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ABSTRACT Image online monitoring technology has been widely used in transmission lines inspection, but
the intelligent and efficient foreign object detection still has a gap with the ideal. In this paper, we propose a
deep learning method to detect invading foreign objects for power transmission line inspection. Specifically,
we design our network based on the regression strategy with oriented bounding boxes to accurately predict
spatial location and orientation angle of foreign objects, as well as their categories in cluttered backgrounds.
Moreover, an easy yet effective Scale Histogram Matching method is proposed to be applied to the publicly
available dataset, allowing useful patterns to be exploited to detect tiny foreign objects during the pretraining
procedure and boosting detection performance even with limited annotated samples. Besides, we construct
an image dataset that contains common foreign objects in transmission line scenarios to evaluate proposed
methods, on which experiment results show our full model achieves accuracy with 88.1% mean Average
Precision (mAP). Additionally, the efficient and compact network structure allows our network to run in
real-time, which provides possibilities for practical use.

INDEX TERMS Image online monitoring technology, power transmission line inspection, deep learning,
oriented bounding boxes, scale histogram matching.

I. INTRODUCTION
With the rapid development of urbanization, foreign object
invasion has become one of the biggest safety hazards to
power transmission lines, especially high-voltage transmis-
sion lines [1]–[3]. Due to this reason, the electric power
companies invest significantly in the inspection and main-
tenance of power transmission lines [4], [5]. Image online
monitoring, as one of the most widely used technologies,
plays an important role in securing the safety of power trans-
mission lines, by which the hidden dangers can be detected
to prevent unplanned power outage [6]. However, traditional
diagnoses rely mainly on manual monitoring, which is not
only extremely time consuming and expensive, but also very
prone to human errors [4]. Moreover, as the dramatic increase
of image and video data, it becomesmore andmore necessary
to detect foreign objects automatically and efficiently [7], [8].

In recent years, deep learning has made significant
progress in computer vision [9]–[11]. Owing to the
large-scale datasets in generic fields and high-performance

The associate editor coordinating the review of this manuscript and

approving it for publication was Canbing Li .

computing hardware like GPU, the convolutional neural net-
work (CNN) advances the object classification and object
detection to a new level [12], [13]. CNN also has demon-
strated its strong capability and adaptability in many indus-
trial inspection fields [14]–[16]. However, due to the particu-
larity of the application scenario, only a few studies have been
undertaken using CNN in detecting foreign objects tomonitor
transmission lines [4]. There are some difficulties in simply
applying the generic CNN to detect foreign objects around
transmission lines [17]. Because most of those collected
images do not contain foreign objects, which cannot provide
useful characteristics to the CNN model during training. The
lack of adequate images samples makes this detection task
more challenging [5]. How a CNN based model can rapidly
generalize from limited datasets to perform the task of detect-
ing foreign objects is still a huge problem [18].

A general way to solve the task with only a few labeled
samples available is by adapting a pretrained model from
another task [19]. Instead of starting the learning process
from scratch, visual tasks usually pretrain a model on a large
benchmark dataset like ImageNet [12], and then fine-tune
the pretrained model on a task-specific dataset. However,
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FIGURE 1. Scale Distribution of MS COCO dataset [13] and foreign object
detection dataset constructed by ourselves. The scale of the objects has
been normalized from 0.0 to 1.0.

the boosted performance will be greatly reduced when the
domain of the task-specified dataset is different from that
of the additional dataset used for pretraining [20]. Unfortu-
nately, the object scale distribution of the image dataset used
for our foreign object detection is quite different from that of
the public datasets such as MS COCO [13] for generic object
detection, as shown in Figure 1. Although both their scale of
objects exhibits a long-tail distribution, the scale distribution
of foreign objects around transmission lines is more uneven.

