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ABSTRACT An insulated gate bipolar transistor (IGBT) driver is crucial for improving the reliability of
a power electronics system. This paper proposes a method for predicting the optimal driving strategy of
high-power IGBT module based on backpropagation neural network optimized by the mind evolutionary
algorithm in order to solve the problem of compromise among switching loss, switching time and overshoot
and achieve a good driving effect. The three regions of switching transitions are analyzed based on the
switching characteristics of the IGBTmodule. Neural networks are established to predict turn-on and turn-off
driving strategies for variable gate resistance active gate driver of the IGBT module. The mind evolutionary
algorithm is used to optimize the weights and biases of the neural networks so that the optimal weights
and biases can be obtained. In order to verify the effectiveness of the driving strategy prediction method
proposed in this paper, experiments are carried out for 4500V/900A the IGBT module. Compared to the
conventional gate driver, the predicted driving strategies reduce the turn-on energy loss, turn-on time, over-
current, comprehensive evaluation method, turn-on delay time and tail voltage duration by 59.31%, 46.38%,
36.99%, 65.65%, 1.9 µs, 2.9 µs, respectively. It was also found that the Planar-IGBT turn-off process was
rarely affected by the gate resistance. The proposedmethod in this paper can be used not only for the guidance
of the driving strategy determination of high-power the IGBT module driver, but also for the driver circuit
improvement in the design process.

INDEX TERMS IGBT module, active gate driver, MEA-BP neural network, driving strategy optimization,
data-driven method.

I. INTRODUCTION
The semiconductor power device insulated gate bipolar tran-
sistor (IGBT) was invented by Dr. Baliga in 1979, and since
then, the IGBT have made great contributions in different
fields, such as transportation, industry, lighting, consumer
electronics, medical treatments, national defense, renewable
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energy, and power transmission [1]. The IGBT and its driver
have been constantly studied and researched. Under the
premise of ensuring the safety and reliability of a chip, reduc-
ing the switching loss of the device to improve the energy
conversion efficiency is one of the research topics.

During design of a driver, not only the switching character-
istics, switching loss, turn-off over-voltage, short-circuit safe
operating area (SCSOA), reverse biased safe operating area
(RBSOA), and electromagnetic interference (EMI) need to
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be considered, but also an optimal compromise among the
switching overshoot, the switching time and the switching
loss need to be achieved [2]. If the compromise problem is
not handled well, there will be long switching time, large
switching loss, or the module damage. In [2]–[5], active
gate driver (AGD) reduced switching loss and overshoot by
variable gate current. In [6]–[9], AGD reduced switching loss
and overshoot by variable gate resistance. In [10]–[15], AGD
reduced switching loss and overshoot by variable gate volt-
age. However, it was not explained how the parameters of the
driving strategy should be selected to achieve the minimum
switching energy loss, minimum switching time, minimum
peak voltage, and minimum peak current, or comprehensive
consider all aspects of the driving effect. Neither did it explain
how to achieve the optimal compromise among the switching
overshoot, the switching time and the switching loss.

Moreover, when designing an AGD, it is important to
understand IGBT device characteristics. The IGBT mod-
ule model can be used to understand the characteristics of
the IGBT module. Common physical IGBT module models
include the Sheng model [16], Palmer model [17], Hefner
model [18]–[21], and Kraus model [22]. These models can
describe the steady-state or dynamic characteristics of IGBT
chips accurately. Besides, many behavioral models have been
proposed [23]–[27]. When the physical model is used, it
is necessary to know the internal structure of an IGBT.
However, the IGBT model parameters are numerous, so the
determination of parameters is very complex [28], which puts
higher demands on driver design. Besides, physical models
include a large number of complex differential equations,
which increases both the computation burden and the sim-
ulation time [23]. Moreover, there is a problem of com-
putational convergence, which is particularly prominent in
complexmulti-IGBTmodule circuits. In addition, in practical
applications, the IGBT module integrates a fast recovery
diode (FRD), and there are many parasitic parameters in
the module [29]–[33], which makes the IGBT model more
complex and costly.

Therefore, this paper proposes a simple method to solve
the compromise problem and formulate the optimal driv-
ing strategy, while exerting the AGD optimal driving effect.
With the development of big data in the information technol-
ogy field, the computer-aided solutions to various problems
have been promoted in many fields. Some of the machine
learning-assisted methods are the computer-aided prediction
of highly-selective catalysts [34], a fault prediction for vehic-
ular networks [35], the discovery of new peptide substrates
for enzymes [36], and an assistant somatic mutation detection
[37]. In particular, Zeng conducted the virtual measurement
of the IGBT module current using machine learning [38].
In [39], the lifetime estimation of the IGBT devices was con-
ducted using machine learning. Also, Oukaour detected the
aging defect of the IGBT power module using machine learn-
ing [40]. Machine learning-based methods have the ability
to find the relationships in data needed to conduct scientific
research tasks efficiently.

