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ABSTRACT Dam behavior prediction is a fundamental component of dam structural health monitoring.
By comparing the predictions and the observations, anomalies can be detected, and then the remedial
measures can be executed in time. As the most intuitive monitoring indicators, deformation is often used
to evaluate dam structural health status. In this research, we propose a novel combined model for predicting
the dam displacement time series. First, the seasonal-trend decomposition based on Loess (STL)method is
utilized to decompose the dam displacement time series into seasonal, trend, and remainder components.
Then the extremely randomized trees(extra-trees) model is used to predict seasonal components based on
the causal models and influencing factors, whereas the stacked Long-Short Term Memory (LSTM)model is
used to predict trend and remainder components based on the numerical models and historical observation
data. Finally, the predicted results of the three components are aggregated to obtain the total predicted
dam displacement. Seven state-of-the-art methods are introduced as benchmark methods to verify the
effectiveness and feasibility of the proposed model. To quantitatively evaluate and compare the prediction
results, three evaluation indicators, and a statistic test method are introduced. The experimental results show
that the proposed model is the best-performing method compared with other benchmark methods both in
prediction accuracy and stability. This indicates the proposed novel combined model STL-extra-trees-LSTM
is a promising method for predicting displacement time series.

INDEX TERMS Dam behavior prediction, time series decomposition, deep learning, ensemble learning.

I. INTRODUCTION
In China, more than 98000 dams in active service, andmost of
them were constructed in the 1950s -1970s. These dams have
potential problems such as low design standards, insufficient
strength of dam materials, and serious aging [1]. Moreover,
they locate in the deepmountain valleys with the poor geolog-
ical environments and are subject to the influence of extreme
loads and weather, such as floods, earthquakes, and cold
waves. Once the dams break, reservoir water will pour down-
stream in an instant, creating an uncontrollable flood that will
cause environmental, social, and economic disasters [2].

Structural failure of most dams is not a sudden event,
but a gradual process under the long-term effects of
various loads [3]. If the dam behavior predictionmodel can be
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established based on the prototype observation, the structural
degradation of the dam and its trend can be detected in time.
However, dam structural performance is a dynamic evolution
process with the interaction of the dam material property and
multiple external factors.

Dam behavior prediction is a fundamental component
of dam structural health monitoring. They are utilized to
calculate the dam response under internal and external
loads. The anomalies can be detected timely by compar-
ing the predictions with the observations. Then the con-
duct maintenance and remedial measures can be executed
in time.

As the most intuitive indicators, deformation is com-
monly used to evaluate the safety status of the dam.
Dam deformation process is a dynamic non-linear evolution
with the characteristics of complexity, uncertainty, diversity,
and time-varying. Traditional statistical methods, such as
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multiple linear regression (MLR), have been widely utilized
to dam safety monitoring and behavior prediction. However,
the regression results are only the approximate fit of the
actual relationship between variables. It is hard to predict
dam displacement time series with high accuracy and sta-
bility, especially for long prediction sequences. Moreover,
with the development of monitoring technology, the sampling
frequency of dam monitoring devices has changed from once
a week to multiple times a day. It is desirable to propose
advanced intelligent methods to meet the requirements of big
data processing.

In recent years, many machine learning(ML)-based meth-
ods with strong capability on handing non-linear prob-
lems are introduced to predict dam displacement [1], [4].
For example, Lin et al. [5] proposed a Gaussian process-
based prediction model for dam deformation and utilized
an example analysis to verify the feasibility of the Gaus-
sian process model. These methods obtain good performance
in learning input-output relationships without requiring a
detailed physical process between actions and effects [6].
But there are still many drawbacks that limit the applica-
tion of ML methods, such as overfitting problems for arti-
ficial neural network and parameter tuning for support vector
machine.

These limitations foster the development of combined
models [7]. Various kinds of combined models are pro-
posed, and one of them is the signal pre-processing mea-
sure model. The signal pre-processing measure is imple-
mented to decompose the time series into a collection of
stationary and regular sub-sequences. Then the models that
fit the characteristics of the sub-sequences are selected as
the prediction model [8]. Different decomposition methods
have been utilized to process the dam prototype observation
time series. For instance, in [9], wavelet analysis(WA) is
used to decompose and reconstruct the residual sequence
of the dam displacement time series. In [10], an improved
empirical mode decomposition(EMD)-based method is pre-
sented to remove noise from prototypical observations on
dam safety. Ahumada and Garegnani [11] applied the wavelet
de-noising and Hodrick-Prescott(HP) filter to decompose the
displacement time series of the landslide into periodic, trend
terms, and random noise. Nevertheless, these decomposition
methods still suffer from some problems. For example, WA
can decompose a time series into both high and low frequency
series at each level. But there are no standard definitions
of high and low frequency in dam displacement time series
decomposition. It is fully determined by the experience of
the user. Moreover, EMD can decompose a time series into a
collection of stationary Intrinsic Mode Functions (IMFs), but
the mode mixing problem still exists. Specifically, a signal
of different scales still exists in one IMF or a similar scaled
resides in different IMFs [12]. Furthermore, the decompo-
sition results of HP filter are determined by the value of
smoothing parameter λ. In addition, HP filter can only pro-
cess series with low sampling frequency, such as the yearly,
quarterly or monthly data [13].

