k, I+1 X12,k, 1+ Atuy kg

+wi, k1
V1, k1 = X11, k, 1 T V1, k, I

where xi i ; is the state vector at time f; = tro +
I x At(l1 < I < L), time scale k and [ respectively
describe slow-varying and fast-varying time scale, L; is the
scale conversion limit, that is, one slow-varying time scale
is equal to L, fast-varying time scales,At is the calculation
time interval. i1, ; is the measured acceleration at time #;, ;.
w1, k, 1 and vy, ¢, ; are process and measurement noise matrix
respectively, whose corresponding covariance matrices are
QX1 and R*'. F1(x1, k., 1, U1, k, 1) 18 the transition matrix, and
Gi1(x1, k, 1, U1, k, 1) 1S the measurement matrix.

Secondly, the state vector of actuator dynamic equation
(Equation (4)) is extended by two dimensions, and the fast
varying parameter set Or,sr = [Be, F 717 is filled in to obtain
the new state vector x2 = [xp, Xp, P1, P2, Be, Fr17 with six
variables. The slow varying parameter set 6, = [Kq, BP]T
is taken as the parameter in the model, so 8 = [Ky, Bp]T.
In order to distinguish them from the states and parame-
ters with common meanings, x» is collectively referred to
as the generalized state vector and 6 is referred to as the
slow varying parameter set. Then, a multi-scale nonlinear
discrete state space model including the generalized states
and slow-varying parameters is obtained as follows.

X2k, i+1 = Fa(x2, k, 1,0k, w2, &, 1) + @2k, 1
Or+1 = Ok + pr
V2. 6,0=Go(X1, k. 15 X2, &, 1, Ok, U2, &, 1) + U2k, 1

(6)
The detailed form
X21, k, 1+1
X22, k, I+1
X23, k, I+1
X24, k, I1+1
X25, k, 141
X26, k, 1+1
X2l k, 1+ Atx22 k. 1
—02X22. k. 1 +Ap1X23. k. 1
X kAL PRASS T Im
—Ap2X24, k, 1 — X26, k, I
q1 — Ap1 X202, k, 1—
X23. k, 1+ Atxas k1 o Vi
= Cip(X23, k, 1 — X24, k, 1)

Apx22, k1 — @2+ %
Cip(X23, k, 1 — X24,k, 1) 2
X25, k, 1
X26, k. 1

X24. k, 1+ Atxos k.1

+wa k1
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q1

)6 ua k i/Ps— X3, k1 U2, k1> 0
Oru, k, 1/ X23, k.1 —Pouz, k1 <0

q2

01 uz, k, i/ Xx24,k, 1 —Pouz 1,1 >0
01 up, g, 1v/Ps — x4, 1,1 U2, 1,1 < 0.

01, k+1 01, k
x| = 5+ o
[92, k+1 02, k Pk

Vo1 k1
Y22 k1
Vo3 k1
X1, &, 1
= X12,k, 1 + vk, 1-

Ap1X23, k, | — Ap2X24, k, |

It is important to note here that the displacement and velocity
in the measurement matrix are state estimates based on the
state equation (5). The specific reason for the usage is detailed
in Section III-B. Where x2, ¢, ; is the state vector at time
teg =teo+ 1 x At(1 <1 < L;), un, . is the input signal at
the same time (servo valve control signal). y» , ¢, ; is the mea-
surement vector at time #x ;. Ga(X1, k. 1, X2, k. 1, Oks U2, k. 1)
is the measurement matrix. wy k,; and pi are the process
noise matrix for generalized states and slow-varying param-
eters respectively, whose covariance matrices are Q*? and
Q9 respectively. v2, k. ; is the measurement noise matrix
whose covariance matrices is R*2. Based on the definition
of electro-hydraulic actuator system, the goal is to estimate
the generalized states x, and slow-varying parameters 6 from
the measurement data y; and y,, which contain the acceler-
ation, displacement and driving force with noise. The gener-
alized states refer to the filtered displacement x,, velocity X,
two cavity pressures Pi, P;, effective bulk modulus B8, and
external load force Fy . The slow-varying parameters refer to
equivalent flow coefficient K; and viscosity coefficient B,,.
The generalized states are on the fast-varying scale, and the
slow-varying parameters are on the slow-varying scale.

