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ABSTRACT The cognitive radio (CR) network consists of primary users (PUs) and secondary users (SUs).
The SUs in the CR network senses the spectrum band to opportunistically access the white space. Exploiting
the white spaces helps to improve the spectrum efficiency. Owing to the excellent learning ability of machine
learning/deep learning framework, many works in the recent past have applied shallow/deep multi-layer
perceptron approach for spectrum sensing. However, the multi-layer perceptron networks are not well suited
for time-series data due to the absence of memory elements. On the other hand, long short-term memory
(LSTM) network, an improved version of Recurrent neural network is well suited for time-series data.
In this paper, we propose an LSTM based spectrum sensing (LSTM-SS), which learns the implicit features
from the spectrum data, for instance, the temporal correlation (i.e., the correlation between the present
and past timestamp).Moreover, the CR systems also exploits the PU activity statistics to improve the CR
performance. In this context, we compute the PU activity statistics like on and off period duration, duty cycle
and propose the PU activity statistics based spectrum sensing (PAS-SS) to enhance the sensing performance.
The proposed sensing schemes are validated on the spectrum data of various radio technologies acquired
using an experimental test-bed setup. The proposed LSTM-SS scheme is compared with the state of the
art spectrum sensing techniques. Experimental results indicate that the proposed schemes has improved
detection performance and classification accuracy at low signal to noise ratio regimes. We notice that the
improvement achieved is at the cost of longer training time and a nominal increase in execution time.

INDEX TERMS Cognitive radio, spectrum sensing, long short-termmemory, primary user activity statistics,
deep learning.

I. INTRODUCTION
With the rapid advancement of wireless communication
technologies and the advent of the 5G paradigm, spectrum
resources have become highly scarce [1]. As per the spectrum
occupancy campaign in [2], the overall usage of spectrum
band varies from 7% to 34%, which demonstrates signifi-
cant under-utilization of spectrum resources. Cognitive radio
(CR) technology [3] has emerged as a potential solution to
trade-off between spectrum availability and its demanding
growth. It aims at reusing the temporarily unoccupied fre-
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quency bands, known as spectrum holes orwhite spaces, in an
opportunistic manner ensuring that the licensed user does not
face any interference [4]. The licensed user in the CR network
is referred to as primary user (PU) while the unlicensed user
as a secondary user (SU). The underlying principle of CR is to
allow the SUs to access the temporarily unoccupied licensed
bands in an opportunistic and non-interfering manner [5].
This calls for highly reliable and efficient spectrum sensing
schemes [4].

A. CURRENT STATE OF THE ART AND MOTIVATION
Spectrum sensing algorithms can be broadly classified as
parametric or non-parametric schemes. Parametric sensing
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schemes take into account some prior information about
the PU activity. However, in practice no prior information
is available about the PU, and thus non-parametric sensing
schemes are preferred over the parametric sensing schemes
[6]. Energy detection, a non-parametric spectrum sensing
technique, is widely used in literature due to its low com-
putational complexity and ease of implementation with an
experimental setup [7]. However, its performance mainly
depends on two key assumptions, the stationarity of noise and
the knowledge of its variance [8]. Imperfect knowledge of
the noise variance leads to a concept called signal to noise
ratio (SNR) wall [9]. Moreover, non-parametric goodness of
fit (GoF) tests based sensing schemes like Anderson Dar-
ling test [10], Kolmogorov-Smirnov test [11], likelihood, and
improved likelihood ratio based sensing [12], [13] among
many others, are also proposed in the literature.

Although the main purpose of spectrum sensing is
the instantaneous detection of opportunistic white spaces,
the sequence of sensing decisions can be utilized to esti-
mate the PU activity statistics and occupancy patterns [14].
PU activity statistics include idle/busy period duration, their
minimum duration, mean, higher-order moments and distri-
bution followed by the idle/busy periods [15]. This statistical
information can be useful in the CR network to predict the
future spectrum occupancy trends, schedule spectrum sens-
ing, selection of appropriate spectrum band and channel of
operation for CR system, optimize the system performance
and improve the spectral efficiency, see ([14] and references
therein). The estimation of PU activity statistics and spectrum
occupancy has received good attention from the research
community in the recent past. For instance, the performance
analysis of measurement of the duty cycle and channel occu-
pancy rate was carried out in [16]. Authors in [17] proposed
the deterministic and stochastic model for spectrum occu-
pancy using a mixture of the beta distribution. Furthermore,
the analysis of the estimation of idle/busy period consider-
ing exponential distribution was carried out in [18], while
considering realistic approximations namely Pareto and gen-
eralized Pareto distribution was analysed in [19]. Analysis
in the above works have considered the perfect spectrum
sensing approach, an ideal scenario. Analysis of occupancy
pattern and improving the PU activity statistics prediction
based on imperfect spectrum sensing was investigated in [20]
and [21] respectively. Additionally, few works also focused
on studying the effect of PU activity statistics on spectrum
sensing to a certain extent. For instance, the authors in [22]
analysed the impact of PU traffic on the sensing performance.
PU traffic was modeled as an independent and identically dis-
tributed (i.i.d.) two-state random process with an exponential
holding times. Spectrum sensing with multiple status changes
in PU traffic was analyzed in [23], while the spectrum sensing
strategy for dynamic PUs in CR modeled using a two-state
Markov chain was carried out in [24], [25].

Although the analytical model based above mentioned
schemes performs well, they may be unsuitable for the real
environment [26]. Owing to the excellent learning ability

using data driven approach and with the rapid advancement in
the learning based signal processing techniques [27], machine
learning (ML) and deep learning (DL) algorithms have gained
wide attention from industry and academia in the context
of future wireless networks [28]–[31]. The key advantage
of CR network is its cognitive ability, i.e, learning by itself
from the radio environment. This is analogous to the ML/DL
framework. Thus, ML/DL framework has been applied to CR
networks as well [32]–[34].

The basic principle of spectrum sensing is to classify
whether the PU is present or absent. Due to the advantages
mentioned above, few works have leveraged ML/DL tech-
niques treating spectrum sensing as a classification prob-
lem. For instance, Artificial neural network (ANN) based
spectrum sensing was carried out in [35]. In [36], a novel
ANN-based hybrid sensing scheme was proposed which used
energy values and the Zhang statistic [37] as the training
features. Recently, the sensing of the OFDM signal at a low
SNR regime using a naive Bayes classifier was proposed
in [38]. Furthermore, few works have also applied the DL
approach for spectrum sensing. For instance, a convolu-
tional neural network (CNN) based spectrum sensing was
proposed in [39]–[41], CNN based cooperative sensing in
[42] while stacked auto-encoder based spectrum sensing of
OFDM signal was proposed in [43]. The above mentioned
ML/DL frameworks have shallow/deepmultilayer perceptron
network.

One of the limitations of the shallow/deep multilayer per-
ceptron network is its inability to store information due to
the absence of memory elements [44], [45]. Hence, multi-
layer perceptron networks are not well suited for temporal
modeling and time-series data [46]. Long short-termmemory
(LSTM) architecture, an improved version of Recurrent neu-
ral network (RNN), is preferable for time series related prob-
lems [47]. This is because LSTM consists of several gates
in a single neuron to better coordinate the historical (past
timestamps) and the current information (present timestamp)
in a time series [46] and is thus extensively used for temporal
data.