Tomakematters worse, generic object detectors only focus
on detecting objects in terms of horizontal bounding boxes,
which is accurate enough for most objects such as human or
cars, etc [21], [22]. However, most of the foreign objects (like
construction machinery such as tower cranes) in transmission
line scenes, as shown in Figure 2, are typical instances of
multi-oriented long and thin objects, which are better covered
by oriented bounding boxes. Concretely, monitoring scenes
often contain much background noise, which greatly affects
the performance of the foreign object detection by interfering
with the feature information of the targeted object when using
the regression strategy with horizontal bounding boxes.

Given the above problems, we propose a novel CNN net-
work with oriented bounding box regression to detect foreign
objects for the inspection of transmission lines. The network,
we call itDFB-NN, can predict the location, orientation angle,
and category of each foreign object whichmay bring potential
dangers to transmission lines. Additionally, our proposed
Scale Histogram Matching technique also can be applied to
the large-scale dataset to boost the pretraining performance of
our CNN network. As a consequence, our DFB-NN can learn
to extract powerful and representative features of foreign
objects with limited supervised samples. More specifically,
the main technique contributions made in this work can be
summarized as follows:
• A multi-scale CNN network called DFB-NN is pro-
posed, which can effectively integrate the low-level
resolution information and high-level semantic infor-
mation to provide more powerful features for foreign

object detection. To the best of our knowledge, the
proposed model is the first one embedding oriented
bounding-boxes regression strategy into a CNN model
for facilitating foreign object detection, at least in the
field of transmission line inspection.

• Most importantly, an easy yet effective dataset pre-
processing method, Scale Histogram Matching, is pro-
posed to be applied to the pretrained dataset for a spec-
ified task, which allows the compact and effective net-
work structure learning to extract useful and representa-
tive features from limited samples.

• We construct a monitoring image dataset containing five
major types of foreign objects which are most prone to
power transmission failure. Additionally, several exper-
iments are carried out on the dataset to demonstrate the
effectiveness of our compact network and our proposed
methods.

II. RELATED WORK
A. IMAGE ONLINE MONITORING
Transmission lines against invading foreign objects is the
most basic errand in the assurance of power system [23], [24].
Overhead line failures caused by invading foreign objects
are relatively common anomalies, which can be caused by
climatic conditions, human mistakes, flames and smoke,
and construction machinery, etc [5], [25]. With the dra-
matic increase of sensing data, it becomes more and more
desirable to make image online monitoring. [8], [26], [27]
develop effective methods to detect power lines based on the
images captured by automated UAV (unmanned aerial vehi-
cle). Besides, [28] builds a model to select the best thresholds
for changing scenarios to detect and track power lines when
using the unmanned aerial vehicle inspection, which is proved
to be robust to the complexity of the real world. However,
these methods focus only on how to detect power lines from
the cluttered background, which is not enough for automatic
diagnosis. And [29] proposes an image processing method
to measure icing thickness based on monitoring image. But
this algorithm can not detect the potential dangers around
the power lines. [17] uses a CNN model based on RCNN to
detect foreign objects. However, the algorithm cannot achieve
real-time running and only can detect wire-wound foreign
objects, while it is powerless to the potential harm caused by
construction machinery. In contrast to general object detec-
tion in RGB images, there are also some methods to inspect
electrical equipment by using infrared thermography [30],
[31]. Moreover, [7] also presents a real-time deep learning
approach to detect oriented electrical equipment detection in
thermal images.

B. OBJECT DETECTION
The traditional generic object detectors are based on the
sliding window paradigms or region proposal classification
using hand-crafted features [32]–[34]. With the development
of deep learning, object detectors based onCNNhave become
a predominant trend in the field of generic object detection
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FIGURE 2. An illustration of our proposed network architecture. Our model is based on the multi-scale feature pyramid structure to detect
the category, spatial location and oriented angle of foreign objects. The backbone network is specifically designed for the transmission line
inspection task. The basic CNN modules are illustrated in the legend at the bottom left.