Therefore, this paper takes the three-stage variable gate
resistancemethod as the research object and presents a simple
prediction method of driving strategy based on backpropaga-
tion (BP) neural network optimized by the mind evolutionary
algorithm (MEA). Taking switching time as a constraint con-
dition, the compromise problem between switching loss and
overshoot is solved, while achieving the minimum switching
energy loss, minimum switching time, and minimum peak
current, or comprehensive consider all aspects of the driving
effect. The proposed method is simple and does not require
knowing the internal structure and model parameters of an
IGBT, and the professional requirements for designers are
low, thus achieving the following:

• reduce delay time at turn-on and total turn-on time;
• reduce turn-on dic/dt and associated reverse-recovery
effects;

• lower tail voltage and turn-on energy loss;
• realize more simple turn-on and turn-off variable gate
resistance driving circuit.

The rest of the paper is organized as follows. In Section II,
the three-stage IGBTmodule switching process, conventional
gate driver, and variable gate resistance method are presented
in detail. Subsequently, the Prediction method of the driving
strategy is introduced in Section III, and the verification test
is presented in Section IV. In Section V, the analysis and
discussion are provided. Finally, conclusions are given in
Section VI.

II. ANALYSIS OF THE IGBT MODULE SWITCHING
CHARACTERISTICS
A. THREE-STAGE IGBT MODULE SWITCHING PROCESS
In this paper, the turn-on and turn-off transitions of the IGBT
module are both divided into three regions in order to obtain
different control purposes based on the successive stages of
the switching transient, as shown in Fig. 1. Hence, a three-
stage AGD technique is improved. The three-stage turn-on
transition is as follows. The turn-on stage I lasts 1t1, that
is, from the moment gate voltage vge rises from vgoff to the
moment of the collector current ic starts to rise. The turn-on
stage II lasts1t2, and in this stage, the current rises from ic to
its maximum turn-on current peak Ipeak. The turn-on stage III
lasts 1t3, and in this stage, the current decreases from Ipeak
to the end of the turn-on transition. The three-stage turn-off
transition is as follows. The turn-off stage I lasts 1t4; this
stage starts from the gate voltage vge decreasing from vgon till
the collector current ic starts declining. The turn-off stage II
lasts 1t5, from the moment ic fails from IL to the moment of
the maximum turn-off voltage peak Vpeak decreasing to bus
voltage Vdc. Lastly, the turn-off stage III lasts 1t6, and this
stage lasts from the end of the turn-off stage II to the end of
the turn-off transition.

Gate resistance Rg has an effect on the turn-on time ton,
the delay time at turn-on tdon, overshoot collector current1Ic,
dic/dt , turn-on energy loss Eon, turn-off time toff, the delay
time at turn-off tdoff, overshoot collector-emitter voltage
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FIGURE 1. The turn-on and turn-off waveforms of an IGBT module.

1Vce, dvce/dt , and turn-off energy loss Eoff [9]. The greater
the gate resistance is, the more switching time and switching
loss increase, while overshoot decreases. The turn-on time ton
and 1Ic are respectively expressed as:

ton = 1t1 +1t2 +1t3 (1)

1Ic = Ipeak − IL (2)

where IL denotes the rated current of an IGBT module. Fur-
ther, the turn-on energy loss Eon is given by:

Eon =

ton∫
0

vce(t)ic(t)dt (3)

where vce(t) denotes the collector-emitter voltage, and ic(t)
represents the collector current. The turn-off time toff, 1Vce,
and turn-off energy loss Eoff are respectively expressed as:

toff = 1t4 +1t5 +1t6 (4)

1Vce = Vpeak − Vdc (5)

Eoff =

toff∫
0

vce(t)ic(t)dt (6)

B. CONVENTIONAL GATE DRIVER
The operation principles of turn-on and turn-off circuits of
conventional gate driver (CGD) are shown in Figs. 2(a)
and 2(b), respectively [41]. In Fig. 2, Q1 and Q2 represent
MOSFETs, and Rgon and Rgoff represents gate resistances.
In Fig 2(a), in turn-on transition, Q1 and Ron are used.
In Fig 2(b), in turn-off transition, Q2 and Rgoff are used.

C. VARIABLE GATE RESISTANCE METHOD
The schematic of a three-stage variable gate resistance driver
circuit is shown in Fig. 3. In Fig. 3, Q1-Q6 represent MOS-

FIGURE 2. The operation principles of the CGD. (a) Turn-on transition.
(b) Turn-off transition.

FIGURE 3. The variable gate resistance driver circuit.

FETs, and Rg1-Rg6 represents gate resistances. Gate resis-
tances Rg1, Rg2, and Rg3 are used in the three stages of the
turn-on transition, respectively; and gate resistances Rg4, Rg5,
and Rg6 are used in the three stages of the turn-off transition,
respectively. As previously mentioned, the driving strategy
is determined by the MEA-BP neural network prediction
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FIGURE 4. The operation principles of the three-stage switching circuit. (a) Turn-on stage I. (b) Turn-on stage II.
(c) Turn-on stage III. (d) Turn-off stage I. (e) Turn-off stage II. (f) Turn-off stage III.

model. Then, according to the driving strategy, the controller
complex programmable logic device (CPLD) controlsQ1-Q6
to realize the driving of the IGBT module.

