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ABSTRACT Branchpoints (BPs) are essential sequence elements of ribonucleic acids (RNAs) in splicing,
which is the process of creating a messenger RNA (mRNA) that is translated into proteins. This study
proposes to develop deep neural networks for BP prediction. Extensive previous studies have shown
that the existence of BP sites depends on sequence patterns called motifs; hence, the prediction model
must accurately explain its decisions in terms of motifs. Existing approaches utilized either handcrafted
features for interpretable, though less accurate, predictions or deep neural networks that were accurate
but difficult to explain. To address the aforementioned difficulties, the proposed method incorporates
1) generative adversarial networks (GANs) to learn the latent structure of RNA sequences, and 2) an attention
mechanism to learn sequence-positional long-term dependency for accurate prediction and interpretation.
Our method achieves highly satisfying results in various performance metrics with adequate interpretability.
We demonstrated that, without any prior biological knowledge, BP prediction by the proposed method is
closely related to three motifs, the consensus sequence surrounding BPs, polypyrimidine tract, and 3’ splice
site, that are well-established in molecular biology.

INDEX TERMS Branchpoint prediction, deep neural networks, generative adversarial networks, inter-
pretability.

I. INTRODUCTION
The human body has numerous types of cells, such as blood
cells, neurons, and liver cells. Even though their functions are
different, the cells are created from the same set of deoxyri-
bonucleic acid (DNA) by combining different genes to syn-
thesize a functional gene product, e.g., protein. 1 The process
of making pre-messenger ribonucleic acid (pre-mRNA) from
DNA, messenger RNA (mRNA) from pre-mRNA, and pro-
tein from mRNA is referred to as gene expression. 2
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1DNA is a long string of paired chemical molecules called nucleotides

that are of four types denoted by A, C, G, and T [1]. Genetic information in
DNA is organized into nucleotide sequences called genes. The set of genetic
material stored in DNA is called a genome.

2RNA is a molecular transcript of DNA that conveys the genetic informa-
tion to create proteins. The types of nucleotides in RNA are A, C, G, and U
instead of T.

Large intervening sequences called introns are spliced out
and only the flanking sequences called exons are spliced in
together to comprise themRNA, as shown in Figure 1(a). This
is the process of alternative splicing to generate various types
of proteins from the same mRNA. As an essential part of
gene expression, splicing incorporates three key nucleotides:
5’ and 3’ splice sites (sss) and a BP site. The 5’ and 3’ sss
denote the first (upstream) and last (downstream) nucleotides
within an intron, respectively. A BP is a nucleotide where
the 5’ ss is joined to a lariat-forming to make an intron
separated from a pre-mRNA. After splicing, each mRNA
molecule encodes the instructions to build proteins. Thus,
identifying the 5’ ss, 3’ ss, and BP is crucial for understanding
the mechanism of splicing. Mis-spliced mRNA can result
in altered proteins and often damage their functions, such
as causing diseases [2]. The 5’ and 3’ sss are detected by
well-established RNA sequencing techniques [3]; however,
it is difficult to identify BPs in sequencing experiments,
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as the lariats are degraded rapidly and appear rarely. Recent
efforts have enriched the lariats in RNA sequencing, building
large-scale datasets of genome-wide BP annotations [4], [5];
however, only 40% of the entire human introns were covered
by annotation of almost 130,000 human BPs.

In view of these difficulties, we propose a deep neural
network model to predict the BP for a given RNA sequence
taking into consideration the following: First, BP sites are
known to co-exist with motifs or sequence patterns of up to
tens of nucleotides that are typically not readable by humans
and difficult to identify; a few ultra-conservative sequence
motifs were observed experimentally [6]. Therefore, it is
necessary to develop a model that explains its predictions in
terms of motifs with high accuracy. Second, the distribution
of BPs is highly biased within 20 to 50 nucleotides upstream
from the 3’ sss, as shown in Figure 1(a) [7], causing a
class-imbalance in the datasets. The existing approaches were
constrained as they relied on either interpretable but inaccu-
rate handcrafted sequential features or deep neural networks
of poor interpretability [3], [8]–[12].

We address these issues by using generative adversarial
networks (GANs) [13], [14] to learn the latent structure of
RNA sequences for BP prediction, which we call BP-GAN
hereafter. The BP-GAN decomposes the underlying structure
of input RNA sequences into two types of features: one
directly affecting the BP prediction and the other irrelevant to
the prediction. We further improve the BP-GAN by adopting
a novel integration of attention mechanism and triplet loss
with hard negative mining. The attention mechanism enables
to learn long-term dependencies for a given input sequence
for compelling sequence modeling. In addition, it provides a
principled way of interpreting the regional clues regarding the
part of a sequence that the BP-GAN attended to. As shown,
the BP-GAN recovers three biologically meaningful motifs.
To resolve the problem of class imbalance, we use triplet loss
to regularize the BP-GAN during training. This improves the
prediction accuracy effectively. In summary, the contributions
of this study are as follows:

1) We present the BP-GAN as a novel integration of
attention into GAN, regularized by triplet loss. Deep
neural networks in the BP-GAN are carefully designed
for BP prediction, achieving excellent results in two
large-scale datasets.