The seasonal-trend decomposition based on Loess (STL,
local polynomial regression fitting) is a well-established
filtering procedure for decomposing a time series into
additive variation components [14]. Compared with other
decomposition methods, STL has some significant advan-
tages [15], [16]. For example, it has strong resilience to out-
liers in the sequence, resulting in robust sub-series.Moreover,
STL can deal with any seasonal frequency that great than
one [17]. Also, the modeling process of STL is purely based
on numerical methods, without requiring any mathematical
modeling tools.

In this study, STL is used to decompose the dam displace-
ment time series into three components: seasonal, trend, and
remainder components. According to the previous researches,
the cause of each component of dam displacement is ana-
lyzed. The seasonal component represents periodic dam
responses influenced by the water level and seasonal temper-
ature changes during its lifetime [18]. Extremely randomized
trees(extra-trees) are utilized to predict the seasonal displace-
ment based on multiple influencing factors (e.g. reservoir
level, and temperatures). The trend component reflects the
long-term evolution process of dam behavior under the com-
prehensive effect of the property degradation of dam mate-
rial and inherent rheological property [19]. The remainder
component is caused by uncertain factors, such as structural
damage, seepage coupling, and joint fissure [20]. It is hard to
predict trend and remainder components accurately based on
the causal models and influencing factors. Thus, the stacked
Long-Short Term Memory Neural Network (LSTM NN) is
utilized to predict them based on the numerical model and his-
torical observation data [21]. Then the predicted results of the
three components are aggregated to obtain the final predicted
results. To effectively compare the prediction performance
of the proposed model, seven state-of-the-art methods are
selected as benchmark methods. Three quantitative evalua-
tion indicators and a modified hypothesis test are utilized to
compare the prediction performance between the proposed
and the benchmark methods.

The structure of this paper is described as below.
Section 2 presents a brief description of the STL, extra-trees,
and stacked LSTM models, followed by a formulation of the
proposed combined model in detail. In Section 3, the research
design of the study case, input variable selection, evalu-
ation indicators, and model implementation is introduced.
In Section 4, the experimental results of the proposed model
and benchmark methods for various displacement time series
are illustrated and discussed. Finally, the conclusions are
drawn in Section 5.

II. METHODOLOGY
The overall process of the proposed model is introduced and
described in this section. Firstly, the theoretical basis of the
STL, extra-trees, and stacked LSTM models is described
briefly. Then the proposed STL-extra-trees-LSTM model is
formulated, and the specific steps of the proposed model are
presented in detail.
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A. SEASONAL-TREND DECOMPOSITION BASED ON LOESS
The STL method is a filtering procedure for decomposing a
time series into three additive components based on the Loess
smoother [14]. STL is commonly used in processing a large
number of long-scaled time series due to its simple design
and fast computation speed.

Assuming there is a dam displacement time series Xt , STL,
can disaggregate the global time series Xt into three additive
components, namely seasonal (St ), trend (Tt ), and remainder
components (Rt ).

Xt = St + Tt + Rt (1)

As an iterative calculation method, the implementation of
STL is composed of two recursive procedures: inner and
outer loops. In each of the passes through the inner loop,
seasonal smoothing is used to update the seasonal component,
followed by a trend smoothing is used to update the trend
component. The specific calculation process is divided into
six steps as follows.

Assuming that S(k)t , T (k)
t are the seasonal and trend compo-

nents at the end of the kth pass, respectively. The updates of
the (K + 1)st step of S(k+1)t and T (k+1)

t are calculated in the
following steps.

Step1: Detrending. A detrended series is obtained by sub-
tracting the original series from the estimated trend series
T (k)
t : X

trend
t = Xt − T

(k)
t .

Step2: Cycle-subseries smoothing. Each cycle-subseries
of the detrended series is smoothed by a Loess smoother, and
a preliminary seasonal series C (k+1)

t is obtained.
Step3: Low-pass Filter of smoothed cycle subseries. The

preliminary seasonal series obtained from Step2 is pro-
cessed using a low-pass filter, followed by a Loess smoother,
to obtain the remaining trend series L(k+1)t .