The wireless spectrum data being a time-series data [48],
has an inherent temporal correlation (non-zero temporal auto-
correlation) present in it [49]. LSTM networks being a DL
model, are excellent in learning the temporal dependencies
in sequential data [50]. Thus, LSTM implicitly learns all
the important features in the spectrum series data resulting
in enhanced performance, as will be revealed in the later
sections.

There are few related studies in the literature that have used
LSTM networks on wireless spectrum data. For instance,
authors in [51] proposed a spectrum prediction algorithm
using LSTM network while, authors in [52] addressed the
modulation classification problem using LSTM network.
In [53], the authors have used the Taguchi method for hyper-
parameter optimization of the LSTM network for spectrum
prediction. Additionally, the authors in [54] carried out the
mobile traffic prediction using the LSTM network. However,
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the above studies have addressed the spectrum prediction
problem and have shown the comparison in terms of accuracy
with other machine learning models. In contrast, we pro-
pose the LSTM based spectrum sensing (LSTM-SS) scheme
for CR networks. We have utilized the detection probabil-
ity as a key performance metric and have demonstrated the
effect of SNR for different values of false alarm probability.
These performance metrics are the key players while dealing
with the design and dimensioning of CR networks, which
the aforementioned works have not considered. Moreover,
as mentioned above, CR users can significantly benefit from
the knowledge of PU activity statistics obtained from the
spectrum sensing decisions. To this extent, we also com-
pute the PU activity statistics like on and off period dura-
tion, duty cycle and propose a non-parametric DL aided PU
activity statistics based spectrum sensing (PAS-SS) scheme
to improve the sensing performance, which to the best of
the authors’ knowledge is yet to be reported in the existing
literature.

B. CONTRIBUTIONS
The main contributions of this paper can be summarized as
below:

• Firstly, we examine that the spectrum data is a time
series data. This is demonstrated by the non zero
autocorrelation in temporal domain. Moreover, LSTM
learns the implicit features from the spectrum data, for
instance, the temporal correlation (i.e., the correlation
between the present and past timestamp). In this context,
a novel LSTM-SS scheme is proposed in which the
previous sensing event is fed along with the present
sensing event. Results indicate remarkable performance
improvements, in terms of detection probability and
classification accuracy, even at a low SNR regime.

• Secondly, to make the proposed LSTM-SS model robust
and unbiased towards high SNRs, the training data set
is prepared to include data at very low SNRs in varying
proportions. This ensures that the detection performance
does not deteriorate at low SNRs.

• Thirdly, based on the spectrum sensing decisions,
we compute the PU activity statistics like on and off
period duration and duty cycle, utilize it as input feature
and propose the PAS-SS scheme to further enhance the
sensing performance.

• Lastly, the proposed LSTM-SS and PAS-SS schemes
are experimentally validated with spectrum data of vari-
ous radio technologies captured using empirical test-bed
measurement setup. The proposed schemes outperform
variousML/DL aided sensing schemes in terms of detec-
tion probability.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
describes the system model, LSTM preliminaries and briefly
describes the spectrum data. The LSTM-SS is proposed in

FIGURE 1. Internal structure of a LSTM cell.

Section III. Section IV focuses on the proposed PU activity
statistics aided LSTM based spectrum sensing. Section V
describes the empirical measurement setup. Experimental
results are discussed in Section VI. Section VII concludes this
work.

II. SYSTEM MODEL AND LSTM PRELIMINARIES
A. CONSIDERED SYSTEM MODEL
The problem of spectrum sensing can be formulated as a
binary classification problem1:

H0 : y<t> = w<t>

H1 : y<t> = h<t>x<t> + w<t>, (1)

where y<t> is the received signal at t th time instant, x<t>

denotes the PU signal and w<t> is additive white Gaussian
noise with zeromean and variance σ 2.H0, the null hypothesis
indicates only noise samples while H1, the alternate hypoth-
esis indicates the presence of PU signal along with noise at
t th instant. In order to exploit the temporal dependencies,
the previous sensing event of sample size / temporal length
N is fed along with the current sensing event and thus the
received signal, in general, can be expressed as:

y =
[
y<1>y<2> . . . y<N>︸ ︷︷ ︸
Previous sensing event

y<N+1>y<N+2> . . . y<2N>︸ ︷︷ ︸
Current sensing event

]T
,

where N isxthexsamplexsizexandx[·]T xdenotesxthe trans-
pose of a vector.

B. LSTM PRELIMINARIES
The internal structure of LSTM cell is shown in Fig. 1 [46],
where y<t> is the input to the cell, a<t> is the output of
the LSTM cell, a<t−1> is the previous LSTM output, and
c<t> and c<t−1> are the current and previous cell states,
respectively. σu, σf , and σo are the values of the update, forget

1Notations in this paper are modified in order to have consistency with the
LSTM notations.
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and output gates, respectively, � is the Hadamard product,
tanh is the activation function and ⊕ indicates element-wise
addition. The LSTM cell has three prime elements as:

1) Update gate: Decides when to update the current cell
state, denoted as the output of σu.

2) Forget gate: Decides when to discard the current cell,
denoted as the output of σf .

3) Output gate: Controls the output, denoted as the output
of σo.

Using the tanh activation function:

tanh(m) =
em − e−m

em + e−m
, (2)

a vector of candidate values, c̃<t>, is created in order to
update the cell state:

c̃<t> = tanh(Wc[a<t−1>, y<t>]+ bc), (3)

where bc denotes the bias term. The values for the update,
forget and output gates are computed by applying a sigmoid
activation :

0u = σ (Wu[a<t−1>, y<t>]+ bu), (4)

0f = σ (Wf [a<t−1>, y<t>]+ bf ), (5)

0o = σ (Wo[a<t−1>, y<t>]+ bo), (6)

σ (m) =
1

1+ e−m
, (7)

where Wu, Wf , and Wo are the weight matrices and bu,
bf , and bo are the bias terms. An element-wise product is
taken between the forget gate (0f ) and the previous cell state
c<t−1>, and between the update gate (0u) and the candidate
vector for updation c̃<t>. Output a<t> is the element-wise
product between the output gate (0o) and the hyperbolic
tangent of candidate vector c<t>:

c<t> = 0u � c̃<t> + 0f � c<t−1>, (8)

a<t> = 0o � tanh(c<t>). (9)

C. ABOUT THE SPECTRUM DATA
In this work, we have acquired the spectrum data using an
empirical test-bed setup, the details of which is described in
section V. The empirical test-bed consist of two measurement
setup. Data acquisition using setup-I is through universal
software radio peripheral (USRP) while setup-II contains
digital spectrum analyzer (DSA). The radio technologies
measured using setup-I includes FM broadcasting, UHF TV
band, GSM-900 DL, and DCS-1800 DL. For each channels,
a sequence of 8 · 106 samples were captured. This data is
utilized in the proposed LSTM-SS scheme. In the setup-II,
the DSA was tuned according to the parameters described
in Table 4. GSM-900 DL radio technology was selected and
the data was captured. The acquired data using DSA can
be represented as a two dimensional matrix with columns
representing the frequency bins, rows representing the time
instants, while the corresponding entry in the matrix repre-
sents the power spectral density (PSD). The sweep period of

FIGURE 2. Proposed LSTM-SS model.

one second was selected i.e., data was recorded every second.
Thus, the number of rows (data-points) per day is 86,400
(24 hours× 3600 seconds). However, as we tuned to a single
channel in the GSM band, the number of frequency bin was
one i.e, one column. In all our experiments, we used one day
data for the evaluation of the proposed model. For proposed
PAS-SS scheme, setup-II was a more convenient choice. This
is because the sampling rate of USRP (in setup-I) is very high
and thus the activity patterns of a PU channel are difficult and
tedious to capture [55].