and have led to remarkable breakthroughs in the fields of
detection applications [30], [35]–[37]. As the state-of-art
object detectors, two-stage detectors such as R-CNN [38] and
its descendants [39], [40] first generate class agnostic region
proposals and then predict the specific class label and refine
the location regression. On the other hand, the single-stage
detectors regress the default anchors into detection on the
feature maps directly, which can be of high computational
efficiency but sacrifices partial accuracy [41]–[43]. However,
the specified task like transmission line inspection is different
from the issue of generic object detection. The targets around
transmission lines are usually tiny, occupying only a small
area in the monitoring image, and these objects are usually
tilted or even dense in the images, which is a distinguishing
characteristic from the MS COCO benchmark [13]. Feature
pyramid network (FPN) [44] that uses the top-down archi-
tecture with lateral connections is proposed to detect objects
with drastic changes in scale. Additionally, [21], [22] also
present methods to detect ship targets, which also can be
exhibited at any orientation, in the remote sensing images.
These methods will make huge reference work for our work.

III. APPROACH
We propose a deep learning model to detect foreign objects
that may bring potential hazards to transmission lines. By pre-
dicting a set of oriented bounding boxes parameterized by
their center locations, widths, heights, and orientation angles,
timely and accurate detection can effectively prevent acci-
dents of transmission lines. The overall framework of our
model is illustrated in Figure 2, whose backbone network

is specifically designed according to characteristics of the
foreign objects in transmission line environments.

A. NETWORK ARCHITECTURE
As we all know, both the low-level and high-level features
are very important to object detection performance. Just like
in the transmission line scenarios, the scale of foreign objects
can vary greatly, depending on the distance of these objects
from the monitoring cameras. To keep the completeness of
the semantic and spatial information, we adopt a multi-scale
feature pyramid connection to fuse multi-level information in
our CNN feature extractor.

The multi-scale feature pyramid structure is proved to be
effective [44], in which the bottom-up pathway and the top-
down pathway are connected by lateral connection. Specif-
ically, we choose the last 3 layers of the backbone network
as reference features of the bottom-up path in our network.
These 3 feature layers are represented as P1, P2, and P3 in
the order of feature scale from small to large, which will
be used in subsequent experiments. A features hierarchy is
computed at different scales with a downsampling scale-
step of 2. Additionally, the top-down path enhances those
bottom-up layers which have stronger semantic information
but have weaker or even missing spatial information. Spatial
information is supplemented by lateral connections from the
feature with the same spatial size via lateral connection, while
semantic information is well preserved.

B. ORIENTED BOUNDING-BOX REGRESSION
In the regression strategy of ordinary object detectors
like [38], [41], [43], a horizontal bounding box is determined
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as (xc, yc,w, h), where (xc, yc) specifies the coordinate of the
center point, w is the width, h is the height of the object box.
These four parameters can better denote the spatial location
and extent of horizontal targets in close proximity. However,
it is difficult for 4-parameter bounding boxes to distinguish
those inclined targets while choosing rotated bounding boxes
to regress might be an effective way to detect targets.

In order to avoid the inherent drawbacks mentioned above,
our network uses the multi-scale rotated bounding boxes
to detect the foreign objects precisely. Based on these four
parameters, we add an extra parameter θ to uniquely deter-
mine a rotated bounding box (xc, yc,w, h, θ), where the spec-
ifications of the first four parameters are the same as the
horizontal box but the last parameter θ represents the angle
of the rotated object. The predicted angle is in the range of
(−90◦, 90◦] since most of our detected targets are centrally
symmetric.

Consistent with other anchor-based generic object detec-
tors, our network also places prior anchors densely on the
final feature maps. Let A = (x0, y0,w0, h0, θ0) denotes a
rotated anchor, while a nearby ground truth can be denoted
as G = (x, y,w, h, θ). Instead of predicting the coordinates
of the ground truth box G directly, the network regresses
the scale-invariant translation of the center and the log-space
translation of size, as well as the tangent of angle bias, related
to the anchor’s parameters. Specifically, the regression targets
T =

(
tx , ty, tw, th, tθ

)
in this cell placing anchor A should be

tx =
x − x0
w0

ty =
y− y0
h0

tw = log
(
w
w0

)
th = log

(
h
h0

)
tθ = arctan (θ − θ0) . (1)

The prior sizes and angles can be obtained by clustering
the ground truth boxes in the training dataset via K-means
algorithm. By this means, the network can detect the foreign
objects with the prior distribution of the specific dataset, thus
making the training more stable and the optimization easier
to converge.