Step4: Detrending of smoothed cycle subseries. The sea-
sonal component S(k+1)t from the (K+1)st loop is obtained by
subtracting the preliminary seasonal series from the low-pass
values: S(k+1)t = C (k+1)

t − L(k+1)t .
Step5: Deseasonalizing. A deseasonalized series Xdeseasont

is obtained by subtracting the original series Xt from the
seasonal component S(k+1)t : Xdeseasont = Xt − S

(k+1)
t .

Step6: Trend Smoothing. The deseasonalized series
Xdeseasont obtained in Step5 is smoothed by a Loess smoother
to obtain the trend component T (k+1)

t .
After the inner iteration reaches the accuracy requirement,

the inner iteration is over, and the outer loop starts. In the outer
loop, the estimation of the seasonal and trend components
obtained in the inner loop is used to calculate the remainder
component Rt .

R(k+1)t = Xt − T
(k+1)
t − S(k+1)t (2)

Any large values in Rt are regarded as outliers, and weight
coefficients are calculated. In the further iteration of the inner
loop, the weight coefficients are used to down-weight the
influence of outliers when updating the seasonal and trend
components.

As such, the dam displacement time series is decomposed
into three additive components, seasonal, trend, and remain-
der components by using the STL method.

B. EXTREMELY RANDOMIZED TREES
Ensemble learning is an important and practical method that
boosts various base learners to generate a strong learner with
good generalization capability [22], [23]. One of the most
commonly-used base learners is the decision tree, which
is easier to intercept than neural networks and does not
rely on prior knowledge. But the decision tree is prone to
overfitting because the sample space may be excessively
divided in the recursive process of decision trees. Many
methods have been proposed to overcome the drawbacks of
traditional decision trees, and one of them is the extra-trees
model. Compared with other tree-based ensemble methods,
the extra-trees model mainly has two differences. Firstly,
the extra-trees model goes further in randomness [24]. Like
random forest (RF) models, a random subset of candidate
features is generated in extra-trees models. But different from
searching the most discriminative thresholds in RF models,
it randomly generates thresholds for each candidate feature.
Then the optimal randomly generated threshold is selected as
the splitting rules [25]. Moreover, the whole training samples
are used to grow the trees in extra-trees models rather than
a bootstrap replica in RF models [26]. These improvements
lead to more diversified trees and fewer splitters to evaluate
when training an extra-trees model. Additionally obtained
randomness allows the extra-trees model with faster compu-
tation speed and reduction of the variance of the model with
slightly increased bias [25].

C. STACKED LONG-SHORT TERM MEMORY NEURAL
NETWORK
Deep learning is a sub-area of ML methods that can express
much more complex relationships by adding more layers and
nonlinear elements in a layer [27]. The feature learning of
deep learning is realized through a general-purpose learning
mechanism instead of time-consuming humanmanual feature
extraction or expert domain knowledge [28]. Deep learn-
ing techniques have been widely utilized to solve practical
problems and achieved state-of-the-art or highly competitive
results [29].

Recurrent Neural Network (RNN)is a class of deep neural
network, which utilizes its internal memory loops to deal
with sequence data. Although traditional RNNs exhibit strong
capability of solving the nonlinear problems in sequence
prediction, the gradient vanishing or exploding problems
still exist, which limits its application. Improved from RNN,
the LSTMmodel was proposed by Hochreiter and Schmidhu-
ber in 1997 [30]. Exist researches show that the LSTMmodel
can effectively learn the temporal and long term dependen-
cies from time series compared with traditional RNNs [31],
[32]. LSTM model uses special units called memory blocks
to replace the traditional neurons in the hidden layers. The
memory block of the LSTM consists of one or more memory
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cells and three gates (input, forget, and output gates), which is
shown in FIGURE 1. The input gate determines what values
from the input to update the memory state. The forget gate
determines to what extent to forget the previous output results
and selects the optimal time lag for the input sequence. The
output gate determines what to output based on input and the
memory of the block [33]. At time t , the input, forget, input
modulation, and output gates can be formulated as it , ft , c̃t
and ot , respectively. The process of updating the state of the
cell and calculating the output of LSTMs can be described as
follows [34]:

ft = σ
(
wf ,xxt + wf ,hht−1 + wc,ict−1 + bf

)
(3)

it = σ
(
wi,xxt + wi,hht + wc,f ct−1 + bi

)
(4)

c̃t = tanh
(
wc̃,xxt + wc̃,hht−1 + bc̃

)
(5)

ot = σ
(
wo,xxt + wo,hht−1 + bo

)
(6)

where wf ,x , wi,x , wc̃,x , wo,x represent the weight coefficients,
which is used to map the input of hidden layer to the gates
and input cell state; wf ,h, wi,h, wc̃,h, wo,h are the weight
coefficients, which is used to connect the previous cell output
state to the gates; bf , bi, bc̃ and bo are four bias vectors. σ (•)
represents the standard logistics sigmoid function, σ (x) =