III. PROPOSED LSTM BASED SPECTRUM SENSING
Traditional ANNs described in [35] have no memory ele-
ments and hence lack the ability to store data. Therefore,
it is necessary to modify the structure of neural networks
to have feedbacks between successive timestamps [44], [45].
Fig. 2 shows the proposed LSTMmodel comprising of LSTM
cells (as described in Section II) and an output cell which goes
through the sigmoid activation. Sigmoid activation facilitates
the conversion from continuous value output to binary output.
The physical meaning of the output of LSTM cell in simple
words is the identification of PU’s presence.

A. DATASET CONSTRUCTION
In this subsection, the model for proposed LSTM-SS scheme
is trained and validated based on spectrum data. The data is
captured through an empirical setup, a detailed discussion of
which is provided in Section V. From the data captured using
measurement setup-I, the clean PU signal is acquired and its
power σ 2

x is measured. In order to achieve a given SNR γ ,
the required power of noise to be added is calculated using
the relation σ 2

w = σ 2
x /γ [7]. Additive white Gaussian noise

(AWGN) sequence of the power level is generated and added
to the signal. For sample of size N , the signal will thus be a
vector with 2N timestamps, as shown below.

y =
[
y<1>y<2> . . . y<2N>

]T
.

Each signal vector with sample size N is considered as a
sensing event and hence is taken as a training sample for the
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FIGURE 3. Dataset construction from raw data acquired using the
empirical measurement setup-I.

LSTMmodel. For this study, 200,018 samples are maintained
for AWGN while the other 200,018 samples are maintained
for PU signal in the SNR range −20 dB to +4 dB. Thus,
the dataset contains an equal number of PU signal andAWGN
sequence examples.

In order to have the proposed LSTM-SS scheme robust and
unbiased towards high SNRs, the training data set includes
data at very low SNRs. Algorithm 1 and Fig. 3 shows the
dataset construction process from the raw data acquired
using empirical measurement setup-I. The generated data are
divided into three classes, training (60%), validation (20%)
and test (20%) datasets.

Algorithm 1 Dataset Construction for Proposed LSTM-SS
1: Procedure Create Dataset (Data, N , Label)

2: size←
length(Data)

N
3: PU_dataset← zero matrix of dimensions size × N
4: for SNR←−20 to 4 dB do
5: noisy_signal← Data + AWGN {SNR is achieved}
6: for i← 1 to size do
7: signal← (i)thN samples from noisy_signal
8: PU_signal[i]← signal {Row-wise assignment}
9: end for

10: end for
11: return PU_signal {The PU signal is returned}

B. LSTM TRAINING AND MODEL SELECTION
As shown in Fig. 4, the training dataset which comprise
of 60% of the total samples are fed in batches to different
LSTM models, the error is backpropagated during the train-
ing procedure, the gradients are calculated and the parameters
are updated, as indicated in Algorithm 2. Accuracies of these
models on the training and validation sets are evaluated as
indicated in Table 1. The training set performance of a given
model does not always generalize to other datasets as big
models may tend to overfit the training data. Thus, validation
set accuracies are considered for choosing the best model.

TABLE 1. Analysis of varying hidden units for different epochs on training
and validation set accuracies.

We can notice from Table 1 that as the number of hidden
units are increased, training accuracy improves but validation
accuracy declines. This happens when the model overfits the
training dataset and only remembers the training data well but
does not learn well from it. To avoid overfitting and to select
the correct LSTM model, we have evaluated training and
validation accuracies for models with hidden units varying
from 1 to 256. We can notice that the validation accuracy is
maximum for the LSTM network with one hidden unit.

Algorithm 2 Training of Proposed LSTM-SS Scheme
1: Procedure Train(Epochs, Batch_size, X, y, α)
2: for i← 1 to Epochs do
3: s_event, label← extract(Dataset, Batch_size)

{Random training examples are extracted according to
the batch size}

4: Output← Forward Propagate(LSTM_model, s_event)
5: Error ← Backward Propagate(LSTM_model, label,

output)
6: Parameters ← Update(error,LSTM_model,α) {Parame-

ters are updated according to the learning rate α}
7: end for

C. EVALUATION OF PERFORMANCE METRICS
In this subsection, we evaluate the proposed LSTM-SS
scheme. The detection probability (Pd ) and false alarm prob-
ability (Pf ) for evaluating the proposed LSTM-SS scheme
is computed using the procedure adapted in Algorithm 3.
Signal data from the test dataset are fed one by one to the
LSTM network and Pd , Pf are calculated. First, the PU
signal vectors at each SNR are forwarded to the LSTM net-
work. The number of times it correctly classifies the signal,
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FIGURE 4. Training model considered in proposed LSTM-SS scheme.

i.e. (H1), divided by the total number of PU signal exam-
ples fed to the network determines Pd . Similarly, AWGN
sequence examples are forwarded to the LSTM network and
Pf is calculated as the number of times it does not pre-
dict H0 divided by the total number of AWGN sequence
examples.

Algorithm 3 Evaluation of the Proposed LSTM-SS Scheme
1: Procedure Evaluate(LSTM_model, Dataset)
2: for i← 1 to length(PU_signal)
3: s_event, label← extract(Dataset, 1)

{Test examples are extracted one by one}
4: H0_examples← 0
5: H0_misclassified← 0
6: H1_examples← 0
7: H1_correct← 0
8: Output← Forward_Propagate(LSTM_model, s_event)
9: if Label isH1 then

10: H1_examples← H1_examples+ 1
11: if Output isH1
12: H1_correct← H1_correct+ 1
13: end if
14: end if
15: if Label isH0
16: H0_examples← H0_examples+ 1
17: if Output isH1
18: H0_misclassified← H0_misclassified+ 1
19: end if
20: end if
21: Pd ←

H1_correct
H1_examples

22: Pf ←
H0_misclassified
H0_examples

23: end for

D. EFFECT OF VARYING TEMPORAL LENGTH N
In this subsection, we analyse of effect of varying the
temporal length (N ) for the proposed LSTM-SS scheme.
As depicted in Fig. 2, the length of previous and current
sensing events are kept the same. To determine the optimal
value of N , we varied N and observed the performance of
the proposed LSTM-SS scheme. We observe that there is a
trade-off between the temporal length, sensing performance
and execution time. For the optimum value of performance
and execution time, we have considered N=100 to be a con-
venient choice in all our simulations, the detailed discussion
of which is provided in Section VI.