C. TRAINING
1) LOSS FUNCTION
Consistent with generic object detectors, the loss function of
our network should also be a multi-task loss that includes a
classification loss Lcls and a location loss Lloc. The full multi-
task loss L can be represented as

L = Lcls + λlocLloc (2)

where the hyper-para λloc is used to balance the two losses,
which is set to 1 empirically.

Detecting foreign objects in transmission line monitoring
images is facedwith an extreme foreground-background class
imbalance encountered during the training of anchor-based
detectors. To make our detector more focused on these sparse
but difficult foreground samples and prevent a large number
of easy background samples from dominating the loss during
training, we design our classification loss based on focal-
loss [42]. Specifically, let xi be the indicator whether the ith
anchor is matched to a ground truth box, where 1 means
matched at least one ground truth is matched to anchor, and
0 means no ground truth is matched to the ith anchor, then
the anchor will be assigned into the background class. The
classification loss is calculated as

Lcls (xi, ci, yi) =

{
(1− ci)α CE (yi, ci) xi = 1

(ci − 0)α CE (yi, ci) xi = 0
(3)

where ci is the class prediction, y is the class label matched
to the ith anchor. The cross-entropy (CE) loss for the class
prediction is added a modulating factor (1− ci)α or (ci − 0)α

with tunable parameter α ≥ 0.
Considering that the ground truths for the regression task

vary within a wide range, we use a more robust loss function
for Lloc. Therefore, the loss of location and angle offset can
be calculated as:

Lloc
(
xij,Ti,Rj

)
=

{∣∣(Ti − Rj)∣∣γ ∣∣Ti − Rj∣∣ ≤ 1
γ
∣∣(Ti − Rj)∣∣− γ + 1 otherwise.

(4)

where the xij denotes that the ith anchor is assigned to the jth
ground truth. Ti and Ri are the regression targets calculate by
Equation 1 and the regression outputs by the network respec-
tively. The parameter γ can adjust the sensitivity of the loss
function to the outliers which can improve the robustness of
the Lloc. When γ = 2, Lloc is equivalent to smoothL1 in [39].

Through cross-experiments, our network can achieve the
best performance when focal loss modulating factor α = 2
and the parameter γ = 3 for robust Lloc. The setting of param-
eters α and γ will be used in our subsequent experiments.

2) MATCHING STRATEGY
During training, if an anchor is close enough to a ground
truth box, the anchor should be assigned to the prediction task
of regressing to this ground truth [41]. The commonly used
algorithm to evaluate the distance of two boxes is Intersection
over Union (IOU), which is defined as:

IOU (A,G) =
Area

(
A
⋂
G
)

Area
(
A
⋃
G
) , (5)

where the
⋂

and
⋃

are boolean operations between an anchor
A and a ground truth G. The criterion IOU can reflect the
proximity of location, aspect and scale between anchors and
ground truths. However, the calculation of IOU between two
rotated boxes with different angles is more complicated.
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Inspired by [45], we choose a simplified IOU, named
IOURB, as our distance criterion for training, which is cal-
culated by

IOURB (A,G) =
Area

(
Â
⋂
G
)

Area
(
Â
⋃
G
) | cos (θ − θ0)|, (6)

where Â = (x0, y0,w0, h0, θ). The temporary rotated box Â
will make the intersection part easier to calculate. Moreover,
the IOURB decouples the distance of geometric size and
rotated angle between boxes. The previous one ensures that
the two boxes are close in position and scale, while the latter
one ensures that the difference between angles is not too large
by the cosine function.