B. A MULTI-SCALE ONLINE ESTIMATOR

The multi-scale online estimator combines fast-varying time
scale with slow-varying time scale by using sensor data col-
lected in real time. The fast-varying time scale consists of
a fusion KF and a fast-varying time scale EKF, which are
responsible for the estimation of generalized states, and the
slow-varying time scale consists of a slow-varying time scale
EKEF, which is responsible for the estimation of slow-varying
parameters. The values of slow-varying parameters remain
unchanged at time scale I = 0 ~ (L, — 1), that is
Ok = Ok,0: L.—1. The two-scale estimators perform stepwise
estimation of the generalized states and slow-varying param-
eters, and the two are performed alternately with each other as
input. Moreover, the estimators use the innovation from same
source. The algorithm has a coupling structure that guaran-
tee a stable closed-loop estimation of the final generalized
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states and slow-varying parameters. And because the state
innovation is used, the algorithm adapts the state estimation
through the deployment of model parameters on the basis
of guaranteeing the state estimation effect. The advantage
of the proposed algorithm is that it fixes two slow-varying
parameters in the fast-varying time scale, reduces the dimen-
sion of generalized states that need to be estimated simul-
taneously and improves the estimation convergence. The
generalized state dimension of algorithm is six, while the
generalized state dimension of the ekf and dekf algorithms
is eight.

The overall framework of algorithm is as follows. (1) In the
fast-varying time scale, since there is no sensor to measure
the state X, in actuator’s state space model (Equation (6)), the
fusion KF on the fast-varying time scale uses the measured
acceleration and displacement data to estimate the state vector
x1 = [xp, )'cp]T based on equation (5). Then the fast-varying
time scale EKF uses the measured information (also called
innovation including measured driving force data, estimated
values of state vector x| = [xp,)'cp]T) and slow-varying
parameters 6 from the slow-varying time scale to esti-
mate the generalized states xo = [xp, Xp, P1, P2, fe, FrT
based on equation (6). (2) In the slow-varying time scale,
the slow-varying time scale EKF uses the same mea-
sured information and generalized states yx» from the fast-
varying time scale to estimate the slow-varying parameters
0 = [Kq, By].

The specific calculation steps of the proposed algorithm
are summarized as follows and in the flowchart as shown
in Fig. 3.

(1) Step 1: Initialization, set the initial parameters of fusion
KEF, fast-varying time scale EKF and slow-varying time scale
EKEF, respectively.

X1 X2
X1,0, 0 PO, 0’ QXI, Rle X2,0, 0 Po‘ 0’ QXZ» RX27

60, P4, 0°, R?, d 2. 0. o/dé]_,Lz-

where X1, 0, 0, P())(" 0» @1, RX1 are respectively the initial state
vector, the initial value of state estimation error covariance
matrix, the process noise covariance, and the measurement
noise covariance of fusion KF. x2, ¢, o, P())(,z()v QX2 are respec-
tively the initial generalized state vector, the initial value of
state estimation error covariance matrix, and the process noise
covariance of fast-varying time scale EKF. 6, Pg, QY are
the initial slow-varying parameter set, the initial value of
parameter estimation error covariance matrix, and the process
noise covariance of slow-varying time scale EKF, respec-
tively. R¥! and R® are the measurement noise covariances.
Since the same innovation is used, R*> = R? is satisfied.
dx2. 0.0/ dél_ € R*2 is set as a matrix with zero elements
for calculation of parameter measurement matrix C ,? . When
the estimation starts, the value at time (0) is converted to the
value at time (k — 1), and the value at time (0,0) is converted
to the value at time (k — 1,1 — 1).

For slow-varying time scale sequence,k = 1,2,...
(calculation from time (k — 1) to (k) ).
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Step 1: Initialization

/YI,O,O’F:)/:KIO’Q;m ’Rl‘ ’ZZ,O,O’E){KE’QZZ’R;{Z’
9053)9’Q6aR6a d/%Z,0,0 /dH;,LZ

v

Step 2: The prior estimation of

Slow-varyin;
time scal

slow-varying time scale EKF
Equation (7): é,: ,Bfﬁ

_——— — —_———— -
{ Fast-varying time scale t
[

N
I Step 3: The prior estimation of fusion KF and
I fast-varying time scale EKF Pu I
Equation (8): X1 s1.15 Pk{lljl I
I Equation (9): 75 ., ,» B4,
| |
, y |
I Step 4: The posterior estimation of fusion KF I —
I and fast-varying time scale EKF :ﬁ
. : = I =2
Equation (10):1“,(4'1,1’,({',»1 i I 1
I Pass ¥y k-1, 10 V2 k1, in this step. = | I -~
: A ~
- I Equat?on (11): IZA i P"ﬁ’ﬁi I I v—|<”
1 I L Equation (12): dy. .. ld& . =
T I
=| |

rStep 5: scale conversion
Equation (13): X2,k,05Y2,k,05%2,x,0

df(z,k,o /dé,:,Cf.

v

a 3
Step 6: The posterior estimation of]
slow-varying time scale EKF

Equation (14): ék Pke

FIGURE 3. Implementation flowchart of multi-scale online estimator for
states and parameters.