2) Our method uses a GAN to learn the structure of latent
variables for RNA sequences relevant to BP prediction.
To the best of our knowledge, a GAN is suitable for
generative tasks [15]–[19] in gene expression, however,
this is the first GAN-based attempt to address a dis-
criminative task. We believe that our approach is also
applicable to other related downstream tasks.

3) As a key benefit, the BP-GAN provides a means to
interpret and visualize the rationale behind its decisions
by using attention, which was not addressed in previous
studies on BP prediction. In particular, we demon-
strated that it can recover three biologically meaningful
motifs that are strong indicators of BPs.

II. RELATED WORK
First, we present an overview of the deep neural
network-based approaches related to RNA splicing. Next,
previous efforts on BP prediction are summarized to highlight
our contributions.

A. GENERATIVE MODELS
Agenerativemodel aims to determine an underlying structure
of variables relevant to real use-cases. For example, only
small structured subsets of pixel values are plausible exem-
plar images in the real world. A GAN is a deep generative
model with an exceptional capability to learn the structure
of parameters and generate samples similar to true data [13].
It has initiated several recent studies in genomics [15]–[19].
In [15], [19], the approaches generated DNA sequences
using a GAN. A GAN model in [17] aimed to generate
RNA sequences for protein function analysis whereas other
works focused on generating protein structures [16] and
sequences [18]. Gene expression was investigated to simu-
late an RNA-seq dataset focusing on the diversity of skin
cells [20]. This work interpreted the learned parameters in
a biologically meaningful manner that was similar to ours.
An approach in [21] used a GAN to learn the probabilistic
distribution of gene expression in single cells.

B. ATTENTION MECHANISM
Attention learns inter-/intra-sequence dependencies in
sequential modeling [22]–[24]. Encouraged by its success,
a number of recent studies in genomics incorporated atten-
tion into various prediction models on RNA-protein bind-
ing sites [25], gene expression analysis [1], and precursor
microRNAs [26]. These approaches primarily focused on
attention at the level of hundreds of nucleotides [1], or used
recurrent neural networks (RNNs) [26] to learn long-term
dependencies between sequence elements [24]. However,
we considered an attention mechanism without using RNNs,
called self-attention or intra-attention, to relate the elements
of an input sequence with each other more effectively.

C. MACHINE LEARNING APPROACHES FOR BP
PREDICTION
Earlier studies on BP prediction were largely based on
classical machine learning with handcrafted sequential fea-
tures [8]–[11], or deep neural networks [3], [12], [27], [28].
The former included features such as sequence conserva-
tion and positional bias for a support vector machine [8],
motifs of an intron sequence for an ensemble of multi-
ple algorithms [9], and a score function calculated from
position-specific scoring matrix (PSSM) and binding energy
of spliceosome [10]. An approach similar to [10] solved
the mixture model of motif interference and polypyrimidine
tract3 A gradient boosting algorithm was used in [12].

3 A region of mRNA that promotes RNA splicing, which is 15-
20 nucleotides long and rich with C and U nucleotides [29].

97852 VOLUME 8, 2020



H. Lee et al.: BP-GAN: Interpretable Human BP Prediction Using Attentive GANs

FIGURE 1. Overview of the proposed BP-GAN method: (a) (left) BP distribution of a dataset [5] and (right) the role of BPs in RNA splicing,
(b) input format of RNA sequences, and (c) internal structure of the BP-GAN. The details of loss functions are given in Section III. A full
description of network parameters and the auxiliary mini-batch using triplet loss is detailed in the Appendix.

On the other hand, [27] pioneered the use of convolu-
tional neural networks (CNNs) with extra annotations of
positional information of nucleotides. An approach proposed
in [30] was similar to ours in that they visualized motifs for
predicting splice sites in DNA sequences; however, it was
based on a simple CNN that lagged behind state-of-the-art
approaches in terms of prediction accuracy [27]. Recently,
an RNN-based approach using bi-directional long short-term
memory (LSTM) learned sequential features [3]. This work
was extended in [28] by processing input sequences using
CNN before applying them to LSTM and achieved excel-
lent results. The RNN-based approaches used additional
information on the binding energy of nucleotides whereas
our approach requires only RNA sequences. To summa-
rize, the existing deep neural network-based approaches are
merely straightforward applications of CNN or RNN to
BP prediction and few of the previous studies addressed
the issue of interpretability of the predictions. The work
in [31] presented the comprehensive evaluations on the recent
approaches for various performance measures on in-house
RNA datasets as well as public ones.

