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ABSTRACT In this paper, a new filter referred to as the sliding innovation filter (SIF) is presented. The
SIF is an estimation strategy formulated as a predictor-corrector that makes use of a switching gain and
innovation term. In estimation theory, a trade-off exists between robustness to disturbances and optimality
in terms of estimation error. Unlike the Kalman filter (KF), the SIF is a sub-optimal filter in the sense that it
does not provide the optimal solution to the linear estimation problem. However, the switching gain provides
an inherent amount of robustness to estimation problems that may be ill-conditioned or contain modeling
uncertainties and disturbances. The paper includes the proof of stability and explanation of the SIF gain.
Furthermore, the SIF is extended to nonlinear estimation problems using a Jacobian matrix, resulting in
the extended sliding innovation filter (ESIF). The methods are applied to a linear and nonlinear aerospace
actuator system under the presence of a leakage fault. The results of the simulation demonstrate the improved
performance of the SIF and ESIF strategies over popular KF-based methods.

INDEX TERMS Estimation theory, Kalman filters, observers, robustness, sliding modes, state space
methods, modeling uncertainty.

I. INTRODUCTION
Estimation strategies extract useful information from sen-
sors with noisy measurements. This process is critical for
developing and implementing accurate and reliable control
systems. The most popular and well-studied estimation strat-
egy is the Kalman filter (KF) which was introduced nearly
60 years ago by Rudolph Kalman [1]. The KF is formulated
as a predictor-corrector estimator. State estimates are first
predicted using knowledge of the system, controller input,
and state values from the previous time step. These estimates
are then updated using a gain which is calculated based on the
state error covariance andmeasurement errors. The state error
covariance is a function of the expected state error values
squared. The KF gain provides the optimal solution to the
linear estimation problem assuming that the system is well-
known and the system and measurement noise are zero-mean
and Gaussian distributed, or known as white [1]. The KF is
derived such that the trace of the state error covariance is
minimized, thereby providing an optimal solution. The trace
is used because it represents a sum of the estimation error
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squared, or in other words, is the sum of the diagonal elements
of the state error covariance [2].

The KF has been extended to nonlinear systems, where it
no longer provides an optimal solution. The most common
nonlinear estimators based on the KF are the extended KF
(EKF), the unscented KF (UKF), and the cubature KF (CKF)
[1], [2]. The EKF utilizes a first-order Taylor series expansion
(or Jacobian) that approximates the nonlinearities about the
states of interest [2]. The EKF is formulated similarly to the
KFwith the exception that the nonlinearities are linearized by
forming Jacobian matrices. The UKF provides improved esti-
mation results in terms of accuracy by utilizing an unscented
transform and ‘sigma points’ to approximate the nonlineari-
ties [3]. The UKF is slightly more complicated than the EKF
in terms of derivation and computation, however it does not
require any linearization. The CKF was also introduced to
try and improve upon the estimation accuracy compared to
the UKF [4]. It has been shown in literature that the CKF,
which uses a cubature rule instead of an unscented transform
to approximate the nonlinearities, is a special case of the
UKF [1].

Depending on the application, KF-based solutions can pro-
vide good estimates, however most KF strategies lack robust-
ness to modeling errors, uncertainties, and disturbances.
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Other issues include numerical instability and matrix inver-
sions [2]. A number of strategies have been implemented
in an attempt to improve the robustness and stability of the
KF [5]–[7]. Square-root formulations of the KF utilize QR
decomposition and Cholesky factoring to ensure the state
error covariancematrix is symmetric, which improves numer-
ical stability [8], [9]. Another strategy involves imposing
boundaries on the state estimate [10]. For example, given
the upper bounds on the level of modeling uncertainty,
the KF gain may be bounded to help improve estimation
stability [10]. Other methodologies include the addition of
fictitious system noise, and adding a fading memory strat-
egy [11], [12]. Modifying the system noise matrix is done
when less confidence is placed in the system model used by
the filter, or in other words, when there is a lot of system
uncertainty [11]. Doing this causes the filter to place more
emphasis on the measurements, and less on the system model
which may be incorrect resulting in inaccurate estimates and
instabilities [11], [13], [14].