IV. PROPOSED PRIMARY ACTIVITY STATISTICS AIDED
LSTM BASED SPECTRUM SENSING
In this section, we compute the PU activity statistics like on
period duration, off period duration, and duty cycle and pro-
pose a PAS-SS scheme to improve the sensing performance.

A. HYPERPARAMETER SELECTION AND MODEL
TRAINING
The schematic diagram of proposed PU activity statistics
aided sensing scheme is as shown in Fig. 5 It comprises of two
models. Model 1 consists of LSTM used for the prediction
while model 2 consists of ANN used for classification. LSTM
inmodel 1 takes the power levels (in dBm) as input. The input
power level is compared to a decision threshold (as discussed
in Section VI) and a ground truth is assigned. As shown
in Fig. 5, model 1 performs a single step prediction while
model 2 performs classification. The model 1 is build with
iterative experiments and the final hyperparameters chosen
are listed in Table 2. The plot of loss v/s epoch in results
section confirms that the designed model is a neither underfit
nor overfit. Model 2 is trained iteratively and consist of one
hidden layer. Model 2 takes predicted output from model
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FIGURE 5. Schematic diagram of proposed primary activity statistics based spectrum sensing (PAS-SS) scheme.

TABLE 2. Hyperparameters of model 1 for proposed PAS-SS scheme.

1 along with the PU activity statistics as an input features and
provides PU presence or absence as an output. The proposed
PAS-SS can be summarised as below:

1) Provide the raw empirical data to the LSTM model for
single step prediction

2) Read the data and convert it to binary format (indicating
the presence or absence of PU) by comparing it with the
decision threshold as described in the results section

3) Compute the features like Ton, Toff and Duty cycle
(DC) from the above step-2

4) Thus following the step-3, we would have four column
vectors representing four features as predicted LSTM
output, Ton, Toff and DC respectively.

5) Iterate the above steps for different values of look
back values and for different feature combinations (as
depicted in the Fig. 16)

Notice that the empirical data in our work are not a stream-
ing data. Thus, step-1 and step-2 need not be executed in
parallel. However, it is important that we have the four fea-
tures i.e, predicted output, on period duration, on and off
period duration, and duty cycle before feeding to the ANN
(model-2) for classification as indicated in step-4 above. The
computation of PU activity statistics is discussed in the next
subsection.

B. COMPUTATION OF PRIMARY USER ACTIVITY
STATISTICS
For the computation of PU activity statistics like on period
duration, off period duration and duty cycle, we consider only

one frequency bin for one day data. 60% is utilized as training
data-set while remaining 40% as testing data-set.

Once the data is acquired, we set the noise threshold by the
method comprehensively described in section VI. By com-
paring with the threshold, we set the ground truth. If the
measured power level is greater than the threshold, we label
it one otherwise zero. After labelling the data and depending
on the the value of lookback window time used in LSTM,
the number of label one counts in the window provides the on
period duration (Ton). In similar way, the number of zero label
counts indicate the off period duration (Toff ). In addition, duty
cycle is defined as the fraction of time that the spectrum band
is occupied. It can be given as:

Duty cycle =
Ton

Ton + Toff
(10)

Once on and off period durations are obtained, duty cycle can
be computed as per (10).

V. EMPIRICAL MEASUREMENT TEST-BED SETUP
We deployed an empirical test-bed setup on the roof-top of
the School of Engineering and Applied Science, Ahmed-
abad University for spectrum data acquisition. The empirical
measurement setup is shown in Fig. 6. The spectrum data
acquired from setup-I is used in the experimental validation
of proposed LSTM-SS scheme while the data acquired from
setup-II is utilized in the validation of proposed PAS-SS
scheme.

A. SPECTRUM DATA ACQUISITION USING USRP-N210
The measurement setup-I is as shown in Fig. 6(a). The hard-
ware consists of a USRP-N210 with a WBX daughterboard,
discone antenna (DiamondD-3000N) and a computer system
to interface the hardware and software. The software includes
GNU Radio and MATLAB. Table 3 shows the different radio
technologies (measured channels) and the USRP configura-
tion. With the help of spectrum analyzer, channels with high
SNR were identified for various radio technologies (refer
Table 4), which were later used to capture PU signal data
using the USRP. To ensure that the extreme points of the
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FIGURE 6. Empirical measurement test-bed setup used.

TABLE 3. Channels measured in empirical setup-I and USRP configuration.

TABLE 4. Tuning parameters of Rigol’s DSA-875.

selected frequency bins are not missed, the frequency bins
selected in the spectrum analyzer were kepts lightly wider
than those selected in USRP. The data captured using GNU-
Radio are further processed offline in MATLAB and then the
validation of the proposed LSTM-SS scheme is carried out.

B. SPECTRUM DATA ACQUISITION USING SPECTRUM
ANALYZER
The measurement setup-II is as shown in Fig. 6(b). The
hardware consists of a digital spectrum analyzer Rigol DSA-
875, discone antenna and a computer system to interface the
hardware and software. Table 4 shows the tuning parameters
of the spectrum analyzer. The spectrum analyzer in setup-II
was tuned to the GSM band.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the experimental results for the proposed
scheme are presented. In our implementations, we have uti-
lized the Keras library with TensorFlow backend to create
and train models. Fig. 7 shows the autocorrelation plot of the
GSM signal captured using USRP from the empirical setup-
I for different values of SNR. The number of lag samples is

TABLE 5. False alarm rates for different combinations of the training data
(UHF Television, N = 100).

10 in each case. Non zero autocorrelation demonstrates that
the data samples are temporally correlated. This is because
the autocorrelation value does not reduce to zero instantly.
This temporal correlation is exploited in this work using
LSTM based sensing framework.

The training data (from setup-I) was divided into two
classes: high SNR class and low SNR class.−4 dB to+4 dB
were categorized in the high SNR class, while −20 dB to
−4 dB were categorized in the low SNR class. To perform
the training analysis, the proportion of training examples in
each of the two classes was varied, and consequent variations
in Pd values at different SNRs and Pf values were observed.

Different compositions of the training dataset were created
by varying the ratio of the number of examples in low SNR
class to the number of examples in high SNR class. The
dataset is constructed usingAlgorithm 1, while Algorithm 2 is
used to train the LSTM network on these datasets. The
compositions of the data sets and performance of proposed
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FIGURE 7. Autocorrelation of the data samples from empirical setup-I (GSM band).

FIGURE 8. Comparison of detection probability for various composition
of training models (UHF Television, N = 100).

LSTM-SS are evaluated using Algorithm 3 and Pd , Pf are
determined.

It is evident from Table 5 and Fig. 8 that the composition
of training set has a significant impact on Pd and Pf . As the
percentage of examples in low SNR range is increased, Pf
and Pd also increase. At low SNRs, the magnitudes of the
PU signal are similar to that of noise. The LSTM network,
therefore, finds it difficult to differentiate between the PU
signal and noise.