III. PROPOSED METHOD
A. PROBLEM FORMULATION
The BP-GAN takes as its input an intronic region in an RNA
sequence of N nucleotides of the four types {A,C,G,U}N ,

as shown in Figure 1(b). We use a one-hot vector si =
{0, . . . , 0, 1, 0, . . . , 0} ∈ R4 to represent each type of
nucleotide and denote the input sequence by s = {si} ∈
R4×N . Following this notation, sN ∈ s is the last nucleotide at
the 3’ ss. For training the BP-GAN, a ground-truth of BP sites
for a given input s is given by b = {bi} ∈ {0, 1}N . A sequence
can have multiple BPs [5]. The BP-GAN predicts a vector
b̂ = {b̂i} ∈ {0, 1}N to represent the probability to be a BP for
each nucleotide in s.

B. LEARNING FEATURE REPRESENTATION USING GAN
A GAN learns generative models by utilizing the discrimi-
native capability of neural networks. A generator G takes a
latent variable z sampled from known prior Pz to generate
a sample sz = G(z). The learning process of a GAN is a
minimax game of G parameterized as θG and a discriminator
D with θD, which is formulated as

min
θD

max
θG

J (G,D)

= Ladv
= −

{
Es∼Ps

[
logD(s)

]
+ Ez∼Pz

[
log(1− D(sz))

]}
. (1)

The discriminator D tries to decrease the cost function
J (G,D) by maximizing the probability of a real data s, which
is sampled from the real distribution Ps, to be classified as
real, D(s), and classifying a fake data sz = G(z) as fake
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FIGURE 2. (a) Branchpoint-attention (BP-ATT) block and (b) the first Transformer of the BP-ATT block. A Transformer block is mainly decomposed
into h identical attention layers. Each of the layers evaluates a scaled-dot product attention.

in a term denoted by adversarial loss Ladv. On the contrary,
the generator G tries to mislead D, i.e., decrease 1 − D(sz),
and thus, increase the cost function.

Figure 1(c) illustrates the structure of the BP-GAN. An
input s is encoded into two latent variables xc = Ec(s) and
xo = Eo(s) through two encoders Ec and Eo parameterized by
θEc and θEo with xc, xo ∈ Rdx×N , where dx is a dimension of
a latent variable corresponding to a sequence element. xc rep-
resents a context feature that is similar in all sequences with
the same BP sites. We consider two BP sites to be identical
based on their positions, regardless of the type of nucleotide.
xo describes other aspects of the sequence irrelevant to the
prediction of BPs. Thus, it is possible to reconstruct s from xc
and xo. To this end, we use a network R with parameters θR:
ŝ = R(xc, xo), where ŝ is a reconstruction of s with loss Lrecon
given by

Lrecon =
∥∥s− ŝ∥∥2 . (2)

The BP sites are predicted by a network BP, the key com-
ponent of the BP-GAN, that uses the context feature xc cor-
responding to real sequences s to generate b̂ = BP(xc). We
denote a loss of BP by LBP as

LBP = −
1
N

∑
bi∈b,b̂i∈b̂

bi log(b̂i)+ (1− bi) log(1− b̂i). (3)

The generator G generates a sequence sz = G(z) from
z ∼ N (0, 1). The BiGAN approach [14] demonstrated that
a GAN can be improved by augmenting a feature encoder
into the training process. As a result, the discriminator D of
the BP-GAN additionally ingests the features xc and xo along
with b to discriminate better between real and fake data. Thus,
we rewrite Ladv in (1) as

−Ladv = Es∼Ps
[
logD(s, xc, xo, b)

]
+Ez∼N (0,1)

[
log(1− D(sz, xz,c, xz,o,BP(xz,c))

]
(4)

where, xz,c = Ec(sz) and xz,o = Eo(sz).

C. SEQUENCE-BASED POSITIONAL SELF-ATTENTION
Stacked 1-D residual networks (ResNets) [32] and
self-attention blocks feature largely in the network architec-
ture of the BP-GAN. As discussed in Section II, self-attention
aims to effectively learn long-term dependency of an
input sequence. We used Transformer [24], a self-attention
mechanism without using RNN by combining two Trans-
former blocks and three 1-D ResNet blocks, referring
to a branchpoint-attention (BP-ATT) block as shown in
Figure 2(a). The Transformer depicted in Figure 2(b) takes
the input feature x ∈ RN×dk corresponding to s, where
N is the sequence length of s, and dk is a dimension of
x corresponding to an element of sequence s and set to
64. Given a query, Q, and a set of key-values, K–V with
Q,K ,V ∈ RN×dk created from x, we evaluate the similarity
between the key and query. Next, attention Att ∈ RN×N is
given as a scaled dot product by

Att(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (5)