In an effort to overcome robustness issues with the KF,
the H∞ filter was introduced [15], [16]. This method uti-
lizes boundaries based on the worst-case uncertainties to
regulate the filtering gain which ensures the state estimates
are bounded to within a region of the true state trajectory.
However, a trade-off exists between optimality and robust-
ness. Other methods have extended the H∞ filtering strategy
further by combining it with the KF and its nonlinear vari-
ants [17], [18].

Another strategy for improving estimation performance
in the presence of modeling uncertainties and distur-
bances is to utilize variable structure techniques [19]–[21].
Variable structure systems are designed to include disconti-
nuity hyperplanes. These hyperplanes divide the state space
into regions. Inside these regions, the system dynamics
are continuous [20], [22]. Sliding mode observers were
introduced based on sliding mode and variable structure
theory [12], [23]. The observer gain is calculated based on
the innovation, and the error surface moves towards zero
(ideally) [24]. Sliding mode observers define a hyperplane
(i.e., a sliding surface) and apply a discontinuous switching
force on the estimate to keep the estimate bounded within an
area of the hyperplane [12], [25].

Based on variable structure theory and sliding mode
observers, the smooth variable structure filter (SVSF) was
introduced [26]. Similar to the KF, the SVSF is formulated
as a predictor-corrector estimator but utilizes a different gain
structure [26], [27]. The SVSF gain is a function of the
measurement errors and a switching term [26]. The switching
structure of the gain brings an inherent amount of stability to
the estimation process as its bounds the estimates to the tra-
jectory of the true state values [2], [28]. However, the SVSF
as presented in [26] did not contain a state error covariance
derivation. The SVSF was expanded in [2], [27], [29] to
contain a covariance function which increased the number of
useful applications for the filter. Other improvements were
also presented that included the use of a chattering function

for fault detection, higher-order solutions, and multi-target
tracking formulations [12], [30]–[33].

In this paper, the sliding innovation filter (SIF) is proposed.
The SIF is based on variable structure techniques similar
to the SVSF and sliding mode observers, however its gain
structure is simpler and it provides more accurate results
while maintaining robustness. Note also that the SIF may be
combined with control strategies for improved tracking per-
formance and robustness to uncertainties and disturbances.

The paper is organized as follows. For completeness,
the standardKF equations are provided in Section II, followed
by the proposed SIF equations in Section III. Section IV
provides the proof of stability for the SIF gain and a discus-
sion on the sliding boundary layer. The simulation results are
provided and discussed in Section V, followed by concluding
remarks.

II. THE KALMAN FILTER
As described earlier, the KF provides the optimal solu-
tion to the linear estimation problem which is described by
(2.1) and (2.2). The goal of any estimator is to obtain the true
state value xk+1 using noisy measurements zk+1.

xk+1 = Axk + Buk + wk (2.1)

zk+1 = Cxk+1 + vk+1 (2.2)

The system and measurement noises are represented by wk
and vk , respectively. A, B, and C represent the system (or
process) matrix, input gain matrix, and measurement matrix,
respectively. In (2.1) and (2.2), it is assumed that these matri-
ces are fixed and do not change with time. The input to the
system is defined as uk . For the KF andmost estimationmeth-
ods, it is assumed that the system and measurement noises
are statistically zero mean with Gaussian distribution [2].
The system and measurement noise are generated using the
covariance matrices Q and R, respectively.