The operation principles of the three stages of the turn-
on circuit are shown in Figs. 4(a)-4(c), respectively, and the
operation principles of the three stages of the turn-off circuit
are shown in Figs. 4(d)-4(f), respectively. On the one hand,
in turn-on stage I, Q1 and Rg1 are used, in turn-on stage II,
Q2 and Rg2 are used, and in turn-on stage III, Q3 and Rg3
are used. On the other hand, in turn-off stage I, Q4 and Rg4
are used, in turn-off stage II, Q5 and Rg5 are used, and in
turn-off stage III, Q6 and Rg6 are used. The variable gate
resistance method is simply to improve ton, tdon, 1Ic, dic/dt ,
Eon, toff, tdoff, 1Vce, dvce/dt , and Eoff using resistors with
different resistance values in the three regions of turn-on and
turn-off transitions. There is a complex nonlinear relationship
between variable gate resistance and driving effect of the
IGBT. Therefore, the variable gate resistance and driving
effect of the IGBT were predicted by the neural network pre-
diction model because it is suitable for nonlinear modeling.
In this paper, the variable gate resistance method uses ton as a
constraint condition to make both Eon and 1Ic smaller with-
out increasing the value of ton. The improvement in1Ic by the
variable gate resistance method denoted the improvements in
Ipeak and dic/dt . In the same way, this method uses toff as a
constraint condition to decrease both Eoff and 1Vce without
increasing the value of toff. The improvement in 1Vce by the
variable gate resistance method is improvements in Vpeak and
dvce/dt .

III. PREDICTION METHOD
The proposed method is data-driven, and it is intended to help
designers improve the variable gate resistance drivingmethod
of the IGBT module. This method operates in five steps. The
first step is to load the IGBT module double pulse test data.
The second step is to preprocess and normalize the data. The
third step is to create the neural network first, and then the
data is used to train the neural network, generating the net-
work prediction model. In order to reduce the cost of program
running time, in the fourth step, the network prediction model
is used to traverse the whole region with a large step to find
out the region that satisfies a certain condition better than
conventional gate driver, thus reducing the solution region.
Lastly, in the fifth step, the network prediction model is used
to traverse the solution region with a small step to find the
optimal driving strategy in the solution region.

A. DOUBLE PULSE TEST DATA
In order to capture the data of the power semiconductor
devices related to the IGBT module switch processes, which
is then used to create the prediction model, the double pulse
test was conducted to generate the data samples of the IGBT
module. The double pulse test circuit is shown in Fig. 5(a).
The power devices used in the test were 4500V/900A high-
power IGBT modules (CM900HG-90H) from Mitsubishi.
A film capacitor acted as a DC bus support capacitor. The
lower IGBT served as a device under test, and an air-core
inductor L served as an inductive load. The photograph of
the experimental setup is shown in Fig. 5(b). The parasitic
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FIGURE 5. Experimental setup. (a) Double pulse test circuit diagram. (b)
Photograph.

TABLE 1. Parameters of the measurement equipment and test bench.

inductances were measured in combination with the existing
method presented in [42]. The detailed parameters of the test
bench and measurement equipment are presented in Table 1.

Six resistors of 3.3 �, 10 �, 12 �, 16.5 �, 33 �, and
47 � were used as switching gate resistances. The turn-on
and turn-off transitions included six stages (three stages per
each transition type), and six resistanceswere optional in each
stage; thus, there were 216 (6× 6× 6 = 216) groups of gate
resistance combinations. The double pulse test was conducted
using these 216 groups of gate resistance combinations.

B. TEST DATA PREPROCESSING AND NORMALIZATION
Because 216 groups of test data were very large, so we need
to preprocess them to get the data we need. The 216 groups
of test data were preprocessed to obtain ton, Eon, 1Ic, tdon,
dic/dt , toff, Eoff,1Vce, tdoff, dvce/dt , and then the data were

FIGURE 6. Structures of the BP neural networks: (a) turn-on prediction
method; (b) turn-off prediction method.

normalized. The data were normalized by Equation 7 where
xmin denotes the minimum value in the data sequence, and the
xmax denotes the maximum value in the sequence.

xk =
xk − xmin

xmax − xmin
(7)

C. NEURAL NETWORK DEVELOPMENT AND TRAINING
1) BP NEURAL NETWORK
The neural networks were created for the prediction of the
turn-on and turn-off effects, and their structures are shown
in Figs. 6(a) and 6(b), respectively. In Fig. 6, Rg1, Rg2, and
Rg3 denote the input parameters used to predict Eon,1Ic, and
ton; and Rg4, Rg5, and Rg6 denote the input parameters used
to predict Eoff,1Vce, and toff. As shown in Fig. 6, the turn-on
and turn-off prediction models were both three-layer neural
networks, consisting of an input layer, one hidden layer, and
output layer. In the input layer, there were three neurons. In
the hidden layer, there were q neurons. Lastly, in the output
layer, there were three neurons.