As positional information is lost in self-attention, we apply a
positional encoding operation to the input feature to translate
it to a positional matrix pe ∈ RN×dk as

pepos,2i = sin(pos/1000002i/dk ),

pepos,2i+1 = cos(pos/1000002i/dk ) (6)

where, pos ∈ {1, . . . ,N } is a sequence-positional index and
i ∈ {1, . . . , dk2 } is the dimensional index of x. We combine
h results of scaled dot products to attend to different repre-
sentation spaces jointly. The results are projected to a linear
layer given by

M = concat(Att(pe′WQ
1 , pe

′WK
1 , pe

′WV
1 ), . . . ,

Att(pe′WQ
h , pe

′WK
h , pe

′WV
h ))Wo (7)

whereW ∗i andWo are trainable parameters, and pe′ = x+pe.
We then apply layer normalization to a feature M and add it
to the input feature via a residual connection. The output of
the Transformer block, O = Norm(x+M )Wf , is a projection
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FIGURE 3. Interpretation of attention map for motif analysis: (a) An attention map merged from a BP-ATT block and (b) generation of weighted
sequence logos of sequences. (Best viewed in color).

of the normalized sum x +M to fully connected layers with
trainable parameters Wf . The same procedure applies to the
other BT-ATT blocks in Figure 3(a) except for the positional
encoding. We used three BP-ATT blocks in EC , two in Eo
and G, and one in D. (See Appendix APPENDIX B for the
full model details of the BP-GAN.)

D. MOTIF INTERPRETATION FROM ATTENTION
In addition to an increase in the accuracy, the BP-GAN
provides interpretability on prediction decisions, using the
self-attention mechanism as its key strength. The BP-GAN
is specifically designed to identify motifs within an input
sequence to predict their locations and attention intensity.

Given an intronic input sequence s, the motif interpre-
tation from the attention begins by summing h attention
maps obtained from the last BP-ATT of Ec into a single
attention map MAs =

∑h
j=1 softmax(QjKT

j /
√
dk ) ∈ RN×N ,

where Qj and Kj are the key and value corresponding to the
Attention mapi as shown in Figure 2(b). It is likely that the last
attention block delivers the most informative attention map.
We denote the i–th row of MAs by MAs,i ∈ R1×N . In the
context of the Transformer model,MAs,i is an attention vector
that represents the extent to which a sequence element si ∈ s
attends to other nucleotides. Inversely, the vertical rectangles
show the extent to which the associated nucleotides are being
attended by others. Figure 3(a) shows an example of the
three BP-ATT blocks in Ec for input s with a BP being s49.
The two horizontal rectangles in the figure depict attention
vectors showing how s1 (5’ ss) and s49 (BP) attend to other
nucleotides of the input. The attention intensity in the vertical
rectangles for s49 is more distinguishable than other sites in
the later attention maps. This observation explains why we
chose the last BP-ATT for motif analysis, which is explained
below. The example also suggests that s49 is an important clue
for branch prediction as nucleotides in the input sequence
attend to s49 the most.
Next, we define a shift function sh(x, k) that shifts all the

elements in sequence x so that the k–th element is relocated
to the center of x thereafter. Nucleotides outside the input

sequence can be involved as a result of the shift operation.
Given the set of test sequences S = {s} under consideration,
let Ac ∈ R1×N be an expected value of the shifted attention
vectors, which is given by

Ac =
1
|S|

∑
s∈S

sh(MAs,cs , cs) (8)

where cs is a positional index to be the center of s and |S| is the
cardinality of S. However, each sequence may have different
cs when, for example, it refers to their BP sites. Given the
predicted BPs b̂s of sequence s, we obtain an aggregated
attention map Ac by considering cs = b̂s. This enables us
to identify common motifs to which predicted BPs attended.
Furthermore, if we seek motifs with respect to a specific
position in the RNA sequence, e.g., the 3’ sss, it is required
to merely set all cs identically to N .
We also define SLS ∈ R4×N as a sequence logo [33]

corresponding to S. Given a collection of aligned sequences,
a sequence logo is a graphical representation of the sequence
conservation of nucleotides in a strand of DNA/RNA.
A sequence logo shows how frequently each type of
nucleotide appears at each position along the horizontal axis
as shown in Figure 3(b). The frequency of a type corresponds
to the larger letter, depicting the consensus sequence and
diversity of sequences. A sequence logo SLS′ is then created
from the set of shifted sequences S′ = {sh(s, cs)}. Now,
we define SL(W )

S′ as a weighted sequence logo using the mean
attentions obtained from (8) corresponding to S′. We now
have

SL(W )
S′ = SLS′ × diag(Ac) (9)

where diag(Ac) is a diagonal matrix with Ac being the diago-
nal entries.

To summarize, SL(W )
S′ visualizes the extent to which each

of the nucleotides affects the BP sites using input sequences
aligned to cs. In Section IV-C, we showed that the motifs dis-
covered by the BP-GAN included to the consensus sequence4

4 The consensus sequence is yUnAy in nucleotide codes, where y is C or
U and n is any nucleotide in addition to U and A. Here, A represents a BP site.
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and polypyrimidine tract that are well established in previous
studies [6].