It is well established in literature, however the main KF
equations are summarized here for completeness [1]. The
KF is formulated as a predictor-corrector estimator and is an
iterative process. The prediction stage involves calculating
the state estimates based on the previous state values and
knowledge of the system, as per (2.3). The corresponding
state error covariance matrix is calculated in (2.4) and is used
in the update stage to calculate the KF gain in (2.5), and is
also used to update the state error covariance as per (2.7).

x̂k+1|k = Ax̂k|k + Buk (2.3)

Pk+1|k = APk|kAT + Qk (2.4)

The update stage is summarized by (2.5) through (2.7). The
gain calculated in (2.5) is used to update the state estimates
in (2.6) based on the measurement error (or innovation).
The gain is also used along with the predicted state error
covariance to update the state error covariance in (2.7).

Kk+1 = Pk+1|kCT
(
CPk+1|kCT

+ Rk+1
)−1

(2.5)

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
zk+1 − Cx̂k+1|k

)
(2.6)
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Pk+1|k+1 = (I − Kk+1C)Pk+1|k (I − Kk+1C)T . . .

. . .+ Kk+1Rk+1KT
k+1 (2.7)

Note that k refers to the time step, k|k refers to the updated
values at the previous iteration, and k+1|k refers to the
predicted values at time k + 1 based on information at time
k . Equations (2.3) through (2.7) represent the KF estimation
process for linear systems andmeasurements defined by (2.1)
and (2.2), respectively. The process is iterative and repeats
every time step k . Note that (2.7) is known as the Joseph
covariance form, and is considered to be numerically stable.

III. THE SLIDING INNOVATION FILTER
This section describes the main sliding innovation filter (SIF)
equations used for linear systems and measurements. Similar
to the KF, the SIF is formulated as a predictor-corrector
estimation method. The state estimates and state error covari-
ances are first predicted using values obtained at the previous
time step (or initialization), and then the state estimates and
state error covariance are updated based on the measurements
and correction term at the current time step. The correction
term in this case is referred to as the SIF gain.

A. LINEAR SYSTEMS AND MEASUREMENTS
Similar to the KF, the prediction stage includes calculating
the predicted or a priori (‘before the fact’) state estimates
x̂k+1|k , the predicted state error covariance Pk+1|k , and the
predicted innovation z̃k+1|k as per the following three equa-
tions, respectively:

x̂k+1|k = Ax̂k|k + Buk (3.1)

Pk+1|k = APk|kAT + Qk (3.2)

z̃k+1|k = zk+1 − Cx̂k+1|k (3.3)

The update stage includes calculating the SIF gain Kk+1,
the updated or a posteriori (‘after the fact’) state estimates
x̂k+1|k+1, and the updated state error covariance Pk+1|k+1 as
per the following three equations, respectively:

Kk+1 = C+sat
(∣∣z̃k+1|k ∣∣ /δ) (3.4)

x̂k+1|k+1 = x̂k+1|k + Kk+1z̃k+1|k (3.5)

Pk+1|k+1 = (I − Kk+1C)Pk+1|k (I − Kk+1C)T . . .

. . .+ Kk+1Rk+1KT
k+1 (3.6)

Note that C+ refers to the pseudoinverse of the measurement
matrix, sat refers to the diagonal of the saturation term, sat
refers to the saturation of a value (yields a result between −1
and +1),

∣∣z̃k+1|k ∣∣ refers to the absolute value of the innova-
tion, δ refers to the sliding boundary layer width, and I refers
to the identity matrix (of dimension n-by-n where n is the
number of states). Equations (3.1) through (3.6) represent the
SIF estimation process for linear systems and measurements
defined by (2.1) and (2.2), respectively.

The main difference between the KF and SIF strategies is
in the structure of the gain. For the KF, the gain is derived
as a function of the state error covariance, which offers

FIGURE 1. The sliding innovation filter (SIF) concept illustrating the
effects of the switching gain and sliding boundary layer.

optimality [1], [2]. However, for the SIF, the gain is based
on the measurement matrix, the innovation, and a sliding
boundary layer term. Although the state error covariance is
not used to calculate the SIF gain, it still provides useful
information as it represents the amount of estimation error
in the filtering process. Figure 1 provides an overview of the
SIF estimation concept. An initial estimate is pushed towards
the sliding boundary layer which is defined based on the
amount of uncertainties in the estimation process. Once inside
the sliding boundary layer, the estimates are forced to switch
about the true state trajectory by the SIF gain.