1
1+e−x .
Based on the above-mentioned equations, at each time t

iteration, the cell output state Ct and the output ht can be
denoted as

ct = ft ∗ ct−1 + it ∗ c̃t (7)

ht = ot ∗ tanh(ct ) (8)

where ∗ represents the scalar product of two vectors.
Current studies show deep LSTM models with several

hidden layers can build up a progressively higher level of
representations of sequence data [35]. Deep LSTM models
are the networks with serval LSTM hidden layers, in which
the output of an LSTM hidden layer will be fed into the next
level of the LSTM hidden layer as the input. This stacked-
layers mechanism can effectively enhance the learning power
of NN [36] and is utilized to construct the prediction model
in this research.

Training any learning-basedmodel for sequence prediction
could be regarded as an optimization problem, and the aim
is to minimize a loss function. Mean square error (MSE) is
adopted as the loss function in this research. To optimize
the loss function, a stochastic gradient descent method called
Adam optimizer is utilized as the optimizer to train the
stacked LSTM model. Compared with other optimizers, it
requires little memory space, has high implementation effi-
ciency, and a small number of hyperparameters [37].

D. THE PROPOSED COMBINED STL-EXTRA-TREES-LSTM
METHOD
Based on the above-mentioned theories, a novel hybrid model
for identifying and predicting the displacement time series is
proposed. FIGURE 2 shows the flow chart of the proposed

FIGURE 1. The hidden layer of LSTM architecture.

FIGURE 2. Flow chart of the proposed combined model.

novel hybrid model. The specific implementation of the pro-
posed model is shown as follows:

Step1: Decomposition. The original dam displacement
time seriesXt is decomposed into three components including
seasonal St , trend Tt , and remainder Rt components by using
the STL method.

Step2: Seasonal component prediction. Extra-trees mod-
els are utilized to construct the prediction model for extracted
seasonal components based on the influencing factors. The
optimal parameters of the model are determined by the
Bayesian optimization method and 5-fold-cross-validation.

Step3: Trend and remainder components prediction.
Stacked LSTM NNs containing multiple hidden LSTM lay-
ers are utilized to predict the extracted trend and remainder
components. The number of hidden LSTM layers and the
parameter of each LSTM layer is determined by the Bayesian
optimization.
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FIGURE 3. The design drawing of the project in the case study.

FIGURE 4. The layout of the plumb line monitoring system.

Step4: Summation. The total predicted dam displace-
ment is obtained by adding such three predicted components.
To verify the feasibility of the proposed method, various
state-of-the-art prediction methods are used as comparison
methods.

III. RESEARCH DESIGN
In this research, the research design of the case study, input
variable selection, evaluation indicators, and model imple-
mentation are provided in detail.

A. CASE STUDY
A multiple-arch concrete dam is located in Anhui Province,
China. It is composed of 20 arches and 21 buttresses. The
maximum dam height is 75.90m, the dam crest length is
510m, the dam crest elevation is 129.96m, and the normal
storage level is 125.56m.

To ensure the safe operation of the dam, the safety moni-
toring system was rebuilt in 2002-2005. Various monitoring
projects are arranged at the surface and interior of the dam
body, such as determination of dam horizontal and vertical
displacement, crack opening, seepage flow, and groundwater
level. Among them, the horizontal displacement monitoring
project is measured by plumb lines (PL)and inverted plumb
lines (IP). There are 20 PLs placed in No.2-5, No.7-12,
No.14-21 buttresses, and 2 IPs placed in No.13 buttress.
FIGURE 3 and FIGURE 4 show the design drawing of the
project and the specific layout of the plumb line monitoring
system.

Due to the thin dam body, temperature variations have a
significant influence on the deformation in this case. A large
number of thermometers are implemented in the dam body
and foundation to monitor the temperature variations, such

FIGURE 5. The layout of thermometers in No.13 buttress.

FIGURE 6. Hydrographs of water level, air temperature, and measured
displacement.

as air, water, and concrete temperatures. FIGURE 5 shows
the layout of thermometers in the No.13 buttress.