E. TRAINING THE BP-GAN END-TO-END
Owing to the biased distribution of BPs, there is
class-imbalance that may cause overfitting. Therefore, we use
a novel regularization based on triplet loss to learn a distance
function from three samples namely, an anchor, a positive,
and a negative [34]. This loss ensures that, in feature space,
an anchor is always closer to a positive than a negative by a
margin at least. Let us define sa,i as an anchor having a BP
at i, and sp,i and sn,i as a positive and negative, respectively.
The triplet loss Ltri is given by

Ltri =
N∑
i=1

[∥∥xa,i − xp,i∥∥2 − ∥∥xa,i − xn,i∥∥2 + α]
+

(10)

where, [·]+ := max(0, ·) takes the positive component of its
input, α is the margin, and x∗,i = Ec(s∗,i).

A positive is a sequence with a different nucleotide at the
same BP position. As the training proceeds, most of the neg-
atives will be further apart from an anchor than the positives,
making Ltri ineffective. Hard negative mining relieves this
problem by favoring hard negatives over easy ones to evaluate
Ltri. The selection of a hard negative to the anchor is based on
the following assumptions: The features of sequences with a
single BPwill be similar as their BP sites are closer, and it will
be harder to classify these sequences. Likewise, sequences
with multiple BPs will be similar as they have more number
of identical BPs. We considered sequences with a single BP
in (10) for simplicity. (See Appendix APPENDIX A for more
details on identifying hard negatives.)

During the training, not all the anchors may have their
counterparts, positives, and hard negatives in a mini-batch.
We augment auxiliary mini-batches into the training process
to calculate Ltri in addition to normal mini-batches. In par-
ticular, we collect the triplets found in normal mini-batches
and put them to an auxiliary mini-batch. When the auxiliary
mini-batch has as many samples as a normal mini-batch,
we perform a stochastic gradient descent on the auxiliary
mini-batch to evaluate Ltri.
The entire BP-GAN is differentiable. Thus, the model

can be trained end-to-end based on standard back propaga-
tion [35]. Combining (2), (3), (4), and (10), we rewrite the
objective function in (1) by

min
θD,θBP,θR

max
θG

J (G,D,BP,R)

= L(nor)BP + L(nor)recon + λLadv + 1auxL
(aux)
tri (11)

where λ is a coefficient of the adversarial loss, and the
indicator function, 1aux , on the right determines whether
the training is on an auxiliary mini-batch. L(nor)BP and L(nor)recon
are the expected losses corresponding to LBP and Lrecon for
sequences in a normal mini-batch, while L(aux)tri to Ltri in an
auxiliary mini-batch. We used the GAN training procedure
following [36], except for the auxiliary mini-batches. (See
Appendix Algorithm 1.)

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
1) IMPLEMENTATION DETAILS
Weused the ADAMoptimizer [39] with its parameters β1 and
β2 set to 0.5 and 0.9, respectively, for the training. The size
of a mini-batch was set to 512. The learning rate was set to
0.001. Margin α in (10) was set to 10. We set λ in (11) to 0.5.
Auxiliary mini-batches were found to be augmented almost
every five normal mini-batches during the training.

2) DATASET PREPROCESSING
We used two public datasets of RNA sequences extracted
from chromosomes 1–22 and X in the reference human
genome hg19 with a high confidence set of BP annotations,
referred to as DSP [5] and DSM [4]. We set N = 70, taking
the 3’ ss and 69 of its upstream precedents to construct
an input sequence as a 4 × 70 one-hot matrix. We split
the datasets into three sets identical to the settings used in
previous studies [3], [8], [12], [28], i.e., chromosome 1 as a
test set, chromosomes 2, 3, 4, and 5 as a validation set, and
the remaining as a training set. Table 1 provides the summary
of the datasets regarding data splits when training BP-GAN
and data imbalance ratio between BPs and other nucleotides.
Figure 6 in Appendix shows a set of plots for the training and
validation data with each of the datasets.

TABLE 1. Data splits for BP-GAN training and imbalance ratio between
BP and other nucleotides on two datasets.