(2) Step 2: The prior estimation of slow-varying time scale
EKF

(N

For fast-varying time scale sequence, [ = 1,2, ...L, (cal-
culation from time (k — 1,/ — 1) to (k — 1, L)).

(3) Step 3: The prior estimation of fusion KF and
fast-varying time scale EKF

Xt ko1 =F1(X, k=1, =1, w1, k=1, 1-1)
X1— X1 T X1
Py = ALk 0-1P A ke o O

®)
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Xo k1.1 =F2(Ro k=1, 1-10 O 5 w2 k—1,1-1)
PXZ_ —A PXZ AT + sz
k—1,1 2, k=1, 1=18% 1, 1142, k=1, -1 .
©)

(4) Step 4: The posterior estimation of fusion KF and
fast-varying time scale EKF

-1
X _ pX1i— T Xi— T
KLy = PLS (C0T [CRPL (€T 4R |
N SHEP WL
X0kt = G g, e k-, 1)]
X1 _ X1 X1—
Py = =Koy [ CDP
(10

Pass X1, k—1,1to y2, k—1, in this step.
-1
P x2— x2—
K2, =P ) I:CXZPkil, I(CXZ)T-FRM]
- - X
Xek=11=Xy o1 1K)

X [yz, k—1,1—G2 ()A({,k_l, 1O u k-, z)]
X2 (T _wX2 X2\ pX2—
Py ==Kz CPZ

(11)
For calculation of parameter measurement matrix C,f.
dxo, k-
X2,/]\c_1, ! _ (I _ K]z(il lcxz)
do, '

OF2(X2, k=1, 15 0 » w2, k—1,1)/36, +
XN 0F2(X2, k—1,1,6; -2, k—1,1) dX2, k—1, 1-1
0X2, k—1,1 dé;

12)

(5) Step 5: Cycle calculation of fast-varying time scale
for/ = 1 : L;. When the cumulative count is equal to L,
scale conversion is performed to activate the calculation of
slow-varying time scale. At this time, make the following
switch.

X2k, 0 = X2 k—1,L» Y2, k, 0 = Y2, k—1, L.» U2, k, 0

dio k0 di2 k-1, L,
= U k-1, L, — = — ,C;?
dé; dé;
_cnde ko (13)
do;

(6) Step 6: The posterior estimation of slow-varying time
scale EKF

1
K¢ = PO [ClP e + R
O =6, +K/ [yz, k0= Ga(Ra, k, 0, 0 s U2k, 0)]

0 —
P} = —-K{C)HP]
(14)

where

Al k=1, 1-1
ORI (R, k=1, -1 U k=1, 1) [1 At]
X1, k=1, 1-1 o 1]
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Fi(X1, k=1, 1=1, U1, k=1, 1)

Ar?
_ | X1t k=1,1-1 + Atx12, k-1,1-1 + UL k=1
X12, k=1, i—1 + Atuy, g—1, 1—1
CXI
3G1()?1_,k_1,1, ui, k—1,1) [] 0]
X1, k=1, 1
A k-1, 1-1

_OFa(X2, k1,11, O, w2 k—1,1-1)

X2, k-1, 11 ’
CXZ
0GRy 4y, O w2 k-1, )
X2, k=1, 1
1 0 0 0
=10 1 0 0
0 0 Ay —Ap
&

~ dGa(R. k.0, 07 42 k. 0)
dé; '

So far, the multi-scale online estimation of the generalized
states and slow-varying parameters at time k is completed,
and then it is ready to enter the cycle at time k + 1 (end ).

V. LTV-MPC CONTROLLER DESIGN
Using the MEKF estimator, we can obtain all the states and
parameters, among which the parameters have included the
system time-varying parameters and external load interfer-
ence. Therefore, the LTV-MPC controller can be directly
designed based on the above information and dynamic
model.

First, the actuator dynamics is simplified into the following
nonlinear dynamic system.

x(1) = f(x(1), u(r))
y(t) = h(x(1), u(t)). (15)

where f(.,.) is the state transition function, x(¢) is the
state vector in the N, dimension, u(t) is the control vector
in the N, dimension, and y(¢) is the output vector in the
Ny dimension.