It should be noted that IOU is still used to filter out the
redundant detections for non-maximum suppression when
post-processing, while IOURB is only used for training when
selecting positive anchors.

D. SCALE HISTOGRAM MATCH
Inspired by the illumination histogram matching technology
which can transform an image’s illumination histogram to
another specified histogram, we propose an easy but efficient
scale histogram matching as a detector calibration technique
to keep the object scale consistency between two datasets.

The probability density function of object scale s of dataset
X is denoted as Pscale (s;X ). Our method is to use a scale
transformation function T to match the probability distribu-
tion of object scale in the additional pretrained dataset I to
that in the targeted dataset E for the specified task, which is
given in Equation 7.

Pscale (s;T (I)) ≈ Pscale (s; E) (7)

The dataset T (I) after scale histogram matching can be
used to pretrain our scratch model, of which object scales
are forced to be aligned to the task-specified dataset. In our
paper, MS COCO is used as the additional pretrained dataset
I, while the dataset used for our transmission line inspec-
tion task is used as the task-specified dataset E . The details
of Scale Histogram Matching for the additional pretrained
dataset are shown in Algorithm 1, in which Ĩ = T (I). We
roughly assume that the scales are uniformly distributed over
any scale range R [K ] on the dataset scale histogram. There-
fore, the cumulative histogram can be calculated continuously
and expressed as a continuous piece-wise function composed
of multiple linear functions. Because there is maybe more
than one object with different scales in one image, resizing
each object in one image will destroy the image structure.
We regard the mean scale si as the scale representative of the
i-th image, which is used in [46].

IV. EXPERIMENTS
In this section, we first introduce our dataset and present our
experimental setting in detail. Then we present the results
of some groups of experiments to evaluate our proposed
methods.

Algorithm 1 Scale Histogram Matching
Input: E : targeted dataset
I: additional pretrained dataset
N : number of bins in dataset scale histogram
Ii: the i-th image in dataset I;
Gij: the j-th object in Ii;
R[k]: the scale range of k-th histogram bin.
S (G): the scale of object G
Output: Ĩ: dataset after scale matching
begin

f1 (E),f2 (I)← histogram of E ,I
F1 (E),F2 (I)← cumulative histogram of E ,I
Ĩ ← ∅
for Ii in I do

// calculate mean size of objects in Ii
si← mean

(
S
(
Gij
))

// calculate the targeted scale
s̃i == F−11 (F2 (si))
// resize image
Ĩi = resize

(
Ii,
√
s̃i/si

)
Ĩ ← Ĩ ∪ Ĩi

end
return Ĩ

end

TABLE 1. Statistics on the number of images and instances for each
category in the training and testing dataset.

A. DATASET AND SETTING
We collected 8000 transmission line monitoring images cap-
tured by cameras mounted on transmission line towers. These
images contain some invading foreign objects that may bring
harm to transmission lines, including construction machin-
ery like tower cranes, wildfire or smog in the surrounding
environment and foreign objects wound around transmission
lines such as kites. There are 10852 foreign objects with
complex background in this dataset. Based on the difference
in appearance and the occurrence frequency of foreign objects
in the collected samples, we divide these foreign objects into
five categories: on-board cranes (BC), tower cranes (TC),
forklift trucks (FT), wire-wound foreign objects (WO) and
wildfires (WF).

We also exhibit the statistical distribution of aspect ratio
and oriented angle θ of foreign objects in our collected dataset
in Figure 3. The aspect ratio tends to be larger than 1, indicat-
ing that the objects are usually long and thin. It is important
to note that, there are quite a few samples rotated at extreme
tilt angles around ±70◦. As we mentioned before, it is the
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FIGURE 3. Main statistics distribution of the samples in our dataset: (a)distribution of aspect ratio, (b)distribution of angle θ .