B. QUANTITATIVE EVALUATION OF PREDICTION
ACCURACY
1) OVERALL PERFORMANCE USING LARGE SCALE DATASETS
We used six performance metrics: the area under the
receiver operating characteristic curve (auROC), area under
precision-recall curve (auPRC), F-score, sensitivity (SE),
specificity (SP), and recall at 1 (R@1). We set the decision
threshold to 0.5 to measure the sensitivity, specificity, and
F-score. A high sensitivity signifies that a model is likely
to predict BPs with a higher confidence than the threshold.
Similarly, a high specificity indicates that a model is effective
to filter non-BPs. The auROC and auPRC are more infor-
mative with multiple thresholds than the basic metrics. We
laid emphasis on auPRC over auROC with regard to class
imbalance [40]. The ratio of the number of BPs to that of other
nucleotides was approximately 1:45 and 1:39 in DSM and
DSP, respectively. Another importantmeasure namely, a large
value in recall at K indicates that the K BP sites of highest
probabilities as predicted by the model are highly likely to be
the true BPs. This can improve the efficiency of biological
experiments by reducing the number of BP candidates to be
validated.
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FIGURE 4. The portion of each type of nucleotides in the consensus motif yUnAy induced by the test sets of
(a) DSM and (b) DSP , and sequences generated by G(·) of BP-GAN with the training sets of (c) DSM and
(d) DSP respectively. (Best viewed in color).

TABLE 2. Evaluation of prediction accuracy using sensitivity (SE), specificity (SP), F-score, the area under receiver operating characteristic curve (auROC),
area under precision-recall curve (auPRC), and recall at 1 (R@1) with the two datasets DSP and DSM . For ablation studies, we evaluated several variants
of the BP-GAN in the lower half of the table by combining attention mechanisms (ATT) and regularization with triplet loss (REG) on top of default 1-D
CNN and GAN. The best scores are highlighted in red.

Table 2 compares the BP-GAN with four approaches
namely, SVM-BP [8], branchpointer [12], LaBranchoR [3],
and Nazari et al. [28], including two state-of-the-art stud-
ies, on the test sets from the two datasets. Not all
performance measures are available for the methods, for
example, no working implementations of SVM-BP [8] and
Nazari et al. [28] exist so that we can use only the perfor-
mance numbers reported in the literature; branchpointer [12]
could be applied only toDSM as it required extra information,
that was not available, to use the new dataset.

The BP-GAN in the last row of the table outperforms
SVM-BP and branchpointer except for sensitivity. In compar-
ison with the best performing approaches, LaBranchoR [3]
and Nazari et al. [28], the BP-GAN boots the performance
over all metrics, except auROC on DSP that is already sat-
urated in all the approaches. The results indicate that the
BP-GAN can be used effectively to identify real BP sites
as well as filter sites that are non-BP. Notably, the perfor-
mance gain BP-GAN over Nazari et al. [28] (0.009 on DSP
and 0.014 on DSM ) is identical at least or larger than those
achieved by Nazari et al. [28] over LaBranchoR [3] (0.009 on
DSP and 0.009 on DSM ), in terms of auPRC.
In addition, we present additional evaluations on auPRC

for a region [-45,-18] where most BP are located as shown
in Table 3. The auPRC increased compared to the whole
region evaluation in all the approaches. BP-GAN has the
performance improvement similar to the case of whole region
in Table 2 over LaBranchoR [3] andNazari et al. [28].We also
present results with other chromosomes as test sets in Table 4
to show that the BP-GAN consistently outperforms other
approaches.

TABLE 3. Additional evaluations on auPRC for BP-rich region [−45,−18].
The best scores are highlighted in red.

Figure 4 (a) and (b) depict two sequence logos corre-
sponding to the test datasets of DSP and DSM that show the
distribution of nucleotide types at BP predicted by our model.
The figures illustrate that adenine (‘A’) is the dominant type
of nucleotides at BP predicted and the sequences generated
contained the consensus motif.

2) ABLATION STUDY
The pipeline of the BP-GAN combines several components:
GAN, attention, and regularization with triple loss. We con-
ducted an ablative study on these components and the results
are shown in the bottom half of Table 2. A combination of
all the components represents the BP-GAN. For comparison,
we built CNN models by using the encoder with its net-
work structure identical to Ec and Eo and the BP predictor
BP; however, the encoder in the CNN models does not use
the disentangled feature representation, unlike the BP-GAN.
Moreover, only the cross-entropy loss is used for training
the model without the adversarial term. The GAN models
exhibited an improved performance in most of the metrics
as compared to the CNN models with the same configura-
tions of attention and regularization. In particular, the largest
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FIGURE 5. Interpretation of attention maps to generate weighted sequence logos. (a) An attention map merged from Transformer blocks was used to
weight a sequence logo of sequences focusing on different areas such as (b) around a BP and the 3’ ss. (Best viewed in color).

TABLE 4. Performance evaluation on more chromosomes. The best
scores are highlighted in red.

performance gain was achieved in auPRC. It was not clear
whether the attention and triplet loss improved the sensitivity
on top of GAN consistently. The attention improved auPRC
significantly in the CNN as well as GAN models. The per-
formance of the CNN models with attention was comparable
with those of LaBranchoR [3] and Nazari et al. [28]. The
regularization using triplet loss resulted in an additional,
consistent improvement in the performance in most of the
metrics on all the datasets. The gain with triplet loss is not as
significant as that achieved from GAN or attention; however,
the model is effectively generalized, as expected.