As for the connection between the input and hidden layers,
wij denotes the connection weight between neuron i in the
input layer and neuron j in the hidden layer, and bj denotes
the bias of neuron i. As for the connection between the hidden
and output layers, vj denotes the connection weight between
two neurons from these layers, and θ denotes the neuron
bias. The input of the hidden layer is given by Equation (8).
As shown in Equation (9), the sigmoid function was selected
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as an activation function of neurons in the hidden layer.

hj =
3∑
i=1

wijRi + bj, j = 1, 2, . . . , q (8)

zj = f (hj) =
2

1+ e−2hj
− 1 (9)

The input of the output layer is given by Equation (10).
As shown in equations (11), the identity function was selected
as an activation function of neurons in the output layer.

o =
q∑
j=1

vjzj + θ (10)

f (o) = o (11)

The mean squared error (MSE) and absolute error (AE)
were used to evaluate the performance of themodels, and they
are given by Equations (12) and (13), respectively. In Equa-
tions (12) and (13), yi denotes the actual value of the ith data,
y′i denotes the value of the ith data predicted by the neural
network, and n is the number of samples.

MSE =

n∑
i=1

(yi − y′i)
2

n
(12)

AE =
∣∣yi − y′i∣∣ (13)

During the training of the BP neural network, the initial
weights and biases were randomly set and adjusted according
to the output error value. Namely, when the actual output
cannot reach the expected value, the weights and biases are
adjusted according to the error between the actual output and
the expected value, until the actual output meets the expec-
tation. Besides, the number of neurons in the hidden layer
determines network nonlinearity. If the number of neurons is
small, the network is under-fitting; on the contrary, a large
number of neurons leads to the overfitting when the network
nonlinearity is higher than that of the model itself. The num-
ber of neurons in the hidden layer is given by Equation (14),
where q denotes the number of neurons in the hidden layer, N
denotes the number of neurons in the input layer, M denotes
the number of neurons in the output layer, m is an integer
between 1 and 8. Therefore, the selection of weights and
biases will be the focus of BP neural network parameters
adjustment.

q =
√
N +M + m (14)

2) MEA-BP NEURAL NETWORK
The mind evolutionary algorithm (MEA) was employed to
optimize the BP neural network. The MEA represents the
machine learning-based iterative optimization method. In the
MEA, all individuals in each iteration of the evolution process
are integrated into a population. A population is then divided
into several subgroups. Information is exchanged between
individuals and subgroups through the billboard. During the

Algorithm 1MEA-BP Algorithm
Begin:
1. NR← NG, Initialize the global billboard
2.While (Dissatisfy the termination conditions)
3. If (NR > 0)
4. r · N individuals uniformly distributed in the solution
space
5. Calculate the scores of these individuals
6. Select the best NR individual as the initial central c0i of
the NR subgroup, NR←0, SR←0, ti←0
7. end if
8. ti← ti+1
9. for The center of each subgroup cti−1i
10. To scatter SGi individuals around the c

ti−1
i as a function

of normal distribution
11. Calculate the scores of these individuals
12. Selecting the best individual from these SGi+1 indi-
viduals as a new center ctii for the subgroup
13. end for
14. for Each subgroup i
15. if (subgroup i mature)
16. if (A subgroup i score better than a solution of a global
billboard)
17. The local optimal solution obtained by this subgroup
replaces the poor solution in the global billboard
18. end if
19. Release all individuals of the subgroup,NR← NR+1,
SR← SR + SGi, record the number of subgroups released
20. end if
21. end for
22. end while

convergence process, the individuals within a subgroup com-
pete to become winners. If there is no new winner (i.e.,
there is no individual with the score higher than those of
the other individuals in the group), it is considered that the
subgroup is mature. For a subgroup, the period from its
creation to its maturity is called the life cycle. In the whole
solution space, each subgroup competes to become a winner
by constantly detecting new points in the solution space so
as to help BP neural network obtain the optimal weights and
biases [43]. The flowchart of the BP neural network where
the MEA is employed for parameter optimization is shown
in Fig. 7. In Fig. 7, in the MEA part, the meaning of the
symbols is as follows: SGi denotes the ith subgroup size, NG
denotes the number of subgroups that exist simultaneously
in the algorithm; r denotes the proportion of choice in the
dissimilation operation, NR denotes the number of subgroups
to be released or the number of subgroups to be created; SR
denotes the number of individuals released, ti denotes the
iteration time of the ith subgroup; lastly, ctii implies the ith

subgroup is at the center of the t th iteration. The pseudocode
of the MEA-BP algorithm is given in Algorithm 1.
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FIGURE 7. The flowchart of the MEA-BP neural network.

In the pseudocode, Steps 9-13 represent the similartaxis
operation, and Steps 3-7 and Steps 14-21 represent dissim-
ilation operation.