To help illustrate the SIF gain, consider a system with two
measurements (and C = I ), such that the saturation term in
(3.4) could be expanded further:

Kk+1 = sat
(∣∣z̃k+1|k ∣∣ /δ)

=

 sat
(
|z̃1|
δ1

)
0

0 sat
(
|z̃2|
δ2

)
 (3.7)

When multiplied with the innovation z̃k+1|k , as in (3.5),
the state estimates x̂k+1|k are updated with the following term:

Kk+1z̃k+1|k =

 sat
(
|z̃1|
δ1

)
z̃1

sat
(
|z̃2|
δ2

)
z̃2

 (3.8)

As shown in (3.8), the state estimates are updated with
their corresponding innovation and sliding boundary layer
term. The SIF gain effectively acts as a switching term, which
forces the measurement errors to be bounded towards the
true state trajectory. The sliding boundary layer δ is defined
as a function of the modeling uncertainty and noise present
in the estimation process. The width can be tuned to obtain
the desired estimation result. A method to set the width is
explained later in Section IV using the maximum uncertain-
ties in the estimation process (4.23). Another starting point
for tuning is to use the values of the measurement noise
covariance. For example, δ = 10diag (R). The values can
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then be tuned by trial-and-error, grid search methods, or
optimization techniques to reduce the estimation error.

For the cases when there are fewer measurements than
states (m < n), artificial measurements can be created based
on existing measurements to create a full measurement
matrix. The structure could also be modified as per a Luen-
berger observer or other strategies as per [12], [34]. This pro-
cess would be required to estimate parameters of the system
matrix using the SIF.

B. NONLINEAR SYSTEMS AND MEASUREMENTS
Similar to the extended Kalman filter (EKF), the pro-
posed extended sliding innovation filter (ESIF) makes use
of the linearized form of the nonlinear system and mea-
surement functions. For example, consider the nonlinear
system function f

(
x̂k|k , uk

)
and the nonlinear measurement

function h
(
x̂k+1|k

)
. Linearized forms of these nonlinearities

may be calculated respectively using the following partial
derivatives:

Fk =
∂f
∂x

∣∣∣∣
x̂k|k ,uk

(3.9)

Hk+1 =
∂h
∂x

∣∣∣∣
x̂k+1|k

(3.10)

The structure of the nonlinear SIF estimation process is
similar to the linear SIF case, with the main difference being
the formulation of the gain. The prediction stage consists of
three main equations, as follows:

x̂k+1|k = f
(
x̂k|k , uk

)
(3.11)

Pk+1|k = FkPk|kFTk + Qk (3.12)

z̃k+1|k = zk+1 − h
(
x̂k+1|k

)
(3.13)

Note that f refers to the nonlinear system function, Fk refers
to the linearized version of the system (Jacobian matrix or
first-order Taylor series expansion) at time k , and h refers
to the nonlinear measurement function. The states are first
predicted in (3.11) before being updated in (3.15) using the
innovation defined in (3.13) and gain defined in (3.14). The
state error covariance matrix is first predicted in (3.12) before
being updated in (3.16). Note that the gain (3.14) is also used
to update the state error covariance (3.16).

The update stage consists of three main equations,
as follows:

Kk+1 = H+k+1sat
(∣∣z̃k+1|k ∣∣ /δ) (3.14)

x̂k+1|k+1 = x̂k+1|k + Kk+1z̃k+1|k (3.15)

Pk+1|k+1 = (I − Kk+1Hk+1)Pk+1|k (I − Kk+1Hk+1)T

. . .+ Kk+1Rk+1KT
k+1 (3.16)

Note thatH+k+1 refers to the pseudoinverse of the linearized
measurement matrix (first-order Taylor series expansion) at
time k + 1, and Hk+1 refers to the linearized measurement
matrix at time k + 1. Equations (3.9) through (3.16) repre-
sent the ESIF estimation process for nonlinear systems and
measurements.