Figure 4(c) and (d) depict sequence logos showing the
distribution of the nucleotide types for generated sequences
by the generator in BP-GAN. We sampled 1000 RNA
sequences from the generator G(·) of BP-GAN after train-
ing for 80 epochs until convergence. Then their BPs were
predicted by BP(·). We repeated this sampling procedure
10 times and created the sequence logo corresponding to the
10,000 generated sequences. The sequence logos reveal the
consensus sequence yUnAy clearly. This result shows that
BP-GAN learnt the features for BP from input sequences
successfully.

3) EVALUATION OF PREDICTION OF MULTIPLE BPs
As a significant portion of human introns contains multiple
BPs [5], we conducted further investigations concerning their
prediction.DSP was the latest dataset with emphasis onmulti-
ple BPs hence, we compared our approach with LaBranchoR
in recall for three splits of the test sets of DSP corresponding
to the number of BPs in a sequence K . We considered those
cases with not more than three BPs: 4517 sequences of a
single BP (K = 1), 1618 of dual BPs (K = 2), and 593 of
triple BPs (K = 3). These occupied more than 95% of the
dataset. Table 5 shows that the BP-GANoutperforms LaBran-
choR in terms of prediction of multiple BPs. On the whole,
the performances of the BP-GAN and LaBranchoR increased
but converged at larger K . The BP-GAN, however, is much
superior to LaBranchoR in smaller top-K recommendations.
The results imply that the BP-GAN can be used to identify
BPs from fewer proposals in a cost-effective manner.

C. INTERPRETATION AND VISUALIZATION OF ATTENTION
FOR SEQUENCE MOTIF ANALYSIS
The last set of experiments dealt with the interpretation of the
predictions for identification of motifs and its visualization as
described in Section III-D. We selected two nucleotide sites
namely, the BP and 3’ ss. We considered the union of the
test splits of DSP and DSM to be S in (8). We also set cs to
the BPs and 3’ sss of the sequences in S and calculated their
corresponding weighted sequence logos, which are depicted
in Figure 5(a) and Figure 5(b), respectively. In Figure 5(a),
we considered the BPs in [−45,−15] to be investigated in
those visualizations that accounted for almost 97% of the
predicted sites.

In terms of relative distance from a BP, the interval [−3, 2]
of the weighted sequence logo in Figure 5(a) is highlighted
by a dashed red rectangle. The motif observed in the interval
is identical to the aforementioned consensus sequence in
nucleotide codes, established based on previous studies [6].
Figure 5(b) highlights the interval [40, 70] as the distance
from the 3’ ss in the weighted sequence logo. Similar to the
previous case, another well-known sequence motif is marked
by the wide red rectangle. This is the polypyrimidine tract
consisting of rich C and U. In addition, the BP-GAN affirms
that the motif ‘AG’ at the 3’ ss is crucial for BP prediction,
which is depicted by the narrow rectangle on the right side
in Figure 5(b). Note that such the existing approaches are not
able to identify such sequence motifs at distal and variable
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TABLE 5. Comparison of BP-GAN with LaBranchoR [3] in terms of multi-BP prediction in recall at K with three sequence sets of identical BPs. The best
scores are highlighted in red.

TABLE 6. Comparison of BP-GAN and Nazari et al. [28] in detecting sequence variants on two datasets.

locations from BP sites. The results of the interpretation
from attention demonstrate that, without any prior biological
knowledge, the BP-GAN gains meaningful insights in terms
of prediction of sequence motifs. The sequence logo analysis
is an added advantage of the BP-GAN to identify novel
sequence motifs for providing human-interpretable reasoning
on its decisions, leading to a better understanding of RNA
splicing.

The proposed method of interpretation using the BP-GAN
is general as the effect of any region of RNA sequences on
branch prediction can be identified directly. For example,
if we enlarge an input sequence, distal motifs from a BP can
be identified, if they exist. To the best of our knowledge, none
of the previous literature addressed this aspect of BP using
deep neural networks. An investigation in this area may be
pursued in future.

D. EVALUATION ON VARIANTS
We investigated the effect of sequence variants on the model
prediction. We used two public datasets of sequence variants,
ClinVar [37] and EpilepsyGene [38], While ClinVar contains
sequence variants and corresponding phenotype annotations
for a wide variety of diseases, EpilepsyGene focuses on
epilepsy disease. For comparing with the state-of-the-art
work, we performed the evaluation similarly to what was
done in Nazari et al. [28]. In particular, we selected 18 vari-
ants fromClinVar that are known to cause non-functional pro-
tein and aligned the variants to sequences inDSP to constitute
a candidate subset for the evaluation. Then, we modified each
of the nucleotides within [-9,9] in distance from the predicted
BP site and repeatedly applied the variants to BP-GAN to
see if the prediction of BP location changes. Table 6 show
the number of variants that changed BP predictions of the
two methods and match the associated variants in ClinVar.
Overall, BP-GAN has better agreement to the variants in
ClinVar compared to that of Nazari et al. [28]. Especially,
BP-GAN achieved 0.38 in sensitivity and 0.88 in precision
while 0.22 and 0.57 with Nazari et al. [28] respectively. This
reveals that BP-GAN detected more true variants and less
false positive ones favorable against the existing approaches.