3) NEURAL NETWORK TRAINING
After many tests, in the MEA, there were 200 populations,
five superior subgroups, and five temporary subgroups; the
subgroup size was 20, and the maximal number of MEA
iteration was set to ten. The hidden layer of the BP neural
network contained eight neurons; the maximal number of
iteration was set to 100. The MEA-BP neural network was
developed using the Neural Network Toolbox of MATLAB
software.

A random function was used to scramble 216 groups of
test data, and then these data were divided into training and
test datasets containing 151 and 65 groups, respectively. The
training and test data were different in order to evaluate
the generalization ability of the developed neural network
prediction model, i.e., to examine whether the model can
predict the results well for unknown gate driving resistance
values. After the networks training, the root mean square
error of turn-on neural network was found to be 1.21 e−12,
the root mean square error of turn-off neural network was
1.24 e−12, the maximum absolute error of turn-on neural
network was 4.4886 e−6, and the maximum absolute error
of turn-off neural network was 4.0897 e−6. Figs. 8 and
9 show the best validation performance, indicating that the
MSE generally improves as the number of epochs increases.
In Fig. 8, it stopped after 15 epochs while the best validation
performance occurred at epoch 9. In Fig. 9, it stopped after

FIGURE 8. The best validation performance of turn-on prediction network.

11 epochs while the best validation performance occurred at
epoch 5. The regression results are shown in Figs. 10 and 11.
The relationship between the targets and outputs is measured
by the correlation coefficient RR. The RR was found to be
0.98966 for the turn-on neural network, and 0.98232 for the
turn-off neural network was, indicating high prediction accu-
racy of the network and that the network captured the relevant
characteristics of the IGBT module switching process well.

D. LARGE-STEP SEGMENTATION OF SOLUTION REGION
The trained network prediction model traversed the whole
region by a 1-� step. The relationships between gate resis-
tance Rg and turn-on parameters are presented in Fig. 12,
and the relationships between Rg and turn-off parameters are
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FIGURE 9. The best validation performance of turn-off prediction
network.

FIGURE 10. Regression of turn-on prediction network.

presented in Fig. 13. As shown in Fig. 12, turn-on energy loss
Eon was in the range of 2-12 J, Rg1 had little effect on Eon,
and Eon increased with the increase in the values of Rg2 and
Rg3; the value of turn-on time ton was in the range of 2-20 µs,
and it increased with the increase in the three resistances. The
value of 1Ic was in the range of 200-800 A; the smaller Rg2
was, the larger1Ic was. Further, Rg1 and Rg3 had little effect
on 1Ic, which was consistent with the operational theory of
the IGBT module. As shown in Fig. 13, turn-off energy loss
Eoff was in the range of 1.6-1.72 J, and Rg4, Rg5, and Rg6 had
little effect on Eoff; turn-off time toff was in the range of 3-3.4
µs, and Rg4, Rg5, and Rg6 also had little effect on toff. Lastly,
1Vce was in the range of 620-700V, andRg4,Rg5, andRg6 had
little effect on1Vce. The results clearly present the influence
of variable gate resistance on the relevant characteristics of
the IGBT module. In the turn-off process, with the changes
in Rg, the ranges of Eoff, toff, and 1Vce were small.

The trained network prediction model runs for a long time
if the optimal driver strategy is found in the whole region.
Therefore, we reduced the solution region based on the driv-
ing effect of the CGD. The driving effect of the CGD is

FIGURE 11. Regression of turn-off prediction network.

shown in Fig. 14. In Fig. 14(a), the radar map of the CGD
turn-on transition driving effect (Eon, 1Ic, dic/dt , ton, tdon) is
presented, and in Fig. 14(b), the radar map of the CGD turn-
off transition driving effect (Eoff, 1Vce, dvce/dt , toff, tdoff) is
presented. The trained prediction model traversed the whole
region, and the region with the driving effect better than
that of the CGD was kept, and the region with the driving
inferior to the effect of the CGD was eliminated. Namely,
each index of theAGD should be better than that of each index
of the CGD; for instance, Eon of the AGD should be smaller
than or equal toEon of the CGD. The evaluationmethod based
on the radar map of the driving effect presented in Fig. 14 is
called the comprehensive evaluation method (CEM).

Then, the solution region reduced, as shown in Fig. 15 and
Fig. 16. As shown in Fig. 15, Eon was in the range of 2.3
- 3.65 J, turn-on time ton was in the range of 4 - 7 µs, and
1Ic was in the range of 236-580 A. Further, as presented
in Fig. 16, Eoff was in the range of 1.6-1.72 J, toff was in the
range of 3-3.4 µs, and 1Vce was in the range of 620-700 V.

E. SMALL-STEP OPTIMIZING OF DRIVING STRATEGY
According to the results presented in Figs. 15 and 16, the
network prediction model found out the driving strategies
of the AGD using a small step of 0.1 �, and the corre-
sponding distributionmaps of the driving strategies are drawn
in Fig. 17. In Figs. 17(a) and 17(b), there are three parts,
the first part represents the variable gate resistance results of
stage I, the second part represents the variable gate resistance
results of stage II, and the third part represents the variable
gate resistance results of stage III.