IV. SIF PROOF OF STABILITY
The SIF gain as defined in (3.4) provides robustness to mod-
eling uncertainties and disturbances. This section provides
the proof of stability. Consider a Lyapunov function Mk+1
defined by the updated innovation:

Mk+1 =
∣∣z̃k+1|k+1∣∣ (4.1)

According to Lyapunov stability theory, the estimation
process is considered stable if the following is held true:

Mk+1 ◦1Mk+1 < 0 (4.2)

Equation (4.2) states that the rate of change of the Lya-
punov function (4.1) must be negative, or in other words,
the absolute magnitude of the innovation must decrease with
time. Based on (4.2) and the definition in (4.1), we are able
to find the following condition for stability:

∣∣z̃k+1|k+1∣∣ (∣∣z̃k+1|k+1∣∣− ∣∣z̃k|k ∣∣T

)T
< 0 (4.3)

where T refers to the sample rate or time step. Equation (4.3)
can be rewritten as follows:∣∣z̃k+1|k+1∣∣ ∣∣z̃k+1|k+1∣∣T < ∣∣z̃k+1|k+1∣∣ ∣∣z̃k|k ∣∣T (4.4)

Simplifying (4.4) yields:∣∣z̃k+1|k+1∣∣ < ∣∣z̃k|k ∣∣ (4.5)

Therefore, the estimation process is considered stable if
the innovation is decreasing over time. To explore the sta-
bility further, we need to find the expectation of z̃k+1|k+1 as
per (4.5). First, consider the definition for the updated state
error x̃k+1|k+1 which is the difference between xk+1 in (2.1)
and x̂k+1|k+1 in (3.5):

x̃k+1|k+1 = x̃k+1|k − C+sat
(∣∣z̃k+1|k ∣∣ /δ) z̃k+1|k (4.6)

Furthermore, note that the innovation may be defined as a
function of the state error and measurement noise:

z̃k+1|k = Cx̃k+1|k + vk+1 (4.7)

Multiplying (4.6) by C and utilizing (4.7) transforms (4.6)
into the following:

z̃k+1|k+1 = z̃k+1|k − sat
(∣∣z̃k+1|k ∣∣ /δ) z̃k+1|k (4.8)

Simplifying (4.8) yields:

z̃k+1|k+1 =
(
I − sat

(∣∣z̃k+1|k ∣∣ /δ)) z̃k+1|k (4.9)

Here we define D = sat
(∣∣z̃k+1|k ∣∣ /δ). We need to solve

for z̃k+1|k to expand and simplify (4.9) further. Based on
the definitions for state and measurement error (innovation),
we find the following for the predicted state error and pre-
dicted innovation, respectively:

x̃k+1|k = Ax̃k|k + wk (4.10)

z̃k+1|k = C
(
Ax̃k|k + wk

)
+ vk+1 (4.11)
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Substituting (4.11) into (4.9) yields:

z̃k+1|k+1 = (I − D)
(
C
(
Ax̃k|k + wk

)
+ vk+1

)
(4.12)

We can rewrite (4.12) such that:

z̃k+1|k+1 = (I − D)CAC+z̃k|k + η (4.13)

where η is defined as an uncertainty vector:

η = − (I − D)C
(
AC+vk − wk

)
+ (I − D) vk+1 (4.14)

Equation (4.14) is unknown, however its expectation or
expected value is zero provided the noise is zero mean (one
of the main assumptions for standard estimation theory).
In other words, E [wk ] = E [vk ]= 0. Taking the expectation
of (4.13) yields:

E
[
z̃k+1|k+1

]
= (I − D)CAC+E

[
z̃k|k

]
(4.15)

where E refers to the expectation or expected value. This
means that the estimation process is stable as long as∣∣(I − D)CAC+∣∣ is less than unity. This ensures that (4.5)
satisfies the Lyapunov condition for stability defined by (4.1)
and (4.2) provided that:

−1 < (I − D)CAC+ < 1 (4.16)

For (4.16), there are two cases to consider. The first case is
when CAC+ is positive:

I + CA−1C+ > D > I − CA−1C+ (4.17)

The second case is when CAC+ is negative:

I + CA−1C+ < D < I − CA−1C+ (4.18)

Based on the fact thatD should be larger than zero and less
than 1, D is contained and defined by:

D ∈
[
max

(
I −

∣∣∣CA−1C+∣∣∣ , 0) , I] (4.19)

Based on the conditions of (4.5), (4.16), and (4.19), the SIF
is considered stable as the Lyapunov function defined by (4.1)
and (4.2) is satisfied.

Finally, note that the uncertainty vector defined by (4.14)
may be used to help set the sliding boundary layer width.
In order to reduce the effects of chattering (or high-frequency
switching), the width should be set larger than or equal to the
following:

δ ≥ |z̃|max + |η|max (4.20)

The sliding boundary layer width can be set using (4.20),
where |z̃|max refers to the largest innovation and ηmax rep-
resents the largest uncertainty vector. To find the largest
uncertainty vector, we set D = 0 which occurs when the
innovation is zero or the boundary layer is infinitely large.
In this case, we modify (4.20) to consider maximum values:

|η|max = |C|max
(
|A|max

∣∣C+∣∣max |v|max . . .
. . .+ |w|max)+ |v|max (4.21)

FIGURE 2. Control signal (rad/s) used as the input for the linear EHA
simulation described by (5.1) to (5.4).

Note that (4.21) may be simplified further to yield:

|η|max =
(
|C|max |A|max

∣∣C+∣∣max + I) |v|max . . .
. . .+ |C|max |w|max (4.22)

Based on (4.20) and (4.22), we can now define a condition
for the sliding boundary layer:

δ ≥ |z̃max | +
(
|C|max |A|max

∣∣C+∣∣max + I) |v|max . . .
. . .+ |C|max |w|max (4.23)

The above condition can be used as a starting point for tun-
ing the sliding boundary layer width. Note that if the sliding
boundary layer is set wider than the uncertainties, the esti-
mates will be smoothed. If the width is set smaller, chattering
will occur which represents high-frequency switching due to
the SIF gain.

V. SIMULATION SETUP AND RESULTS
A. LINEAR AEROSPACE SYSTEM
To demonstrate the robustness of the proposed estimation
strategy, the KF and SIF are applied on a linear system with
noise. The studied system is a type of aerospace flight surface
actuator, referred to as the electrohydrostatic actuator (EHA).
It has been well-studied and presented in literature [35]–[37].
A simplified linear EHAmodel was formulated in state space
where the states of interest refer to position, velocity, and
acceleration [2], [26]. The model parameters were found
through experimentation of an EHA [26], [38]. The linear
form of the system and measurements are described using the
following state space equations [26]:

xk+1 =

 1 T 0
0 1 T
−557 − 28.6 0.94

 xk . . .
. . .+

 0
0
557

 uk + wk (5.1)

zk+1 = Cxk+1 + vk+1 (5.2)

where the sample rate T is defined as 1ms, k is the time
step, C refers to the measurement matrix which in this case
is an identity matrix of dimension m × m or 3× 3, and u is
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FIGURE 3. True and estimated state values for the linear EHA system
example under normal operating conditions. The results are nearly
identical so the lines appear over-lapping.

TABLE 1. RMSE results for the linear simulation: normal case.

the controller input for the system (defined in Fig. 2) that
drives the desired trajectory. The system and measurement
noises (w and v) are normally distributed with zero mean and
covariance’s Q and R defined by (5.3) and (5.4), respectively.