Compared with left and right bank slope sections and
overflow dam sections, riverbed non-overflow dam sections
are less affected by external environmental interference. Also,
its deformation is more affected by water levels and tem-
peratures. In this study, monitoring points PL13-1(elevation
129m) and PL13-2 (elevation 86m) placed in No.13 buttress
are used for analysis. FIGURE 6 shows the hydrographs of
environmental variables (reservoir level, air temperature) and
measured displacement. Measured displacement time series
consists of a total of 3355 sets for both twomonitoring points.
The first 3000 observations from September 16, 2005 to
December 18, 2013 are used to construct the model and deter-
mine the unknown parameters. The rest 355 observations
from December 19, 2013 to December 30, 2014 are used to
test the prediction capability of the model.

B. INPUT VARIABLES SELECTION
In this study, the hydrostatic-thermal-time(HTT) statistical
model is used to intercept measured dam displacement [38].
In the HTT model, the hydraulic effect is considered to be
related to the reservoir level H . It could be modeled in the
form of a four-order polynomial with terms of H ,H2,H3,
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TABLE 1. Contribution Ratios of each PC for temperatures.

and H4. The thermal effect is represented by the recorded
thermometer data. Considering a large number of thermome-
ters embedded in the dam, principal component analysis is
utilized to extract the principal components (PCs) of the
original thermometer data to represent the thermal effect.
Table 1 shows the contributions ratios of each PC for air,
water, and concrete temperatures.

It can be inferred that for both three temperatures,
the cumulative contribution ratios of PC1 and PC2 exceeds
95%. This indicates that the first two PCs can represent the
main information of the original thermometer data. Thus,
a total of 6 temperature variables are selected as inputs to
construct the HTT model.

The time-varying effect refers to the evolution of the dam
over time and can be modeled as θ , and ln (θ). Finally, a total
of 12 influencing factors are determined as input variables for
predicting dam displacement, including 4 hydraulic variables,
6 temperature variables, and 2 time-varying variables. The
target output of the HTT model is dam displacement.

C. EVALUATION INDICATORS
To compare the prediction performance of the proposed and
the benchmark methods, various indices, mean absolute error
(MAE), MSE, and coefficient of determination(R2), are used
as evaluation indicators. These indices are formulated as
follows:

MAE
(
y, ŷ
)
=

1
n

n∑
i=1

∣∣yi − ŷi∣∣ (9)

MSE
(
y, ŷ
)
=

1
n

n∑
i=1

∣∣yi − ŷi∣∣2 (10)

R2
(
y, ŷ
)
= 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳ)

2 (11)

where ŷi is the predicted value of the i-th sample, yi is the
corresponding true values, and ȳ = 1

n

∑n
i=1 yi.

Apart from accuracy evaluation, theDiebold-Mariano(DM)
test [39] is introduced to compare the statistical significance
of two prediction models. The DM test is utilized to test the
null hypothesis of equality of prediction mean square errors,
and the null hypothesis is that the two predictions have the
same accuracy. The DM statistic test can be formulated as

DM =
d̄√[

γ0 + 2
∑h−1

k=1 γk

]/
n

(12)

where d̄ is the sample mean loss differential, γt =

cov (dt+1, dt) , γ0 is the variance of dt , n is the length of the
prediction series.

Since the DM test tend to reject the null hypothesis for
small samples, a modified DM test called HLN-DM test is
proposed, and the corrected statistic is obtained as

HLN − DM =

√
T + 1− 2h+ h(h− 1)

T
DM (13)

where T is the size of the samples, and h is the number of steps
ahead, the value of which is determined by using h = n

1/3+1.

D. MODEL IMPLEMENTATION
In this study, the STL is utilized to decompose the dam
displacement time series into seasonal, trend, and remainder
components. The implementation of STL is by using Python
statsmodelmodule. To execute the stl function, the number of
observations in each cycle needs to be predetermined. Since
the dam displacement time series change in an annual cycle,
the frequency of the series is selected as 365.

To compare the feasibility of the proposed model, some
state-of-the-art methods are introduced as the benchmark
methods. These methods include extra-trees, MLR, Gaussian
process regression (GPR), multilayer perceptron (MLP), sup-
port vector regression (SVR), and RF.