In Fig. 17, the ordinate denotes the resistance value, and the
abscissa denotes the time. The turn-on strategies are shown
in Fig. 17(a), where it can be seen that the resistance ranges
of stage I, stage II, and stage III were 3.3-13 �, 3.3-39 �,
and 3.3-15 �. Also, the larger the resistance was, the greater
the corresponding time was. The turn-off strategies are shown
in Fig. 17(b), where it can be seen that the resistance ranges
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FIGURE 12. Relationships between gate resistance Rg and turn-on parameters. (a) Eon. (b) ton. (c) 1Ic.

FIGURE 13. Relationships between gate resistance Rg and turn-off parameters. (a) Eoff. (b) toff. (c) 1Vce.

FIGURE 14. The radar map of the CGD driving effect. (a) Turn-on driving effect. (b) Turn-off
driving effect.

FIGURE 15. The turn-on datasets superior to the CGD. (a) Eon. (b) ton. (c) 1Ic.
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FIGURE 16. The turn-off datasets superior to the CGD. (a) Eoff. (b) toff. (c) 1Vce.

FIGURE 17. Distribution diagram of the turn-on and turn-off strategies.
(a) Turn-on strategies. (b) Turn-off strategies.

of all the three stages were the same and equal to 3.3-47 �.
Namely, with the increase in the resistance, the corresponding
time was almost unchanged, and there was no trend similar to
that in Fig. 17(a). The times corresponding to all the resistor
ranges of the three stages were basically the same. In Fig. 17,
we can identify four strategies that are based on: 1) minimum
Eon or Eoff, 2) minimum ton or toff, 3) minimum1Ic or1Vce,
and 4) CEM driving strategy. In order to balance the driv-
ing effect, an optimal compromise between the switching
over-voltage, over-current, and the switching loss, should be
achieved. The CEM driving strategy refers to the strategy of
theminimum area formed by the driving effect in a radar map.
The area formed by the driving effect in a radar map can be

TABLE 2. Turn-on driving strategy.

calculated by:

S =
5∑
i=1

aiai+1 sinα
2

, a1 = a6 (15)

where α is 72◦, and ai is the coordinate value in the radar
map. In the ideal situation, the IGBT switching process is
completed in an instant, there is not switching energy loss,
and there is no switching time, that is, the driving effect of the
ideal IGBT is the center point of the radar map. So the smaller
the area is, the closer the situation to the ideal situation will
be, and all of the parameters will be more balanced. The
neural network prediction model helped us identify these four
strategies and provided variable gate resistance strategies,
turn-on time ton and turn-off time toff, so that 1t1, 1t2, 1t3
could be easily obtained by the double pulse test. Take the
CEM driving strategy as an example. In Step 1, the resistance
of 3.3 � was used as a gate resistance to drive the IGBT
module, and 1t1 was obtained using the test data. In Step
2: the resistance of 3.3 � and 1t1 were used as the turn-on
stage I driving strategy, and then a 37 � resistance was used
in Stage II and III, and 1t2 was obtained using the test data.
Finally, 1t3 = ton −1t1 −1t2.
The results of the turn-on and turn-off strategies are shown

in Table 2 and Table 3, respectively. It should be noted
that the strategies based on minimum Eon and minimum ton
provided the same results, as presented in Table 2. The turn-
off strategies provided are all the same results, are presented
in Table 3.
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TABLE 3. Turn-off driving strategy.

IV. EXPERIMENTAL VERIFICATION
In order to evaluate the performance of the proposed strategy
obtained by the MEA-BP neural network-based prediction
model, the experiments were conducted. As already men-
tioned, the experimental platform is shown in Fig. 5, and
the detailed parameters of the test bench and measurement
equipment used in the test are presented in Table 1.

A. TURN-ON STRATEGY VERIFICATION
In order to verify the feasibility of the proposed AGD, the DC
bus voltage was 2800 V, and the switched current was 900 A.
The experimental turn-on waveforms of the IGBT module
obtained by the proposed AGD are presented in Fig. 18. The
experimental turn-on radar map is presented in Fig. 19, where
it can be seen that the driving effect of the proposed AGDwas
better than that of the CGD. The driving effects of different
AGD strategies were different. The values of1Ic, dic/dt , tdon,
ton, and Eon of three AGD methods were all lower than those
of the CGD. Compared to the CGD, the AGD reduced the
value of tdon and tail voltage duration by 1.9 µs and 2.9 µs,
respectively. On the one hand, Eon and ton of the strategies
based on minimum Eon and minimum ton were the smallest.
On the other hand, 1Ic of the strategy based on minimum
1Ic was the smallest. Lastly, the driving effect of the CEM
was more balanced than other strategies.