The proposed LSTM-SS scheme was validated on various
radio technologies like FM Broadcasting, UHF Television,
E-GSM 900 DL, and DCS 1800 DL, as mentioned in Table 3.

Fig. 9 analyses the effect of N on the detection proba-
bility of the proposed LSTM-SS scheme for a DCS band
data. Fig. 9 (a) depicts the plot of Pd v/s SNR for different
values of N . The value of N for previous and current sensing
events is considered to be the same. We can notice that as
N increases, the detection probability increases. A similar
trend is observed in Fig. 9 (b). However, as N increases,
the execution time increases substantially, and thus we have
selected N=100 for all the simulations. Fig. 10 shows a
comparison of N for the detection probability of LSTM-SS,
CNN, and ANN. Fig. 10 (a) shows the plot of Pd v/s SNR
for the three schemes. We can observe that the detection
performance is highest for the LSTM-SS scheme, followed
by CNN and ANN. This is because LSTM exploits the tem-
poral dependency while CNN and ANN fail to do so. Fig. 10
(b) shows the bar graph comparison at SNR = −12dB.
As depicted, LSTM-SS outperforms the other schemes for all
values of N .
The plot of Pd versus SNR for N = 100 comparing the

detection performance of different sensing schemes across
different radio technologies is as shown in Fig. 11. To have
a fair comparison with the results of [36], the Pf close to
three decimal places was chosen from Table 5. The results
show that although the performance of the proposed LSTM-
SS scheme at high SNRs is almost the same, it significantly
outperforms the ANN-based sensing [36], improved energy
detection based sensing [56] and classical energy detection at
low SNRs.

Fig. 12 provides the comparison of receiver operating
characteristics for different spectrum sensing methods. The
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FIGURE 9. Effect of N on detection probability of LSTM-SS scheme.

FIGURE 10. Comparison of N for the detection probability of LSTM-SS, CNN and ANN sensing schemes.

figure is plotted forN=100 and SNR = −14 dB. The datasets
used are FM broadcasting and UHF television. To have a
fair comparison of the proposed LSTM based sensing with
other schemes like CNN [40], ANN [36] and CED, the data
was kept same for all sensing schemes, and the model was
designed and trained accordingly. Due to the single column
data structure, we adopted the 1D-CNNmodel while keeping
the CNN architecture similar as proposed in [40]. The model
was built, trained and tested in Keras library. The first layer
was the convolutional layer with ReLu activation function.
It was followed by the pooling layer of order 2. The above
sequence was repeated as mentioned in the paper followed
by the fully connected layer. The dataset was prepared at
SNR = −14 dB. Once the model was trained, it was

tested on the test dataset. Similarly, for ANN-based sensing,
we constructed and utilized the model as mentioned in [36].
We can infer from the plot that the proposed LSTM-SS
scheme outperforms other sensing schemes at a very low
SNR of −14 dB. The improvement in the sensing perfor-
mance is because LSTM cells exploit the temporal depen-
dencies present in the signal, which the other models do not
consider.

The fundamental reason that why the proposed LSTM-
SS scheme outperforms the other sensing schemes like ANN
and CNN is the architecture of LSTM. ANN has a simple
shallow neural network structure, while CNN has a deep
neural network structure. However, LSTM’s are designed in
a way such that the information persists due to the looping
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FIGURE 11. Comparison of detection probability for the considered spectrum sensing schemes: proposed LSTM-SS, ANN-based sensing [36], Improved
Energy Detection (IED) [56], and Classical Energy Detection (CED) for N=100.

FIGURE 12. Comparison of receiver operating characteristics for considered spectrum sensing methods.

structure or (chain-like structure when repeating elements
are unrolled), as opposed to ANN and CNN architectures
where the looping is absent. In addition, the information flow
in LSTM is regulated by the Gate structure (i.e., Update,
Forget, and Output gates) such that it performs well on the
temporal data. Since the spectrum data in our case are tem-
poral, the LSTM learned all the hidden features well from the
data, which inevitably ANN, and CNN failed to do so. Thus,
proposed LSTM-SS and PAS-SS schemes perform better than
ANN and CNN.

Fig. 13 shows the 3D visualization of the spectrum
data captured using the empirical setup-II. It can be
noticed that rows contain the time instants, columns indi-
cate the frequency bin while the numeric value at some
time instant and frequency bin consists of power level
in dBm. Once the data is acquired, it is labeled to the
ground truth based on the selection of the noise thresh-
old. There are many methods in the literature for selecting
noise threshold like computing the mean or choosing min-
imum/maximum value of noise level and so on. However,
these methods are inappropriate, causing the erroneous label-
ing of data and thus the derived inferences [57]. Therefore,
we adopted the probability of false alarm criterion method

of noise threshold selection as comprehensively described
in [57].

Fig. 14 depicts the method for selecting the noise threshold
based on the probability of a false alarm criterion. We plot
empirical cumulative distribution function (CDF) of the noise
only samples collected after removing the antenna from the
spectrum analyzer. This ensures that we are receiving noise
only samples. To mimic the inconsistencies of the real world,
we allow the false alarm of 1% and project the corresponding
value on the x-axis. For our experiments, the noise threshold
obtained is −95 dBm. After finding the noise threshold,
the proposed model is trained for different values of hyper-
parameters, as indicated in Table 2. Fig. 15 shows the plot of
train and test loss versus the number of epochs. We can notice
that the train loss and test loss vary closelywith each other and
stabilize after certain epochs. This indicates that the model
1 in PAS-SS scheme is neither overfit nor underfit. Moreover,
since the model 1 in the proposed scheme (in Fig. 5) is used
for prediction, the loss function used is MSE.

Fig. 16 indicates the overall accuracy of the proposed PAS-
SS scheme. The experiments were performed for different
values of lookback times. Moreover, the values of on and off
period duration will vary with the lookback time. Different
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FIGURE 13. 3D visualisation of empirical data captured in setup-II.

FIGURE 14. Noise threshold setting in model 1 of the proposed PAS-SS
scheme based on Pfa criterion.

combinations of PU statistics were fed to the model 2 of the
proposed scheme in Fig. 5.

The PU activity statistics are computed by the method
described in Section IV-B. Training the ANN with this fea-
tures primarily means that instead of only learning the pre-
dicted output of LSTM (power in dBm), ANN also learns well
from the past behavior of PU (i.e., on and off period duration,
duty cycle) thus, ANN has improved ability to classify the PU
well. We can notice that the overall accuracy was highest for
inputs with the predicted output of model 1 and DC. This is
because DC inherits the values of on and off period duration
as per (10). Notice that training the model 2 only with on
period duration also provided a reasonably good accuracy.
Moreover, it is interesting to note that when DC, along with
on and off period duration was given as an input to model 2,
it was reported to not perform well as compared to the previ-
ous cases. Thismay be because ANNmay get confused due to
feeding the on and off period duration along with DC.We can
notice another important observation that as we increase the
lookback time, the classification accuracy decreases. This is

FIGURE 15. Train and test loss versus number of epochs for model 1 of
PAS-SS scheme.