FIGURE 4. A typical transmission line scene containing invading
foreign objects. Two different annotation protocols are also exhibited:
instances annotated with oriented bounding boxes (the top image) or
horizontal bounding boxes (the bottom images).

unbalanced distribution of foreign objects in the power trans-
mission environment that indeed increases the difficulty of
detection. Considering this, we attempt to use the oriented
bounding box regression strategy to detect foreign objects in
this particular application scenario.

To compare the pros and cons of the two different forms of
bounding box regression strategy, we use two different anno-
tated protocols to annotate all 8000 images. Just as Figure 4
shows, the spatial extent and class of each instance in the
collected images can be specified by oriented and horizon-
tal bounding boxes. These two datasets are called RBB-FO
(rotated bb) and HBB-FO (horizontal bb) respectively. Each
of them contains 4000, 2000 and 2000 images for training,
validation, and testing.

B. EVALUATION INDICATORS
Similar to other object detection framework, mean Average
Precision (mAP) is used to evaluate the detection perfor-
mance of models quantitatively. The detected box which is

considered to be a true positive should satisfy the following
two conditions: the matching IOU between the detected box
and any ground truth and should be higher than an IOU
threshold TIOU = 0.5, and the abstract difference between
their angles should be smaller than the angle threshold
Tθ = 10◦.

C. IMPLEMENTATION DETAILS
We use PyTorch to implement and train CNN detectors. For
the input images, we resize them to 640 × 640. We use
randomly horizontal flipping as the only data augmentation
meth during the training phase. All the networks are trained
for 60 epochs. The initial learning rate is set to 0.02 with a
decay rate of 0.01 every 20 epochs. We optimize our CNN
models using Stochastic Gradient Descent (SGD) method
with 0.9 momentum and 0.0005 weight decay. For fair com-
parison, we set the batch size to 32 on 4 RTX 2080ti for all
the networks.

For anchor settings, we use the anchor scale of 322 to
5122 on features, each of which has three aspect ratios
1 : 2, 1 : 1, 2 : 1. Similar to [44], anchors will be located
at each pyramidal level if a network adopts a multi-scale
network structure. Due to some experimental models aim to
predict the angle of an object by regressing an oriented box,
these models whose regression strategies are with oriented
bounding boxes will add additional rotated anchors. Specifi-
cally, apart from vertical anchors of which angle of boxes is
0◦, we also rotate all anchors by±70◦, making those anchors
more suitable for regressing to oriented objects. The degree
number 70 is chosen according to the angle distribution of
our RBB-FO in Figure 3 (b). For oriented bounding box
regression, anchors are assigned to ground-truth objects using
an IOURB threshold of 0.5, and to background if their IOURB
is smaller than 0.4. Additionally, anchors will be ignored
during training if they have IOURB in [0.4, 0.5]. The same
assignment strategy is also applicable to the regression pre-
diction of horizontal bounding boxes, except that we use
traditional IOU instead of IOURB when selecting positive
anchors via threshold comparison.
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TABLE 2. Performance of two networks with different pretraining
strategy. Abbreviations explanation: task-specified dataset (TD);
pretrained dataset (PD); HBB-FO dataset (H-F); RBB-FO dataset (R-F);
M: MS COCO dataset (M); ImageNet dataset (I); Scale Histogram
Matching (SHM).

D. ABLATION EXPERIMENTS
1) EVALUATION OF SCALE HISTOGRAM MATCHING
Scale Histogram Matching is proposed mainly to
alleviate the problem caused by the difference of scale
distribution between the additional pretrained dataset and
task-specified dataset.Wewill evaluate its effectiveness in the
following.

Results in Table 2 suggest that pretraining on MS COCO
often gets better detection performance than pretraining on
ImageNet dataset. However, the improvement gained from
knowledge transfer from other dataset is quite limited, since
the object scale of MS COCO is different from that of the
foreign objects around transmission lines.