Since the dynamic model contains a large number of real-
time states, according to [25], if the system is linearized
near the current working point in real time, it will be
transformed into a linear time-varying system (LTV), which
not only significantly reduces the amount of calculations
compared to directly solving nonlinear problems, but also
greatly improves the control accuracy compared to linear
time-invariant systems (LTI). Based on the state trajectory
linearization method and the zero-order hold discrete method,
the nonlinear system (15) is transformed into the following
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linear time-varying discrete system.

x(k + 1) = Agx(k) + Bru(k) + di (k)
y(k) = Crx(k). (16)

where dy = x(k + 1) — Agsx(k) — By ;u(k),x(k + 1) is a
one-step predicted state vector calculated from the current
state x(k) and input u(k) according to the nonlinear dynamic
model (15). So far, the linear time-varying discrete model,
which is applicable for convex model predictive control,
is obtained through the linearizing of nonlinear system at any
state point.

By replacing the control input in Equation (16) from the
control quantity u(¢) to the control increment Au(t). The
extended state space expression is obtained by the corre-
sponding transformation of Equation (16).

Xk +11t) = Ay Z(k |t) + By Autk |t) + di
y(k|t) = Cy (K |t). (17)
where ¥(k [t) = [x(k), utk — D", Aulk |t) = u(k) — u(k —

e M -t } Cir =[G Ox,]
dit = ()d]\];

If the state quantity X(k|r) and control increment
Au(k |t) of the system at time k are also known, the
system output y(k + 1[¢t) at time k 4+ 1 can be pre-
dicted by Equation (17), and iteratively, the system out-
put y(k + N, |t) at time k + N, also can be predicted.
If the system prediction horizon is N, and the control
horizon is N., and the following assumption is made as
ulk +ilt)=utk +N. —11t),(i=Ne,...,N, —1). Then
the system output in the prediction horizon can be calculated
by the following equation.

Y(t) = Wik |t) + ©,AU(t) + T, d,. (18)

where Y (1), ¥,, ®;, AU(t), ®; and I'; as shown at the bottom
of the next page.

In order to track the desired trajectory, an objective func-
tion is designed to minimize the weighted trajectory devi-
ation and the weighted control amount and increment as
follows

Np
7= ok +ile) =y k + 10|
i=1

N.—1
+ ) llAutk +ilt)F
i=0
N.—1
+ Y lluk + i[5 + pe. (19)
i=0

Dynamic constraint
x(k + 1) = Agx(k) + Bru(k) + di(k)
y(k) = Crx(k).
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Input and output constraints

Umin(k +i1t) < u(k +ilt) < umax(k +ilt),
i=0,...,N.— 1
Aumin(k +i1t) < Aulk +i|t) < Aumax(k +1it),
i=0,...,N.— 1
Ymin(k +ilt) < yk +ilt) < ymax(k +1ilt)
i=1,...,N,

where yr(k+i|t),i =1, ..., N, isthe desired displacement
trajectory, and Q, R, S, p are weight matrices. The first term
in the objective function is used to punish for the deviation
between the predicted output and the expected output in
the prediction horizon, which reflects the controller’s ability
to quickly track the desired trajectory. The second term is
used to punish the system’s control increment in the control
horizon, that is, it reflects the system’s requirement for a
stable change in the control amount. The third term is used
to punish the system’s control amount in the control horizon,
which reflects the system’s requirements for the control value
amount limit. The fourth term ¢ is a relaxation factor, which
guarantees that in the case where there is no optimal solution
in the control period, the suboptimal solution is replaced
instead of the optimal solution to prevent the occurrence of
no feasible solution.

Due to the existence of constraints, we need to use
mathematical programming methods for numerical solutions,

and the optimal solution no longer has an analytical form.
Then the objective function is converted into a standard
quadratic form, rewritten as follows:

1 T
JZ_[Aan E[Azm]+&[AZm} (202)

2 £
—AUmin AU(I) AUmax
s.t._ 0 ]5[ . ]5[ 0 } (20b)
[ M On.xi
-M  On,n.x1 AU(1)
Or  Onyn,x1 €
| —©r  Onyn,x1
Umax - U(t)
_Umin + U(t)
- 20c
S| Vi) — Wik 1) — T, @, (20c)
_Ymin(t) + \I’ti(k |t) + qu)t
2(070:O; + R, + MTS.M)  Onn.x1

where H, =

s

01xN,N, 0
g = [2E@)7 00, +2U(t — ! S.M 0], E(t) = 1&(k) +
T, ®; — Yyop(t). Hy € RUFNlXUHNuNe) g positive definite
Hessian matrix. g, € RV 0, = diag(Q)n,N,> Re =
diag(R)y,n,, Se = diag(S)yn, M = K ® Iy, K is a
N,-dimensional lower triangular matrix whose elements are
all one.