More turn-on waveforms of the IGBT module under dif-
ferent operation temperatures are shown in Fig. 20. In the
experiment of different operation temperatures, the DC bus
voltage was 2800 V and the switched current was 900 A. All
these parameters are consistent with 25◦. It can be seen from
Fig. 20 that the impact of the operation temperature on the
voltage and current slopes is limited since the performance
of the IGBT module varies little with different operation
temperature, except that the Ipeak changed obviously. The
higher the operation temperature, the lower the Ipeak. In addi-
tion, the turn-on delay time varies little with temperature.
Therefore, the performance of the AGD will not be affected
under different operation temperatures.

B. TURN-OFF STRATEGY VERIFICATION
As presented in Table 3, in the turn-off strategy obtained
by the MEA-BP neural network-based prediction model, all
resistances were 10 �. In order to verify the accuracy of the

FIGURE 18. Experimental turn-on waveforms of the IGBT module.

FIGURE 19. Experimental radar maps of the turn-on driving effect.

MEA-BP neural network, six driving strategies were chosen.
In the first strategy (called AGD I), Rg4 was 3.3 �, Rg5 was
13�, and Rg6 was 3.3�. In the second strategy (called AGD
II), Rg4 was 3.3 �, Rg5 was 37 �, and Rg6 was 3.3 �. In the
third strategy (called AGD III), Rg4 was 3.3�, Rg5 was 39�,
and Rg6 was 3.3 �. In the fourth strategy, the gate resistance
was 3.3�. In the fifth strategy, the gate resistance was 16.5�.
Lastly, in the sixth strategy, the gate resistance was 47 �.
The experimental verification was carried out at the DC bus
voltage of 2800 V and the switched current of 900 A. The
experimental turn-off waveforms of the IGBT module are
presented in Fig. 21. The experimental turn-off radar map of
the IGBTmodule is presented in Fig. 22, where it can be seen
that when the gate resistance changed, the turn-off effects of
six driving strategies were the same as that of the CGD; thus,
the turn-off result predicted by the MEA-BP neural network
predictionmodel was correct, and therewas no need to use the
variable gate resistance method during the turn-off transition.

The turn-off waveforms of the IGBT module under dif-
ferent operation temperatures is shown in Fig. 23. The DC
bus voltage was 2800 V and the switched current was 900 A.
According to the turn-off strategy obtained by the prediction
model, the gate resistance was 10 �. In the tests conducted
at different temperatures, the turn-off delay time increases as
the operation temperature rises, while the voltage and cur-
rent slopes maintain almost constant. Similar to the turn-on
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FIGURE 20. Turn-on performance comparison of the IGBT module under
different operation temperatures. (a) Min Eon strategy. (b) CEM strategy.
(c) Min 1Ic strategy.

transient, only the Vpeak changed obviously under different
operation temperatures. The higher the operation tempera-
ture, the lower the Vpeak. However, the performance of the
turn-off strategy will not be affected under different operation
temperatures since the gate resistance did not change during
turn-off.

V. ANALYSIS AND DISCUSSION
Adding a suitable gate capacitance Cge to the driver circuit
can improve the driving effect, but this is not studies in this
work. Namely, we compared the AGD and CGD without
adding Cge. Since Cge was added to the AGD, the driving

FIGURE 21. Experimental turn-off waveforms of the IGBT module.

FIGURE 22. Experimental radar maps of the turn-off driving effect.

FIGURE 23. Turn-off performance comparison of IGBT module under
different operation temperatures.

effect of the driving strategy predicted by theMEA-BP neural
network could not be clearly determined.

A. PREDICTION ACCURACY ANALYSIS
The prediction accuracy of the MEA-BP neural network
is very important. The predicted and experimental turn-on
results are presented in Fig. 24, where it can be seen that there
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FIGURE 24. Comparison of Eon, ton, 1Ic, and CEM data of the turn-on
process.

were small differences between the predicted and experimen-
tal results. According to the obtained results, the improve-
ment was significant, namely:

• 1Ic of the strategy based on minimum 1Ic was 59.31%
smaller than that of the CGD.

• ton of the strategy based on minimum ton was 46.38%
less than that of the CGD.

• Eon of the strategy based on minimum Eon was 36.99%
smaller than that of the CGD.

• the driving effect of the CEM driving strategy was
65.65% smaller than that of the CGD.

In Fig. 21, the over-voltage (Vpeak) is determined using the
stray inductance Ls and dic/dt as follows:

Vpeak = Vdc + Ls ·

∣∣∣∣dicdt
∣∣∣∣ (16)

As shown in Fig. 21, dic/dt values of seven driving strate-
gies were almost the same as that of the CGD, so Vpeak values

FIGURE 25. Spectrum comparison between CGD and AGD for Vce
experimental results. (a) Minimum Eon and ton strategy. (b) CEM strategy.
(c) Minimum 1Ic strategy.

were also almost the same. In Fig. 22, it can be seen that the
turn-off results predicted by MEA-BP neural network were
accurate. The driving effect at a different gate resistance Rg
was mostly the same.