Consistent with our intention, the detection performance
can be further improved by transforming Scale Histogram
Matching on dataset MS COCO, which validates the effec-
tiveness of the scale alignment strategy for different datasets.
Specifically, Fater RCNN, as one of the representatives
of CNN-based two-stage object detectors, can get 1.7%
improvement in mAP. Also as the most representative of the
one-stage CNN detector, YOLO v3 can get 2.4% improve-
ment. We found that, with Scale Histogram Matching,
the one-stage detector can get higher mAP improvement than
two-stage detectors. This may be due to the ROI pooling
operation [40] in the two-stage detector to some extent can
alleviate the impact of the change of object scale on the
detection performance.

Furthermore, just as the experiment results with the dataset
RBB-FO shown in Table 2, the scale matching method can
still improve the detection performance of detector with ori-
ented bounding box regression strategy, which is applied to
the dataset with horizontal bounding box annotation though.

An obvious comparison is that the results on the RBB-FO
dataset are generally worse than HBB-FO. We speculate that
this may be caused by two reasons: the pretrained set (MS
COCO) has a different labeled protocol, which is labeled with
horizontal bounding boxes; and the task to regress oriented
bounding boxes is more difficult since the output requires the

tilt angle and the spatial extent of the objects which is more
stringent with less background noise.

Considering the significant performance gain brought by
Scale Histogram Matching, detection models will all be pre-
trained by the dataset processed by Scale Histogram Match-
ing in the subsequent experiments.

2) EVALUATION OF ORIENTED BOUNDING-BOX
REGRESSION
The commonly applied methods for object detection use
the horizontal bounding boxes to specify the spatial extent
of objects, such as Faster R-CNN [40], YOLO [43] and
SSD [41]. Because the label protocols of the two datasets
are different, it is not a simple matter to make a fair quanti-
tative comparison between regression strategy with oriented
bounding boxes and that with horizontal bounding boxes. The
task of regression with rotated boxes for the dataset RBB-FO
is more difficult, since it has more requirements such as the
oriented angle and stricter spatial extent. Therefore, it is not
appropriate to simply use the accuracy performance like mAP
to compare the performance of the detectors.

Here, we show the advantage of using oriented bounding
boxes to detect foreign objects qualitatively. We design two
hybrid versions of our CNNmodel, denoted asDFB-NNh and
DFB-NNr , to regress horizontal bounding boxes and oriented
bounding boxes respectively. Just as Figure 5 shows, both
the methods using horizontal bounding boxes and oriented
bounding boxes can detect foreign objects well when the
targeted objects are upright and distributed scattered like
forklift trucks in Figure 5. However, when the objects are
tilted very severely and maybe densely distributed such as
the tower cranes, our method using oriented bounding boxes
can detect targeted objects better and locate them more pre-
cisely. Besides, the method using horizontal bounding boxes
may not be able to distinguish crowded objects, which is a
natural disadvantage of the post-processing non-maximum-
suppression (NMS).

E. COMPARISONS WITH OTHER STATE-OF-THE-ART
DETECTORS
To show the benefit of our proposed method, we carry out
comparative experiments to verify the advanced full model
proposed in this paper by comparing it with the state-of-
art methods that were designed for traditional generic object
detection with horizontal bounding boxes.

Table 3 presents the AP for each category, together with the
mAP for the global performance of the detectors. The results
show that our proposed oriented bounding box regression
model achieves the best detection performance, outperform-
ing all other upright object detection methods. We assume
that this advancement is mainly benefited from the considera-
tion of orientation of foreign objects in our proposed detector,
by which our model is more robust to the appearance variance
caused by rotation and suffered less from background noise
around the targeted objects.
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FIGURE 5. Comparison of detection results by our proposed DFB-NNr (images in the top row) and DFB-NNh (images in the bottom row). Different
types of detected foreign objects are displayed in bounding boxes with different colors.

TABLE 3. Comparison results with other state-of-the-art detectors. Abbreviations explanation: MS represents whether the network uses multi-scale
feature structure; STAGE: is the network one-stage (1) or two-stage (2) detector; BB: are horizontal (h) or rotated (r) bounding boxes used for regression.