Under the premise of knowing the system state x(k) at
time k and the control amount u(k — 1) at the previous time,
the optimal control increment sequence AU*(¢) is obtained
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— [ B &k-l—Nl,tAk,tN ]
ylk+11t) Crt2,1Ak+1,1Ak 1
vk +21t) .
Y() = . , Y= : ’
: k+N,—1
| y(k +Np 1) C'k+Np,z l_[ A,
L i=k i
i ~ Cr1.4Brr 0N, xn, On, xN, On, xN, ]
Cr+2,tAk+1,tBi.t Cr+2,tBic+1.¢ On, N, On, N,
®t = : '
k-+Np—1 k-+Np—1 k-+Np—1
Corngr [ AiiBis Coanpr [ AveBrir Cernpr [ AuiBrine—1.
L i=k+1 i=k+2 i=k+N, i
Au(k |1) di (k)
Au(k + 11t) dii(k+1]1)
AU®1) . , &= .
| Au(k 4+ Nc|t) dii(k + Ny — 1]t)
i y ék+~l,t ON, N, ONpxNy  ONpxNy |
Cr+2,1Ak+1,1 Cr+2,t On, N, ON,xnN,
r, = : : :
k-+Np—1 k-+Np—1
Cr4N, .t 1_[ Air Ckqn,i 1_[ Ajy Cr+4N,.1
L i=k+1 i=k+2 i
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through optimization in the control cycle. Then the first quan-
tity of this sequence is applied to the system as the actual
control increment, ie

umpc(k) = umpc(k - D+, O---]lxNC ) AU*(¢)~ 21

Remark 6: Due to the large length of stability proof for
LTV-MPC control (20)-(21), this paper will not repeat the
description, and the detailed proof process has been presented
in [26, Section 4].

Actuator
Force
sensor | §°
e & Actuator| 1
il
Accelerometer
sensor
Displacement
sensor
il
PC104 Amplifier
STM32F104 o'

FIGURE 4. The experimental platform.

VI. EXPERIMENT AND DISCUSSION

A. EXPERIMENTAL PLATFORM

In order to verify the performance of the proposed control
scheme, the one-legged motion control experimental plat-
form has been built as shown in Fig. 4. The platform consists
of the single-legged rigid body, actuators and control system,
in which the electro-hydraulic actuators driving the joint
mechanism have integrated the acceleration, displacement
and force sensor. The control system consists of a computer,
PC104 small board, ARM controller, amplifier and 16-bit
A/D converter sensor. The QNX operating system runs in
the controller, where control and estimation algorithms are
implemented.

Since the control and estimation algorithm is similar to
the double loop form, in order to ensure stability, the MEKF
estimator is set to the fast loop with a frequency of 10000 Hz,
and the LTV-MPC controller is set to the slow loop with a
frequency of 1000 Hz. The estimator’s parameter setting and
estimation effect have been shown in detail in [24], and this
paper will not repeat them.
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The implementation of control scheme is the same as that
described in Section III. Because the external load inter-
ference of hip actuator is the most severe due to the high
dynamic movement of large and small links, this experiment
mainly discusses the displacement tracking performance of
hip actuator.

B. EXPERIMENTAL RESULTS

In order to verify the performance of the control scheme
proposed in this paper, two group experiments have been
designed to compare the performance of estimator and trajec-
tory tracking. In the trajectory tracking experiment, two high
dynamic desired trajectories of 3.3HZ and 6HZ frequency are
tested respectively.

Experiment 1 (The Estimator Performance): This group
experiment compares the performance between the conven-
tional extended state observer (ESO) and the MEKF esti-
mator. ESO uses the nominal nonlinear model of actuator
system, using only the control input and displacement out-
put feedback information to estimate the four states and the
disturbance outside the nominal model (five states). MEKF
uses the control input and displacement, acceleration and
driving force information to simultaneously estimate the four
states and four parameters of the system, so this experiment
chooses to compare the state estimation effect to evaluate
the estimation ability of the estimators. And the judgment
basis is the ability of displacement and driving force esti-
mates to track the centerline of measured values. In addition,
the estimated driving force of ESO is calculated by F =
Ap1p1 — Ap2p2. In this experiment, the evaluation indices
used to estimate performance are mean square error (MSE),
maximum error (ME) and average error (AE).

TABLE 1. Parameter values.