B. ELECTROMAGNETIC INTERFERENCE ANALYSIS
In order to have an understanding of the EMI induced by high
dic/dt and dvce/dt , EMI analysis of the voltage and current
waveforms were carried out, respectively. The approxima-
tion of the spectrum for both Vce and Ic are shown in Figs.
25 and 26. These data were obtained by the oscilloscope
Tektronix MDO4104-3 in the experiment and the spectrum
was obtained applying the FFT in MATLAB software after
the data were processed. The results show that the AGD did
not cause additional EMI generation.

C. DRIVING STRATEGY ANALYSIS
In the turn-on transition of the IGBTmodule, the fast recovery
diode was turning off, so the turn-on strategy was affecting
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FIGURE 26. Spectrum comparison between CGD and AGD for Ic
experimental results. (a) Minimum Eon and ton strategy. (b) CEM strategy.
(c) Minimum 1Ic strategy.

the turn-off process of the fast recovery diode. By making the
fast recovery diode turn-off softer, the loss can be reduced.

In Fig. 17(a), for the statistical turn-on strategies, it can be
seen that a small resistance was used in stage I with the aim of
reducing tdon; a large resistance was used in stage II with the
aim of reducing dic/dt and Ipeak ; and lastly, a small resistance
was used in stage III, in order to make the IGBT enter the
saturation region quickly.

There are two types of IGBT chips: Trench-IGBT and
Planar-IGBT. The turn-off process of a Trench-IGBT is not
affected by gate resistance, but the turn-off process of a
Planar-IGBT is affected by gate resistance [1], [6]–[9]. The
IGBT module used in this paper is the Planar-IGBT, but the
turn-off strategies that are presented in Fig. 17(b) show that
in the experiments, the gate resistance had little effect on the
module turn-off process. The experimental results presented
in Figs. 21 and 22 prove the same. After the confirmation
from the chip manufacturer, it has been concluded that the
IGBT chip technology has constantly been developing and
that the semiconductor manufacturer had made the best opti-

FIGURE 27. The optimized variable gate resistance method. (a) Circuit
diagram. (b) Photograph.

mization of the device, so there is no longer a need to improve
the IGBT turn-off characteristics through the gate resistance.
In Table 2, the same resistances are used for stages I and III
of the turn-on strategies. Such a variable gate resistance drive
circuit can be optimized in the way presented in Fig. 27(a),
and the corresponding driver optimization is illustrated in
Fig. 27(b). The operation principle of the three-stage turn-on
circuit is shown in Fig. 28. In turn-on stages I and III, Q1 and
Rg1 were used. Thus, due to driver optimization, the hardware
cost is reduced.

VI. CONCLUSIONS AND FUTURE WORK
A prediction method of driving strategy of high-power IGBT
module based on MEA-BP neural network is proposed in
this paper to improve the variable gate resistance method of
active gate driver. The switching process of the IGBTmodule
is analyzed, of which the turn-on and turn-off transitions of
the IGBT module are both divided into three regions in order
to obtain different control purposes based on the successive
stages of the switching transient. The prediction networks
for turn-on and turn-off driving strategies of variable gate
resistance active gate driver are established, in which the
gate resistances in three-stages are input, and switching loss,
switching time, overshoot are output. In order to obtain the
optimal weights and biases, the mind evolutionary algorithm
is used to optimize the BP neural network. The prediction
method uses switching time as a constraint condition to make
both switching loss and overshoot smaller without increasing
the switching time. In order to verify the effectiveness of the
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FIGURE 28. The operation principle of the optimized circuit. (a) Turn-on
stage I. (b) Turn-on stage II. (c) Turn-on stage III.

driving strategy prediction method proposed in this paper,
experiments are carried out for a 4500V/900A IGBTmodule.
The experimental results show that the driving effect of the
proposed driving strategies is significant. Compared to the
CGD, the AGD reduces the value of tdon and tail voltage dura-
tion by 1.9 µs and 2.9 µs, respectively. The over-current1Ic
of the strategy based onminimum1Ic is 59.31% smaller than
that of the CGD. The turn-on time ton of the strategy based on
minimum ton is 46.48% less than that of the CGD. The turn-
on energy loss Eon of the strategy based on minimum Eon
is 36.99% smaller than that of the CGD. Lastly, the driving
effect of the CEMdriving strategy is 65.65% smaller than that
of the CGD.

A comprehensive evaluation method for driving effect is
proposed in this paper. This method not only assists the neural
network to find the optimal strategy but also determines the
driving effect of the driver intuitively. It is found that the
Planar-IGBT turn-off process is almost not affected by the
gate resistance, which shows that due to the development
of the IGBT chip technology, there is no need to use the
gate resistance to improve the turn-off effect. Thus, a simpler
turn-on and turn-off variable gate resistance driving circuit is
realized.

A prediction method proposed in this paper is simple and
versatile and can be used as a reference for further driver
improvements. It can be used not only for the guidance of the
driving strategy determination of high-power IGBT module
driver, but also for the driver circuit improvement in the
design process.

In our future work, we will use machine learning algo-
rithms to improve the other driving methods of the IGBT and
SiC MOSFET modules.
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