The modeling of extra-trees, GPR, MLP, SVR, and RF
for comparison is based on the HTT models and influenc-
ing factors. These ML models were implemented using the
of the python sklearn module. Three hyperparameters of
the extra-trees and the RF models (the number of estima-
tors n_estimators, the maximum depth max _depth, and the
minimum number of samples to split min _samples_split)
made up a three-dimension space. The hyperparameters of
the SVR models including the regularization parameter C
and the kernel coefficient gamma made up a two-dimension
space. The hyperparameters of theMLPmodels including the
number of neurons in the hidden layers n_neurons made up
a one-dimension space. The best parameters were selected
and determined in terms of prediction accuracy (e.g., MSE)
according to the Bayesian hyper-parameter optimization and
5-fold-cross-validation. TABLE 2 shows the final determined
hyperparameters of the extra-trees model. The kernel of GPR
was set as a square exponential kernel, and the unknown
hyperparameters of the selected kernel were estimated
by maximizing the log-marginal-likelihood based on the
optimizer.

The modeling of stacked LSTM is based on the numerical
models and historical observation data. The LSTM mod-
els were implemented by using Python tensorflow module.
It should be noted there is no theoretical knowledge to prede-
termine the structure of the LSTM neural network for specific
data, and the practical method is to determine the hyperpa-
rameters by the trial-and-error method. To solve the above
problems, in this study, Bayesian optimization is utilized to
fine-tune these parameters of stacked LSTM models. The
number of layers and the neurons in each layer determines
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TABLE 2. The parameters of the extra-trees model for seasonal
component and total displacement.

TABLE 3. The parameters of comparison modelS.

TABLE 4. The DETERMINED parameters of LSTM.

TABLE 5. The DETERMINED parameters of LSTM for comparison.

the performance of the deep learning model. Also, a dropout
with each layer was introduced to regularize the network and
prevent overfitting. Three parameters including the number
of layers, the number of neurons in each layer, and the recur-
rent dropout rates made up a three-dimension space, and the
domains of the parameters are set as [20], [120], {1, 2, 3}, and
{0.1, 0.2, 0.3}. Then the Bayesian optimization is utilized to
determine the optimal hyperparameters for the LSTM model
in terms of prediction accuracy (e.g., MSE). TABLE 4 and
TABLE5 show the final determined parameters of the stacked
LSTM model. The stacked LSTM networks were trained for
100 iterations, and the batch size was set as 100.

IV. RESULTS AND DISCUSSIONS
FIGURE 7 shows the decomposition results of dam displace-
ment time series from PL13-1 and PL13-2 by using STL.
All of the seasonal components of both two dam displace-
ment time series show a one-year cycle, and the preliminary
analysis of this regularity change is caused by hydrostatic
loads, temperatures, and other cyclical factors. Moreover, a
constant growth trend can be seen in the trend components
of PL13-1, while the trend component of PL13-2 shows

FIGURE 7. The decomposition results of time series from both two
monitoring points via STL (a) PL13-1 (b)PL13-2.

much more gentle growth. The preliminary analysis of the
trend component is caused by the property degradation of
dam material and inherent rheological property. However,
caused by the restraint of the dam foundation, this phe-
nomenon is much more observable in the upper dam body
than the dam body near the foundation. Since the elevation
of PL13-1(129m) is higher than PL13-2(86m), the defor-
mation time-varying effect reflected from PL13-1 is much
more observable. The remainder component is the residual
variability after the seasonal and trend components have been
eliminated. It can be seen the remainder components of both
two monitoring points are typical noise series and present a
high degree of complexity of irregularity.

After the decomposition, extra-trees models are utilized
to construct prediction models for seasonal components
based on influencing factors, whereas stacked LSTM mod-
els are utilized to predict trend and remainder components
based on the historical observation data. Taking monitoring
point PL13-1 and PL13-2 as an example, the prediction
results and the linear regression analysis of each component
are shown in FIGURE 8 and FIGURE 9. FIGURE 8 and
FIGURE 9(a) and (b) display extra-trees model achieve
high accuracy when predicting the seasonal component, and
the correlation coefficients between the predictions and the
observations are 0.975 and 0.942.Most predictions are within
the 95% prediction interval, which indicates extra-trees mod-
els have a good prediction ability for seasonal components.
Once again, FIGURE 8 and FIGURE 9(c)and (d) display
the stacked LSTM models show excellent performance in
trend component prediction, and the correlation coefficients
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FIGURE 8. Predicted components by the proposed model and the linear
regression analysis for PL13-1.

FIGURE 9. Predicted components by the proposed model and the linear
regression analysis for PL13-2.

reach 0.997 and 0.996. Although the remainder component
is a noisy series with the characteristics of uncertainty and
irregularity, the stacked LSTM model still obtains good per-
formance. FIGURE 8 and FIGURE 9(e) and (f) show the
predicted values of the stacked LSTM model are consistent
with the observed values, and most of the predictions are
within the 95% prediction band.