Q = diag
([
10−5 10−3 0.1

])
(5.3)

R = diag
([
10−4 10−2 1

])
(5.4)

The three states in (5.1) represent the position, velocity,
and acceleration of the linear actuator, respectively. The ini-
tial state values, measurements, and estimates were set to
zero. The initial state error covariance values were set to
P0|0= 10Q. The sliding boundary layer width was manually
tuned to yield the smallest estimation error, and was found for
this simulation to be δ =

[
0.05 1 0.5

]
. The simulation was

coded in MATLAB.
The results of applying the KF and SIF strategies on the

linear EHA are shown in Fig. 3. As expected, since the system
is linear and well-known, the KF yields better results in terms
of root mean square error (RMSE) under normal operating
conditions. Note that RMSE is defined by (5.5) where n is the
number of time steps. The results are summarized in Tab. 1.

RMSE =

√∑n
i=1

(
xi − x̂i

)2
n

(5.5)

In an effort to demonstrate the robustness of the SIF strat-
egy, consider the case when the system has a fault injected
half-way through the simulation (at t= 1 sec). In this case,

FIGURE 4. True and estimated state values for the linear EHA system
example under faulty operating conditions.

TABLE 2. RMSE results for the linear simulation: faulty case.

the linear system state equation used by the filters is changed:

xk+1 =

 1 T 0
0 1 T
−240 −28 0.94

 xk . . .
. . .+

 0
0
557

 uk + wk (5.6)

The results of the modeling uncertainty and its effects on
the filters are shown in Fig. 4. The model mismatch at 1 sec-
ond causes the KF to deviate from the true state trajectory,
yielding poor estimates of the true position. The SIF was still
able to perform relatively well, and was bounded to the true
state trajectory due to the switching effects in the SIF gain.

The RMSE results for the faulty case are shown in Tab. 2.
The SIF performs only slightly worse than the normal case.
However, the KF is unable to recover from the modeling
uncertainty and yields worse performance. This was expected
as the KF is derived based on the assumption that the system
is known. Figure 5 further illustrates the presence of the
modeling uncertainty. The KF was unable to recover from the
system change, whereas the SIF provided a good estimate.

B. NONLINEAR AEROSPACE SYSTEM
A nonlinear form of the EHA system is studied to fur-
ther demonstrate the robustness of the SIF [2]. In this
case, the extended sliding innovation filter (ESIF) is applied
and compared with the EKF. The ESIF is summarized by
(3.9) through (3.16). The nonlinear EHA can be accurately
described by the following state space (related to its position,
velocity, and acceleration) equations [2]:

x1,k+1 = x1,k + Tx2,k + w1,k (5.7)
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FIGURE 5. Position estimation error for the KF and SIF for the linear EHA
faulty case. This further illustrates the robustness of the SIF gain.

x2,k+1 = x2,k + Tx3,k + w2,k (5.8)

x3,k+1 =
[
1−

a2V0 +MβeL
MV0

]
x3,k − T

(
A2E + a2L

)
βe

MV0
x2,k

. . .− T
2a1V0x2,kx3,k + βeL

(
a1x22,k + a3

)
MV0

sgn
(
x2,k

)
. . .+ T

AEβe
MV0

uk + w3,k (5.9)

The differential pressure x4,k may also be modelled using
the velocity of the actuator and a number of friction constants:

x4,k = A−1E
(
a2x2,k +

(
a1x22,k + a3

)
sgn

(
x2,k

))
. . .

. . .+ w4,k (5.10)

The sample rate of the system is T = 1ms, and the input to
the EHA system is defined by:

uk = Dpωp,k − sgn
(
x4,k

)
QL0 (5.11)

As described in [35], AE refers to the piston cross-sectional
area, βe is the effective bulk modulus (i.e., the ‘stiffness’ in
the hydraulic circuit), Dp refers to the pump displacement,
L represents the leakage coefficient, M is the load mass
(i.e., weight of the cylinders), V0 is the initial cylinder vol-
ume, and ωp refers to the pump angular velocity. Two main
parameters that are affected by induced fault conditions in the
EHA are the leakage coefficients L and QL0, and the friction
coefficients a1, a2, and a3. The following table lists the
known parameter values that were experimentally determined
in [38].