In addition, we performed the similar evaluation on the
EpilepsyGene dataset. Even though the number of variants

TABLE 7. Architecture of the generator (G).

are smaller than that the case of ClinVar, the similar perfor-
mance gain is observed.

V. CONCLUSIONS
We introduced the BP-GAN, a novel integration of atten-
tion and triplet loss on top of a GAN-based framework for
human BP prediction from RNA sequences. Our approach
used a disentangled representation of RNA sequences with
a GAN to learn BP prediction-aware features. Attention
learned intra-sequence dependencies, delivering improved
prediction accuracy and interpretability on decisions. Triplet
loss addressed the issue of class-imbalance using hard neg-
ative mining. All these techniques contributed to exhibit-
ing a state-of-the-art-performance on the two large-scale
datasets. The sequence motifs identified from the attention
layers of the BP-GAN agreed with the consensus sequence,
polypyrimidine tract, and 3’ ss that are known to essen-
tially affect BP sites during splicing. This enabled us to gain
biologically meaningful insights to explain the predictions.
To the best of our knowledge, this is the first attempt in
applying a GAN-based model to a discriminative task in gene
expression. Moreover, the BP-GAN can easily be extended to
several other similar tasks.

APPENDIX A HARD NEGATIVE MINING FOR TRIPLET
LOSS
Consider a sequence s with bs ∈ {0, 1}N being its multiple
BPs. If we define sa,i as an anchor with a BP at i, a hard
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FIGURE 6. Training and validation plots for training BP-GAN with (a) DSP and (b) DSM . (Best viewed in color).

TABLE 8. Architecture of the discriminator (D).

negative sn,i to sa,i is given by

sn,i =

{
sj, if i 6= j and |i− j| ≤ K and ||bsa,i ||1 = 1
s′i, if bsa,i · bs′i < ||bsa,i ||1 and ||bs′i ||1 > 1

(12)

where, ||.||1 is the L1 norm. The upper case in (12) corre-
sponds to sequences of a single BP whereas the lower case

TABLE 9. Architecture of the sequence encoders (Ec and Eo). The entries
applied only to Ec or Eo are specified in parentheses.

TABLE 10. Architecture of the BP predictor (BP).

accounts for those of multiple BPs. We set K to 64 in the
experiments.

APPENDIX B ARCHITECTURE DESCRIPTION
Table 7–11 describes the entire architecture of the BP-GAN.

APPENDIX C PSEUDO CODE FOR TRAINING BP-GAN
END-TO-END
Algorithm 1 shows the training process of the BP-GAN.
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TABLE 11. Architecture of the sequence decoder (R).

Algorithm 1 Training Process of BP-GAN
1: for number of training iterations do
2: for m in 1:MinibatchSize do
3: Sample a random noise vector z ∼ N (0, 1)
4: sz← G(z)
5: xz,c← Ec(sz)
6: xz,o← Eo(sz)
7: Predict branchpoints BP(xz,c).
8: Add a quadruple (sz, xz,c, xz,o,BP(xz,c)) to the

current normal mini-batch with the label 0 as fake
9: end for

10:

11: {θG, θEc , θEo , θBP} ← {θG, θEc , θEo , θBP} +

∇{θG,θEc ,θEo ,θBP}Ladv
12:

13: for m in 1:MinibatchSize do
14: Sample a sequence s ∼ Ps
15: xc← Ec(S)
16: xo← Eo(S)
17: Add a quadruple (s, xc, xo, b) to the current nor-

mal mini-batch, assigning the label 1 as real
18: b̂← BP(xc)
19: ŝ← R(xc, xo)
20: end for
21:

22: θD← θD −∇θDLadv
23: {θEc , θBP} ← {θEc , θBP} − ∇{θEc ,θBP}L

(nor)
BP

24: {θEc , θEo , θR} ← {θEc , θEo , θR} − ∇{θEc ,θEo ,θR}L
(nor)
recon

25:

26: for m in 1:AuxiliaryMinibatchSize do
27: Sample an anchor sa ∼ Ps
28: Sample a positive sp ∼ Ps
29: Sample a hard negative sn ∼ Ps
30: xa,c← Ec(sa)
31: xp,c← Ec(sp)
32: xn,c← Ec(sn)
33: end for
34:

35: θEc ← θEc −∇θEcL
(aux)
tri

36: end for

Figure 6 shows two sets of plots for training BP-GANwith
the training and validation data splits corresponding to the
terms in (11) for DSP and DSM .
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