FIGURE 16. Effect of PU activity statistics on PU Classification accuracy
for different values of lookback time.

due to the fact that data may not be much correlated after the
timestep of 10 seconds. In addition, we can also observe that
the overall classification accuracy remains constant when no
PU activity statistics are utilized. From the LSTM network
architecture’s view, it means that the learned weights and
biases are more accurate as compared to training without
the PU activity features. This indicates that the classification
accuracy increases when the PU activity statistics are utilized
for improving the sensing performance.

The proposed LSTM-SS scheme is also compared with
other machine learning algorithms like ANN, Random forest,
and Gaussian Naive Bayes in terms of training and execution
time. The ANN-based sensing scheme [36] was trained on
50 epochs. For the random forest classifier, the minimum
number of samples required to split an internal node was
two, and the tree was split until either the leaves had one
sample each or all the samples in the leaves were pure. The
Naive Bayes classifier was trained with variance smoothing
of 10−9. It can be observed from Table 6 that the Naive
Bayes algorithm has the lowest training and execution time.
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FIGURE 17. Comparison of classification accuracies of proposed LSTM-SS
scheme with other machine learning algorithms (N = 100).

TABLE 6. Comparison of LSTM-SS with other algorithms.

Fig. 17 shows the comparison of classification accuracies of
the proposed LSTM-SS scheme with other machine learning
models. We can notice that at lower SNR, the proposed
LSTM-SS scheme provides a significantly improved classi-
fication accuracy as compared to different algorithms; how-
ever, at the expense of longer training and execution times.
We can notice that execution time for the proposed LSTM-SS
scheme is 0.788 ms and that for the proposed PAS-SS scheme
is 0.802 ms. Although the offline training time is high, it is
required only once. The delay is reasonably small such that it
can be operated in a real-time manner.

VII. CONCLUSION
In this work, a deep learning aided LSTM-SS scheme was
proposed that hat implicitly learns all the important features
in the time series spectrum data i.e., it exploits the temporal
dependency in the spectrum data. Furthermore, we also com-
pute the PU activity statistics like on and off period duration,
duty cycle, and propose a PAS-SS scheme to enhance the
sensing performance. The proposed LSTM-SS and PAS-SS
schemes are evaluated and validated on empirical data of
different wireless technologies captured using two test-bed
setups. Results indicate that the proposed LSTM-SS has an
improved detection performance and classification accuracy
as compared to the ANN-based hybrid sensing scheme, IED,
and CED, even under the low SNR regime. In addition, it is
also observed from experimental results that significant per-

formance improvement is obtained when PU activity statis-
tics are used for sensing. However, the improved performance
is at the expense of longer training time and a nominal
increase in execution time. Notice that this work considered
only a single PU and a single SU. However, the study of
multiple PU and multiple SU, which is a generic scenario is
an interesting topic of further research.

ACKNOWLEDGMENT
This article was presented in part at the IEEE International
Symposium on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC 2019), Istanbul, Turkey, September 2019.
The authors would like to thank Ahmedabad University and
the University of Liverpool for providing infrastructural sup-
port. Finally, the authors would also like to thank the anony-
mous reviewers for their valuable comments and suggestions
in improving the quality of this manuscript.

REFERENCES
[1] J. Lunden, V. Koivunen, and H. V. Poor, ‘‘Spectrum exploration and

exploitation for cognitive radio: Recent advances,’’ IEEE Signal Process.
Mag., vol. 32, no. 3, pp. 123–140, May 2015.

[2] M.Wellens and P. Mähönen, ‘‘Lessons learned from an extensive spectrum
occupancy measurement campaign and a stochastic duty cycle model,’’
Mobile Netw. Appl., vol. 15, no. 3, pp. 461–474, Jun. 2010.

[3] J. Mitola and G. Q. Maguire, ‘‘Cognitive radio: Making software radios
more personal,’’ IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18, Aug. 1999.

[4] S. Haykin, ‘‘Cognitive radio: Brain-empowered wireless communica-
tions,’’ IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.

[5] M. López-Benítez and F. Casadevall, ‘‘Modeling and simulation of time-
correlation properties of spectrum use in cognitive radio,’’ in Proc.
CROWNCOM, Jun. 2011, pp. 326–330.

[6] S. Haykin, D. J. Thomson, and J. H. Reed, ‘‘Spectrum sensing for cognitive
radio,’’ Proc. IEEE, vol. 97, no. 5, pp. 849–877, May 2009.

[7] H. Urkowitz, ‘‘Energy detection of unknown deterministic signals,’’ Proc.
IEEE, vol. 55, no. 4, pp. 523–531, Apr. 1967.

[8] T. Yucek and H. Arslan, ‘‘A survey of spectrum sensing algorithms for
cognitive radio applications,’’ IEEE Commun. Surveys Tuts., vol. 11, no. 1,
pp. 116–130, 1st Quart., 2009.

[9] R. Tandra and A. Sahai, ‘‘SNR walls for signal detection,’’ IEEE J. Sel.
Topics Signal Process., vol. 2, no. 1, pp. 4–17, Feb. 2008.

[10] H. Wang, E.-H. Yang, Z. Zhao, and W. Zhang, ‘‘Spectrum sensing in cog-
nitive radio using goodness of fit testing,’’ IEEE Trans. Wireless Commun.,
vol. 8, no. 11, pp. 5427–5430, Nov. 2009.

[11] G. Zhang, X. Wang, Y.-C. Liang, and J. Liu, ‘‘Fast and robust spectrum
sensing via Kolmogorov–Smirnov test,’’ IEEE Trans. Commun., vol. 58,
no. 12, pp. 3410–3416, Dec. 2010.

[12] D. K. Patel and Y. N. Trivedi, ‘‘LRS-G2 based non-parametric spectrum
sensing for cognitive radio,’’ in Proc. CROWNCOM, 2016, pp. 330–341.

[13] D. Patel, B. Soni, andM. López-Benítez, ‘‘Improved likelihood ratio statis-
tic based cooperative spectrum sensing for cognitive radio,’’ IET Commun.,
Dec. 2019, doi: 10.1049/iet-com.2019.0862.

[14] M. López-Benítez, A. Al-Tahmeesschi, D. K. Patel, J. Lehtomaki, and
K. Umebayashi, ‘‘Estimation of primary channel activity statistics in cog-
nitive radio based on periodic spectrum sensing observations,’’ IEEE
Trans. Wireless Commun., vol. 18, no. 2, pp. 983–996, Feb. 2019.

[15] A. Al-Tahmeesschi, M. López-Benítez, D. K. Patel, J. Lehtomaki, and
K. Umebayashi, ‘‘On the sample size for the estimation of primary activity
statistics based on spectrum sensing,’’ IEEE Trans. Cognit. Commun.
Netw., vol. 5, no. 1, pp. 59–72, Mar. 2019.