Parameter Value
A, Piston area 0.00056 m*
A, Rod area 0.00044 m’
Vor The pipeline volume of piston 6.5¢7" m’
Vr The pipeline volume of rod 9.5¢7" m’
L Actuator total stroke 0.075m
L, Piston initial position 0.03m
P Supply pressure 2.1¢’ Par
B, Return pressure 0.5¢° Par
m Rod mass 0.178 kg

The two estimators are tested under the 3.3HZ high
dynamic desired trajectory condition. In order to make the
actuator closed-loop stable tracking and fair evaluation,
the controller part adopts the LTV-MPC controller. The ESO
gains are given by f = [Sa) , 100?, 1003, 50, wS/IO]T
and wp = 6. The model parameter settings are shown in
Table 1 and Ky = 5.6 x 10~3(m? /(s.V)), B, = 1000 (N.s/m),
B. = 1700 (MPa). In addition, external load force inter-
ference and internal dynamic changes are all estimated as
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FIGURE 5. The estimated displacement (a) The estimated values; (b) Partially enlarged view; (c) The estimated errors.
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FIGURE 6. The estimated driving force (a) The estimated values; (b) Partially enlarged view; (c) The estimated errors.

external disturbance. Since conventional ESO does not have
the ability to filter the noisy signal, the low-pass filtering
method is used to filter the displacement measurement signal
before introducing it into ESO. The initial parameter settings
of MEKEF are as follows:

xi.00 = [0,01", P}y = [10;01],00 = diag
([1e’20, 16720]),

RM =67, x2.0.0=[0,0,0,0,1¢% 1¢*]",

Pg?o = diag ([le_l, led,1e719, 1710, 168, le_z]),

0% = diag ([1(3_20, 1e720 1720 1720, 8e12, leﬂ),

R? =R = diag ([0,0, 6¢"1) , 6 = [Se~8, 2.5e31 ,

Pg = diag (A[le’zo, 366]) , Qe = diag ([2@’18, 3e’ ]),

dj2,0,0/d0, = zeros(6,2),L; = 1000. Due to the
adaptive gain capability, the MEKF estimator does not require
accurate setting for initial parameters. The correlation esti-
mation comparison curves of states x = [xp, X, Py, P17
(Fig. 5, 7), driving force (Fig. 6) are obtained respectively.
The quantitative performance indices of displacement and
driving force under the two estimators are shown in Table 2.

Performance evaluation: According to Fig. 5 and 7 (a) and
the index values, the displacement and velocity estimates of
MEKEF and ESO are almost the same, and the displacement
estimates have smoothly tracked the centerline of measured
values. It can be clearly seen from Fig. 6 that the estimated
driving force of MEKF smoothly tracks the centerline of
measured value, however, the one of ESO fails to track
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TABLE 2. Quantitative indices of estimated performance.

Algorithm MSE ME AE
Di MEKF 0.7¢? 3.2¢7° 0.6¢™
isplacement ESO 087  3.2¢° 0.6¢"
(m) MEKF/ESO  100%  100% 100%
Driving force MEKF 1672 1595 969
N ESO 7027 24092  468.4
MEKF/ESO  238%  664%  20.7%

the centerline from 6.5 (s), that mainly due to fluctuations
and inaccuracies in the estimated values of state P; and P>
(Fig. 7 (b, ¢)). In addition, the quantitative indices of MEKF
on driving force are smaller than those of ESO. The MSE
index is only 23.8% that of ESO, the ME index ratio is 66.4%,
and the AE index ratio is 20.7%. Therefore, MEKF accurately
estimates the actual state of actuator. Since the states and
parameters in MEKF are coupled closed-loop estimation,
it also indirectly indicates that the parameters (system param-
eters and external interference) are accurately estimated.
The advantage of ESO is that only the displacement mea-
surement signal is used to achieve a relatively close estima-
tion of the state and external interference, which is of great
significance for applications where the weight and volume of
the actuator are greatly limited. MEKF uses the multi-sensor
measurement signals of displacement, acceleration and force
sensors to complete the state and parameter estimation more
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FIGURE 7. (a) The estimated velocity; (b) The estimated pressure P;; (c) The estimated pressure P,.

accurately than ESO, and has better noise filtering and adap-
tive gain capabilities, which facilitates the application of
estimator. Most importantly, it provides more real-time and
accurate system states and model for LTV-MPC, laying a
solid foundation for high-precision control.

Experiment 2 (Trajectory Tracking Experiment): The
tracking performance of five controllers is compared to verify
the effectiveness of the proposed control scheme. The five
controllers are as follows.

a) PD controller: The closed-loop feedback values use the
actuator displacement and velocity estimates obtained
by the MEKF estimator in this paper. And the PD gains
are k, = 9000, k; = 100.

b) ADRC controller: The control structure of auto distur-
bance rejection controller (ADRC) is divided into three
parts: tracking differentiator, extended state observer
and control rate [27], [28]. The ESO uses a fourth-order
nominal model (Equation (4)), which expands the
external disturbance as the fifth state to obtain a fifth-
order form, and its parameter settings are the same as
in Experiment (1). The control rate adopts the linear
combination of error and error speed, and the gains are
k1 = 9000, ky = 100.