Table 3 also lists the time consumption of each model
in terms of frames per second (FPS). Since the two-stage
detector includes an extra network for region proposals, these
detectors (such as faster RCNN) are much less efficient than
one-stage detectors, which indicates that these networks are
unsuitable for scenarios with high real-time requirements
such as online monitoring of transmission.

Our DFB-NN is a one-stage detector essentially, which is
not separating detection and proposal, making the overall
pipeline single-stage. One-stage detectors sacrifice part of
detection performance in pursuit of speed. Therefore, all
the one-stage detectors in Table 3 perform worse than the
two-stage detectors, even though they can run in real-time

way. According to the characteristics of the task-specified
dataset and detection task, our proposed DFB-NN network
can achieve quite competitive detection results on the basis
of real-time running. In terms of horizontal bounding boxes
regression task, our DFB-NNh network can reach 87.5%
mAP, only 0.7% mAP lower than FPN FRCN. Besides,
theDFB-NNh runs over 50 FPS, much faster than all the other
two-stage methods. While the faster RCNN can not exceed
10 FPS under the same experimental conditions.

By modifying the DFB-NNh to DFB-NNr , the network
can still achieve satisfying results. The model’s mAP reaches
88.1% and even is a little higher than DFB-NNh, which
demonstrates that our approach can detect foreign objects in
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FIGURE 6. Typical failed detections. Top left: the detection of fire smoke
(pink dotted box) only covers part of the ground truth region (pink solid
box); Top right: two inclined conveyor belts are mistakenly detected as
on-board cranes; Bottom: two tower cranes (red dotted boxes) are
missed in the detections, while red solid boxes represent the true positive
detections.

the transmission line environments precisely and is robust
to the variations in object scale, oriented angle, and clut-
tered background. It should be noted that, by comparing
APs for each category, the gain of detection accuracy mainly
comes from the accuracy improvement of the on-board cranes
and tower cranes categories, which are most likely to occur
with tilt and dense phenomena. Experiment results show that
objects from these two categories that are more likely to tilt
are more appropriate for prediction using oriented bounding
boxes, whose accuracy of these categories is even more than
90%.

F. ANALYSIS OF FAILED CASES
To figure out the gap between the detection results of our
model and the ground truth annotations, we show some typ-
ical failed detection cases in Figure 6. There are still a small
amount of failed cases: missed detections, false detections,
or detection regions which are not very reliable. We argue
that there is a large subjective willingness in the labeling
procedure for foreign object regions such as fire and smoke.
Besides, the cases of missed detection or false detection can
be greatly optimized by increasing the training samples or
adopting some few-shot learning tricks.

V. CONCLUSION
Foreign object detection is a fundamental step towards auto-
matic inspection and maintenance of power transmission
lines. Inspired by the recent success of deep learning tech-
niques, we propose DFB-NN to detect invading foreign
objects for inspecting power transmission lines. The DFB-
NN, which is based on oriented bounding box regression
strategy, can predict the oriented angle of tilted objects and
can more accurately predict the spatial location in close prox-

imity. Besides, we also construct a monitoring image dataset
which contains five types of invading foreign objects. Consid-
ering the difference of scale distribution between additional
pretrained datasets and task-specified datasets like HBB-FO
and RBB-FO, we propose an easy but effective approach,
Scale Histogram Matching, to boost the performance gained
from pretraining. Experiments show that our proposed model
has a competitive performance, especially for the oriented
object detection.

However, the types of foreign objects specified in our col-
lected dataset are still limited. In reality, there are other types
of foreign objects that may cause dangers to transmission
lines. Therefore, how to detect as many types of foreign
objects as possible through incremental learning is one of
the subsequent researches we will carry out in the future.
In addition, our model still has a small number of detection
errors. Continuously optimizing the accuracy of the detection
model through online learning is also one of the significant
directions for future work.
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