[16] J. J. Lehtomaki, R. Vuohtoniemi, and K. Umebayashi, ‘‘On the mea-
surement of duty cycle and channel occupancy rate,’’ IEEE J. Sel. Areas
Commun., vol. 31, no. 11, pp. 2555–2565, Nov. 2013.

[17] K. Umebayashi, M. Kobayashi, and M. López-Benítez, ‘‘Efficient time
domain deterministic-stochastic model of spectrum usage,’’ IEEE Trans.
Wireless Commun., vol. 17, no. 3, pp. 1518–1527, Mar. 2018.

VOLUME 8, 2020 97449

http://dx.doi.org/10.1049/iet-com.2019.0862


B. Soni et al.: LSTM Based Spectrum Sensing Scheme for CR Using Primary Activity Statistics

[18] A. Al-Tahmeesschi, M. López-Benítez, K. Umebayashi, and J. Lehtomaki,
‘‘Analytical study on the estimation of primary activity distribution based
on spectrum sensing,’’ in Proc. IEEE PIMRC, Oct. 2017, pp. 1–5.

[19] D. K. Patel, B. Soni, andM. López-Benítez, ‘‘On the estimation of primary
user activity statistics for long and short time scale models in cognitive
radio,’’Wireless Netw., vol. 25, no. 8, pp. 5099–5111, Nov. 2019.

[20] A. Al-Tahmeesschi, M. López-Benítez, J. Lehtomaki, and K. Umebayashi,
‘‘Investigating the estimation of primary occupancy patterns under imper-
fect spectrum sensing,’’ in Proc. IEEE WCNC, Mar. 2017, pp. 1–6.

[21] A. Al-Tahmeesschi, M. López-Benítez, J. Lehtomaki, and K. Umebayashi,
‘‘Improving primary statistics prediction under imperfect spectrum sens-
ing,’’ in Proc. IEEE WCNC, Apr. 2018, pp. 1–6.

[22] T. Wang, Y. Chen, E. L. Hines, and B. Zhao, ‘‘Analysis of effect of primary
user traffic on spectrum sensing performance,’’ in Proc. 4th Int. Conf.
Commun. Netw. China, Aug. 2009, pp. 1–5.

[23] L. Tang, Y. Chen, E. L. Hines, and M. Alouini, ‘‘Performance analysis
of spectrum sensing with multiple status changes in primary user traffic,’’
IEEE Commun. Lett., vol. 16, no. 6, pp. 874–877, Jun. 2012.

[24] T. Duzenli and O. Akay, ‘‘A new spectrum sensing strategy for dynamic
primary users in cognitive radio,’’ IEEE Commun. Lett., vol. 20, no. 4,
pp. 752–755, Apr. 2016.

[25] S. MacDonald, D. C. Popescu, and O. Popescu, ‘‘Analyzing the perfor-
mance of spectrum sensing in cognitive radio systems with dynamic PU
activity,’’ IEEE Commun. Lett., vol. 21, no. 9, pp. 2037–2040, Sep. 2017.

[26] Z. Xu and J. Sun, ‘‘Model-driven deep-learning,’’ Nat. Sci. Rev., vol. 5,
no. 1, pp. 22–24, Jan. 2018.

[27] J. Tian, Y. Pei, Y.-D. Huang, and Y.-C. Liang, ‘‘Modulation-constrained
clustering approach to blind modulation classification for MIMO sys-
tems,’’ IEEE Trans. Cognit. Commun. Netw., vol. 4, no. 4, pp. 894–907,
Dec. 2018.

[28] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, ‘‘Machine
learning paradigms for next-generation wireless networks,’’ IEEEWireless
Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017.

[29] T. O’Shea and J. Hoydis, ‘‘An introduction to deep learning for the physical
layer,’’ IEEE Trans. Cognit. Commun. Netw., vol. 3, no. 4, pp. 563–575,
Dec. 2017.

[30] S. Dörner, S. Cammerer, J. Hoydis, and S. T. Brink, ‘‘Deep learning based
communication over the air,’’ IEEE J. Sel. Topics Signal Process., vol. 12,
no. 1, pp. 132–143, Feb. 2018.

[31] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo,
‘‘Thirty years of machine learning: The road to Pareto-optimal wireless
networks,’’ IEEE Commun. Surveys Tuts., early access, Jan. 13, 2020,
doi: 10.1109/COMST.2020.2965856.

[32] C. Clancy, J. Hecker, E. Stuntebeck, and T. O’Shea, ‘‘Applications of
machine learning to cognitive radio networks,’’ IEEE Wireless Commun.,
vol. 14, no. 4, pp. 47–52, Aug. 2007.

[33] A. Agarwal, S. Dubey, M. A. Khan, R. Gangopadhyay, and S. Debnath,
‘‘Learning based primary user activity prediction in cognitive radio net-
works for efficient dynamic spectrum access,’’ inProc. SPCOM, Jun. 2016,
pp. 1–5.

[34] F. Azmat, Y. Chen, and N. Stocks, ‘‘Analysis of spectrum occupancy using
machine learning algorithms,’’ IEEE Trans. Veh. Technol., vol. 65, no. 9,
pp. 6853–6860, Sep. 2016.

[35] Y.-J. Tang, Q.-Y. Zhang, and W. Lin, ‘‘Artificial neural network based
spectrum sensing method for cognitive radio,’’ in Proc. IEEE WiCOM,
Sep. 2010, pp. 1–4.

[36] M. R. Vyas, D. K. Patel, and M. López-Benítez, ‘‘Artificial neural network
based hybrid spectrum sensing scheme for cognitive radio,’’ in Proc. IEEE
PIMRC, Oct. 2017, pp. 1–7.

[37] J. Zhang and Y. Wu, ‘‘Likelihood-ratio tests for normality,’’ Comput.
Statist. Data Anal., vol. 49, no. 3, pp. 709–721, Jun. 2005.

[38] J. Tian, P. Cheng, Z. Chen, M. Li, H. Hu, Y. Li, and B. Vucetic, ‘‘Amachine
learning-enabled spectrum sensing method for OFDM systems,’’ IEEE
Trans. Veh. Technol., vol. 68, no. 11, pp. 11374–11378, Nov. 2019.

[39] C. Liu, J. Wang, X. Liua, and Y. Liang, ‘‘Deep CM-CNN for spectrum
sensing in cognitive radio,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 10,
pp. 2306–2321, Oct. 2019.

[40] C. Liu, X. Liu, and Y. Liang, ‘‘Deep CNN for spectrum sensing in cognitive
radio,’’ in Proc. IEEE ICC, May 2019, pp. 1–6.

[41] J. Xie, C. Liu, Y.-C. Liang, and J. Fang, ‘‘Activity pattern aware spectrum
sensing: A CNN-based deep learning approach,’’ IEEE Commun. Lett.,
vol. 23, no. 6, pp. 1025–1028, Jun. 2019.

[42] W. Lee, M. Kim, and D.-H. Cho, ‘‘Deep cooperative sensing: Cooperative
spectrum sensing based on convolutional neural networks,’’ IEEE Trans.
Veh. Technol., vol. 68, no. 3, pp. 3005–3009, Mar. 2019.