¢) MPC controller: This controller is designed based on
the state estimates of MEKF estimator and the linear
time-varying model with prior parameters. The param-
eter set O = [Be, FL1T and 040, = [Ky4, Bp]T in the
model is fixed according to the prior values, and con-
trol parameters are the same as those of MEKF-MPC
(Experiment (2.e)).

d) ESO-MPC controller: The extended state observer uses
the nominal nonlinear model of actuator system to
estimate the external disturbance as F in the dynamic
model (Equation (4)), and then based on the real-time
model and the estimated states, LTV-MPC completes
trajectory tracking. The ESO parameters are the same
as Experiment (1), and the LTV-MPC parameters are
the same as Experiment (2.e).

e) MEKF-MPC controller: The MPC controller with
MEKEF estimator is the control scheme proposed in
this paper. The control parameters are set as follows:
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FIGURE 8. Disturbance estimation of ESO.

N, = 10,N. = 3, Ny = 4N, = 1, N, = 1. The
weight matrices are setto Q, = diag(ZOOOO)N‘,Np, R, =
diag(0.1)w,n,, Se = diag(1000)y,n,, o = 1000. The
MEKEF parameters are the same as the Experiment (1)
and the constraints are set as follows:

—10(v)<uk +i|t) < 10(v), i=0,...,N.— 1
—0.1M)<Autk +ilt) <0.1(v), i=0,...,N.—1
O(mm) <y(k +i|t) < 75(mm), i=1,...,N,

In order to comprehensively evaluate the adaptive robust
tracking performance of the proposed control scheme, these
five controllers will be tested under two high dynamic desired
trajectory conditions of 3.3 Hz and 6 Hz, respectively. And
in the experiments, the evaluation indices used to estimate
performance are mean square error (MSE), maximum error
(ME), average error (AE) and delay time (DT).

Remark: In order to fairly evaluate the performance of the
controllers (a, c, e), the initial parameter settings of MEKF
estimator are always consistent. Except for parameter sets
st = [Be, FL1T and Oy = [Kq, Bp]?, other parameters
are set as shown in Table 1.

Case 1 (Tracking Effect Under 3.3Hz Desired Trajectory):
As the actuator’s desired displacement trajectory, its total
cycle is 0.6s divided into two parts. The first part performs
a high-frequency movement of 3.3 Hz in the first 0.3s, and
the second part performs gentle low-frequency movements
in the last 0.3s. Therefore, the tracking accuracy is mainly
evaluated in the high-frequency part, and in fact, the peak
error also occurs in this interval.

In the case of time-varying parameters and external load
disturbance on the system, the disturbance estimation of ESO
is shown in Fig. 8. The parameters, Opy = [Be, Fr7,
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FIGURE 9. Estimated parameters of MEKF.
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FIGURE 10. Tracking errors in case 1.

Osiow = [Kya, B,,]T estimated by MEKF estimator are shown
in Fig. 9, the displacement tracking errors of five controllers
are shown in Fig. 10, and the tracking curves of last peak
error are shown in Fig. 11, showing the tracking details in the
9.74-9.75(s) time interval. In the time interval of 9.6-9.9(s),
the curve shows a high-frequency characteristic of 3.3Hz,
especially in the interval of 9.7-9.8(s), it shows a drastic
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FIGURE 11. Tracking curves of local interval in case 1.

change, which leads to the peak error. The quantitative indices
of displacement tracking error performance throughout the
control process are shown in Table 3.

TABLE 3. Quantitative indices (error: mm, delay time: ms).

case 1 MSE ME AE DT
PD 0.51 1.5 0.4 2
ADRC 0.47 1 0.34 1.8
MPC 0.43 1.2 0.36 1.6
ESO-MPC 0.28 0.8 0.23 1.4
MEKF-MPC  0.23 0.7 0.18 1.2

Performance evaluation: (a) Disturbance and parameter
estimation: as can be seen from Fig. 8 and 9, the disturbance
estimation of ESO and the parameter estimation of MEKF
have both stably converged within a certain range. Combined
with the performance evaluation results from Experiment (1),
the MEKF parameter estimates have well demonstrated the
time-varying system parameters and large external load dis-
turbance. In addition, it can be seen that the external distur-
bance changes drastically in a short time.