FIGURE 10. Boxplot of residuals for the proposed model and other
benchmark methods (a)PL13-1(b) PL13-2.

Then the predicted results of seasonal, trend, and remain-
der components are aggregated as the final predicted dis-
placement. To detect the outliers between the prediction val-
ues and the observations, a standardizedmethod of displaying
the distribution of data boxplot is proposed. The drawing
of the boxplot is purely based on the observations without
relying on any assumption and has strong robustness on the
outliers. FIGURE 10 displays the residual boxplot for the
proposed model and other benchmark models of both two
monitoring points. The residual distribution of the proposed
model is within 1.5 interquartile range (IQR), only a small
number of mild outliers exist, and there are not any extreme
outliers. Moreover, the median values of outliers of the pro-
posed model are less than those of the other four benchmark
methods, which indicates the prediction performance of the
proposed model is outstanding and stable.

To quantitively evaluate the predictive performance of the
proposed and benchmarkmethods,MSE,MAE, and R2 of the
five models are calculated for both two monitoring points.
Table 6 shows the prediction performance of the proposed
model and other benchmark methods. It can be inferred that
the proposed STL-extra-trees-LSTM model achieves better
performance than a single prediction model in all evalua-
tion indicators. This indicates applying STL to preprocess
the displacement time series, and then select the prediction
models that fit the characteristics of the component itself is
effective. From Table 6, it can be seen all single ML (extra-
trees/GPR/MLP/SVR/RF) models do not achieve satisfactory
performance on both two monitoring points, especially for
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TABLE 6. Prediction accuracy assessment of different models.

TABLE 7. HLN-DM test results for different models for PL13-1.

PL13-1. It should be noted that even the MLR model even
achieves a better performance than the ML methods. It is
mainly because the time series of PL13-1 exhibits a growing
trend over time. For this kind of time series, the ML methods
based on the causal models cannot achieve high performance
in prediction. Moreover, deep learning methods (e.g. LSTM)
show a strong capability for predicting dam deformation. It is
conceivable deep learning methods can mine the potential
information between data through specific learning mecha-
nisms. The experimental results verify the feasibility and the
advancement of the proposed STL-extra-trees-LSTM model.

To further intuitively compare the performance of the pre-
dictive models, the HLN-DM test is introduced to test the
statistical significance of the proposed and other benchmark
models. Table 7 and Table 8 show the results of the HLN-DM
statistics test for different models.

The following inference can be deduced from the results in
Table 7 and Table 8

First, the proposed STL-extra-trees-LSTM model outper-
forms benchmark models (e.g., extra trees, LSTM) for mon-
itoring point PL13-1 at a 1% level of statistical significance.
Dam deformation evolution is a dynamic non-linear process
with the characteristics of diversity, time-varying, and uncer-
tainty. The single ML method cannot achieve high prediction
performance. Therefore, it is desirable to utilize signal pre-
processing methods to decompose the time series into serval

TABLE 8. HLN-DM test results for different models for PL13-2.

sub-sequences, and then the prediction model that fits the
characteristics of the sub-sequence is implemented.

Second, the LSTM models are superior to the other ML
methods (extra-trees/GPR/MLP/SVR/RF) model at a 1%
level of statistical significance. This indicates deep learning
methods achieve better performance and higher advantages
in predicting the displacement time series compared with ML
methods.

Third, the difference between Extra-trees and GPR models
is not significant, whereas the MLR model is superior to the
other two ML models. This indicates single ML methods
cannot obtain satisfactory results on predicting displacement
time series, especially for the long sequences in the test set.

In further validating the effectiveness and generalization
of the proposed combined model, two monitoring points
PL7 and PL17 from the left and right bank slope sections
are used as reference points. Also, the displacement data
of the other four PL monitoring points including PL2, PL3,
PL20, and PL21, and the three IP monitoring points includ-
ing IP1, IP2, and IP3 are utilized to verify the generaliza-
tion and applicability of the proposed model. The prediction
results and quantitative assessment indicators are shown in
Appendix1. FIGURE 11 shows the decomposition result of
PL7 and PL17 by using the STL method. Then the obtained
seasonal, trend, and remainder components are predicted by
the proposed model and then aggregated to obtain the total
prediction results. The process of determining the hyperpa-
rameters can refer to the previous process for PL13-1 and
PL13-2. FIGURE 11 and FIGURE 12 show the prediction
results and the linear regression analysis of each component
for monitoring points PL7 and PL17. Table 9 shows the
prediction performance assessment of the proposed model
and other benchmark methods.