[43] Q. Cheng, Z. Shi, D. N. Nguyen, and E. Dutkiewicz, ‘‘Sensing OFDM
signal: A deep learning approach,’’ IEEE Trans. Commun., vol. 67, no. 11,
pp. 7785–7798, Nov. 2019.

[44] H. Sak, A. Senior, and F. Beaufays, ‘‘Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,’’ in Proc.
Interspeech, 2014, pp. 1–5.

[45] D. López, E. Rivas, and O. Gualdrón, ‘‘Primary user characterization for
cognitive radio wireless networks using a neural system based on deep
learning,’’ Artif. Intell. Rev., vol. 52, no. 1, pp. 169–195, Dec. 2019.

[46] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[47] Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘‘A critical review of recur-
rent neural networks for sequence learning,’’ 2015, arXiv:1506.00019.
[Online]. Available: http://arxiv.org/abs/1506.00019

[48] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang,
‘‘Spatiotemporal modeling and prediction in cellular networks: A big data
enabled deep learning approach,’’ in Proc. IEEE INFOCOM, May 2017,
pp. 1–9.

[49] T. J. O’Shea, S. Hitefield, and J. Corgan, ‘‘End-to-end radio traffic
sequence recognition with recurrent neural networks,’’ in Proc. IEEE
GlobalSIP, Dec. 2016, pp. 277–281.

[50] B. S. Shawel, D. H. Woldegebreal, and S. Pollin, ‘‘Convolutional LSTM-
based long-term spectrum prediction for dynamic spectrum access,’’ in
Proc. IEEE EUSIPCO, Sep. 2019, pp. 1–5.

[51] L. Yu, J. Chen, and G. Ding, ‘‘Spectrum prediction via long short term
memory,’’ in Proc. IEEE ICCC, Dec. 2017, pp. 643–647.

[52] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, ‘‘Deep
learning models for wireless signal classification with distributed low-cost
spectrum sensors,’’ IEEE Trans. Cognit. Commun. Netw., vol. 4, no. 3,
pp. 433–445, Sep. 2018.

[53] L. Yu, J. Chen, G. Ding, Y. Tu, J. Yang, and J. Sun, ‘‘Spectrum prediction
based on Taguchi method in deep learning with long short-term memory,’’
IEEE Access, vol. 6, pp. 45923–45933, 2018.

[54] H. D. Trinh, L. Giupponi, and P. Dini, ‘‘Mobile traffic prediction from
raw data using LSTM networks,’’ in Proc. IEEE PIMRC, Sep. 2018,
pp. 1827–1832.

[55] M. López-Benítez and F. Casadevall, ‘‘Spectrum usage models for the
analysis, design and simulation of cognitive radio networks,’’ in Cognitive
Radio and Its Application for Next Generation Cellular and Wireless
Networks. Dordrecht, The Netherlands: Springer, 2012, ch. 2, pp. 27–73.

[56] M. López-Benítez and F. Casadevall, ‘‘Improved energy detection
spectrum sensing for cognitive radio,’’ IET Commun., vol. 6, no. 8,
pp. 785–796, 2012.

[57] M. López-Benítez and F. Casadevall, ‘‘Methodological aspects of spec-
trum occupancy evaluation in the context of cognitive radio,’’ Eur. Trans.
Telecommun., vol. 21, no. 8, pp. 680–693, Dec. 2010.

[58] N. Balwani, D. K. Patel, B. Soni, and M. López-Benítez, ‘‘Long short-
termmemory based spectrum sensing scheme for cognitive radio,’’ inProc.
IEEE PIMRC, Sep. 2019, pp. 1–6.

BRIJESH SONI received the B.E. degree (Hons.)
in electronics engineering and the M.E. degree
(Hons.) in communication systems engineer-
ing from Gujarat Technological University,
in 2014 and 2017, respectively. He is currently
pursuing the Ph.D. degree with Ahmedabad Uni-
versity. He is also working as a Junior Research
Fellow with the Department of Science and Tech-
nology (DST), School of Engineering and Applied
Science, Ahmedabad University, UK India Educa-

tion and Research Initiative (UKIERI) research project jointly funded by
DST and British Council. His research interests include cognitive radio net-
works, machine learning/deep learning for XG wireless networks, NOMA,
physical layer security, and speech enhancement.

97450 VOLUME 8, 2020

http://dx.doi.org/10.1109/COMST.2020.2965856


B. Soni et al.: LSTM Based Spectrum Sensing Scheme for CR Using Primary Activity Statistics

DHAVAL K. PATEL (Member, IEEE) received
the B.E. and M.E. degrees (Hons.) in commu-
nication systems engineering from Gujarat Uni-
versity, in 2003 and 2010, respectively, and the
Ph.D. degree in electronics and communications
from the Institute of Technology, Nirma Uni-
versity, India, in 2014. He worked as a Junior
Research Fellow with the Post Graduate Lab for
Communication Systems, Nirma University, from
2011 to 2014. He was a Visiting Faculty with the

Franklin W. Olin College of Engineering, Needham, MA, USA. He has
been working as an Assistant Professor with the School of Engineering
and Applied Science, Ahmedabad University, since 2014. He serves as a
reviewer in various conferences, including IEEE ICASSP, IEEE VTC, and
IEEE PIMRC. His research areas of interest include vehicular cyber physical
systems, 5G wireless networks, non-parametric statistics, and physical layer
security. He is the Principal Investigator of research projects funded by
the Department of Science and Technology (DST), UK India Education
and Research Initiative (UKIERI), Association of Southeast Asian Nations
(ASEAN)-India Collaborative R&D Project, and Gujarat Council on Science
and Technology (GUJCOST).

MIGUEL LÓPEZ-BENÍTEZ (Senior Member,
IEEE) received the B.Sc. and M.Sc. degrees
(Hons.) in telecommunication engineering from
Miguel Hernández University, Elche, Spain,
in 2003 and 2006, respectively, and the Ph.D.
degree (summa cum laude) in telecommunication
engineering from the Technical University of Cat-
alonia, Barcelona, Spain, in 2011. From 2011 to
2013, hewas a Research Fellowwith the Centre for
Communication Systems Research, University of

Surrey, Guildford, U.K. In 2013, he became a Lecturer (Assistant Professor)
at the Department of Electrical Engineering and Electronics, University of
Liverpool, U.K., where he has been a Senior Lecturer (Associate Professor),
since 2018. His research interests are in the field of wireless communica-
tions and networking, including cellular mobile communications, dynamic
spectrum access in cognitive radio systems, and the Internet of Things. He
has been the Principal Investigator or a Co-Investigator of research projects
funded by the EPSRC, British Council, and Royal Society. He has also
been involved in the European-funded projects AROMA, NEWCOM++,
FARAMIR, QoSMOS, and CoRaSat. He has also been a member of the
Organising Committee of the IEEE WCNC International Workshop on
Smart Spectrum (IWSS 2015–2020). He is also an Associate Editor of IEEE
ACCESS, IET Communications, and Wireless Communications and Mobile
Computing.

VOLUME 8, 2020 97451