(b) Tracking accuracy: as can be seen from Fig. 10 and
Table 3, the maximum error of the PD controller is 1.5 (mm),
ADRC is 1 (mm), MPC is 1.2 (mm), ESO-MPCD is 0.8mm,
MEKF-MPC is 0.7 (mm). Combined with MSE and AE
index data, it can be shown that the tracking accuracy of the
proposed control scheme (MEKF-MPC) is superior to the
other four controllers.

(c) Tracking delay: as can be seen from Fig. 11 and Table 3,
the delay index value of MEKF-MPC is 1.2 (ms), which is the
smallest of the five controllers, indicating that the proposed
scheme has high response speed and tracking ability.

(d) Anti-interference ability: it can be seen from the change
of peak error in each interval in Figure 10, since the PD
controller has weak compensation ability for disturbance,
with the appearance of large disturbance, the peak error
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value during the movement has already changed obviously.
Although without accurate estimation of time-varying param-
eters and external load interference, the peak error fluctuation
of MPC is still less than PD, indicating that the model predic-
tive controller has certain robustness. However, the peak error
also shows a small fluctuation, indicating that the MPC based
on the nominal model has limited anti-disturbance capability,
and weaker resistance to stronger disturbance compared with
the other three control schemes with estimator. With distur-
bance estimator and anti-disturbance capability, these three
control schemes (c,d,e) show flat peak errors in the entire
interval, of which MEKF-MPC have the smallest peak errors,
most of that are around 0.6 (mm), while ESO-MPC’s ones are
0.7 (mm), and ADRC’s ones are 1 (mm). It shows that the
control scheme proposed in this paper has better adapted to
the parameter time-varying and external load interference.

The evaluation results from the above four aspects show
that the proposed MEKF-MPC controller has better adaptive
robustness and tracking performance than the other four con-
trollers.

Case 2 (Tracking Effect Under 6 Hz Desired Trajectory):
In order to further verify the adaptive robust performance of
the proposed control scheme at higher frequency, the oper-
ating space trajectory of the swing leg is re-planned in
case 2, and the desired trajectory frequency of actuator is
increased to 6 Hz. And the controller parameters are the same
as those of case 1. The displacement tracking errors are shown
in Fig.12, and the tracking curves of penultimate peak error
are shown in Fig. 13. The quantitative indices of displacement
tracking error performance throughout the control process are
shown in Table 4.
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TABLE 4. Quantitative indices (error: mm, delay time: ms).

case 2 MSE ME AE DT
PD 0.84 2.2 0.69 2.4
ADRC 0.58 1.3 0.46 2
MPC 0.58 1.7 0.49 1.8
ESO-MPC 0.37 0.9 0.31 1.5
MEKF-MPC  0.32 0.9 0.27 1.3

From all these results, it is concluded that, even under
higher dynamics and no need to modify control parameters,
the proposed MEKF-MPC control scheme has effectively
controlled the maximum tracking error to within 0.9 (mm),
and its tracking performance in the quantitative indices is
significantly better than other four controllers.

In summary, the main reason why MEKF-MPC has the
above good performance is the following three aspects. In the
first aspect, due to its own noise filtering and adaptive gain
capabilities, MEKF estimator has realized real-time accurate
estimation of time-varying parameters and large external load
interference, simplifies the system design process and makes
the model more accurate used in LTV-MPC. In the second
aspect, MEKF estimator has already completed the noise fil-
tering of measurable state and the estimation of unmeasurable
states, which meets the needs of LTV-MPC for full state feed-
back. In the third aspect, with fast calculation, receding hori-
zon optimization and prediction capabilities, the LTV-MPC
also has high approximation accuracy and strong robustness,
and additionally realizes constraints on input and output.
Therefore, in the case of limited sensor hardware conditions
for actuator, this constrained high-precision tracking control
of the trajectory is achieved, and the proposed MEKF-MPC
controller has strong adaptive robustness response to time-
varying parameters and high dynamic large external load
disturbance.

VIl. CONCLUSIONS
In this paper, a linear time-varying model predictive control
scheme with a multi-scale online estimator has been proposed
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for the electro-hydraulic actuator with limited sensor hard-
ware condition in legged robot. Not only the time-varying
parameters, high dynamic external load interference with
motion, measurement noise and even unmeasured state esti-
mation are considered, but also high-accuracy fast trajectory
tracking with input and output limited within the constraints
has been achieved. Experimental results show that the pro-
posed control structure design process is simple and has good
adaptive robustness and trajectory tracking performance in
high dynamic motion.

In the future, we will gradually apply this control scheme
to legged robot to achieve high dynamic and stable motion of
the overall robot.
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