According to FIGURE 12, FIGURE 13, and Table 9, it can
be observed that :

• It is confirmed again the proposed STL-extra-trees-
LSTM exhibits better prediction accuracy and stability
than the benchmark methods.

• A single ML/statistical method shows poor performance
in predicting dam displacement with high accuracy,
especially for the long prediction sequence.
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FIGURE 11. The decomposition results of time series from both two
monitoring points via STL (a) PL7 (b)PL17.

FIGURE 12. Predicted components by the proposed model and the linear
regression analysis for PL7.

• Also, the deep learning methods show a good capability
of predicting dam deformation accurately.

• Applying pre-processing methods to decompose a time
series into serval sub-sequences is desirable to improve
the performance of the prediction model.

From the above comparative analysis of experimental results,
it can be concluded the proposed combined model is

TABLE 9. Prediction accuracy assessment of different models.

FIGURE 13. Predicted components by the proposed model and the linear
regression analysis for PL17.

TABLE 10. Evaluation indicators for the prediction results of seven
monitoring points.

generally the best-performing model for the displacement
time series, in terms of all various quantitative evaluation
indicators. Also, the results of the HLN-DM test further illus-
trate the proposed STL-extra-trees-LSTMmodel outperforms
the other benchmark methods at a 1% level of statistical
significance. The experimental results show that utilizing
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FIGURE 14. The prediction result of seven monitoring points by the
proposed model.

STL methods to decompose the displacement time series into
various additive components, and then selecting the ML and
deep learning methods to predict each component separately
can enhance both the prediction capability and stability sig-
nificantly.

V. CONCLUSIONS
In this research, a novel combined model for predicting dam
displacement time series with time-varying effect was pro-
posed. In the proposed model, STL decomposition is utilized
to decompose the original displacement time series into three
components: seasonal, trend, and remainder components.
Preliminary analysis shows seasonal component changes reg-
ularly and is mainly affected by periodic loads such as hydro-
static loads and temperature variations. Trend and remainder
components show rapid growth and irregular changes, respec-
tively, which are influenced by the time-varying effect and
uncertainty factors, respectively.

By analyzing the characteristics of each component,
the prediction models that fit the characteristics of the com-
ponent itself is selected and applied to predict dam displace-
ment. Extra-trees models are used to construct prediction
models for the seasonal components based on the causal
model and influencing factors, while the stacked LSTM

models are utilized to predict the trend and remainder com-
ponents based on the numerical model and historical obser-
vation data. The predicted results of the three components are
superimposed to generate the final prediction result, and four
state-of-the-art methods are selected as comparison methods.

Three quantitative evaluation indicators including MSE,
MAE, R2, and a statistical test method HLN-DM test are
used to verify the effectiveness of the proposed model. The
experimental results show that the proposed model achieves
great performance both in prediction accuracy and stability.
Besides, it indicates that STL is an effective and efficient
method for decomposing the dam displacement with the time-
varying effect. Selecting the suitable prediction model based
on the decomposition results of STL can effectively enhance
both the prediction accuracy and stability.

A. LIMITATION
The proposed method still has certain limitations in some
aspects. The first limitation is about the selection of the
optimal hyperparameters of LSTM models. It should be
noted there is no theoretical knowledge to predetermine the
structure of the LSTM neural network for specific data, and
the practical method is to determine the hyperparameters
by the trial-and-error method. In this research, the Bayesian
optimization is introduced to determine the parameters of
stacked LSTM models. However, the process is complicated
and time-consuming when the number of layers of LSTM is
large. Therefore, in future research, we need to find a better
and simplified optimization method to determine the model
parameters of LSTM. Moreover, the dam safety monitoring
system is usually arranged with multiple measuring points,
but the proposed model cannot handle the modeling of multi-
ple monitoring points simultaneously. Concretely, the model
will be constructed and trained separately multiple times,
without considering the correlation between the multiple
monitoring points.

B. FUTURE WORK
Dam behavior prediction a fundamental component of dam
structural health monitoring. As the intuitive monitoring indi-
cators, deformation is often utilized to evaluate the safety sta-
tus of a dam in service. It is desirable to develop advanced and
effective methods for dam deformation prediction. If we can
establish strong prediction models according to the prototype
observation data, and then the structural degradation of the
dam and its trend can be detected in time.

In our further work, advanced data mining techniques such
as transfer learning, deep learning will be introduced into the
field of dam safety monitoring to fully mine the dam structure
change information to avoid dam crash accident.

APPENDIX 1 THE PREDICTION RESULTS OF THE
PROPOSED STL-EXTRA-TREES-LSTM MODEL FOR OTHER
SEVEN MONITORING POINTS
See Fig. 14 and Table 10.
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