There are four important states and parameters: actuator
position, velocity, acceleration, and differential pressure. It is
assumed that measurements are available for each state, such
that the measurement matrix C is full or C = I :

zk+1 = Cxk+1 + vk+1 (5.12)

To properly implement the EKF and ESIF, the first-order
Taylor series expansion (Jacobian) of (5.7) through (5.10)

TABLE 3. EHA parameter values for nonlinear case.

must be solved, as per (3.9). The linearized system matrix
Fk is defined as follows:

Fk =


1 T 0 0
0 1 T 0
0 F32 F33 0
0 F42 0 0

 (5.13)

where F32, F33, and F42 are as follows:

F32 =
−T

(
2V0a1x3,ksign

(
x2,k

))
MV0

. . .

. . .−
βeT

(
A2E + La2 + 2La1x2,ksign (x2, k)

)
MV0

F33 = 1−
2Ta1x2,ksign

(
x2,k

)
M

−
T (V0a2 + βeLM)

MV0
F42 = A−1E

(
a2 + 2a1x2,ksign

(
x2,k

))
The system noise covariance matrix Q was defined based

on tuning the experimental setup in [35], and in this simula-
tion was set to:

Q =


10−12 0 0 0
0 10−10 0 0
0 0 10−9 0
0 0 0 106

 (5.14)

The measurement noise covariance Rwas set to 103Q. The
system noise w and measurement noise v were defined as
normal distributions with covariances Q and R, respectively.
For both strategies, the initial state estimate x̂0 and error
covariance matrix P0|0 are respectively defined as follows:

x̂0 =
[
0 0 0 0

]T (5.15)

P0|0 = 10Q (5.16)

The sliding boundary layer was manually tuned to yield
the smallest estimation error, and was set to δ = 10−3 ×[
1 5 10 109

]
. The angular pump velocity ωp was set to a

square wave with±100rad/s, and was used in (5.11) to gen-
erate the input used by the EHA system (as shown in Fig. 6).
Note that the input signal refers to volumetric flow rate within
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FIGURE 6. Input signal used for the nonlinear EHA scenario. Note that the
input signal (5.10) was calculated based on a square wave representing
the pump angular velocity.

FIGURE 7. EHA velocity trajectory and corresponding EKF and ESIF
estimates. Note that the results are nearly identical, so appear to be
over-lapping.

the hydraulic circuit of the EHA. Under normal operating
conditions, both the EKF and ESIF were able to successfully
track the three kinematic states and the differential pressure.

The EHA velocity and corresponding EKF and ESIF esti-
mates are shown in Fig. 7. The differential pressure is shown
in Fig. 8. The RMSE results are summarized in Tab. 4 and
show comparable performance between the two strategies.
The ESIF provided a slightly better position estimate in terms
of error, whereas the EKF yielded slightly better estimates
for the velocity and acceleration. The ESIF provided a sig-
nificantly better estimate for the differential pressure (about
three-times lower error).

In an effort to demonstrate the robustness of the ESIF strat-
egy, consider the case when the system has a fault injected
half-way through the simulation (at t= 4.5 sec). In this case,
the leakage parameters L and QL0 are changed as per Tab. 3
(to the faulty values). This simulates a major leak occurring
in the hydraulic circuit.

The results of the modeling uncertainty and its effects on
the filters are shown in Fig. 9. At 4.5 seconds, the fault is
injected into the system. The model mismatch causes the

FIGURE 8. EHA differential pressure trajectory and corresponding EKF
and ESIF estimates. Initially, the EKF gave a poor estimate but quickly
corrected (due to the initial conditions).

TABLE 4. RMSE results for the nonlinear simulation: normal case.

FIGURE 9. EHA differential pressure error based on corresponding EKF
and ESIF estimates. The leakage fault is injected mid-way through the
simulation. The ESIF is able to accurately compensate for the modeling
uncertainty, whereas the EKF has difficulty overcoming the model
mismatch.

EKF to deviate from the true state trajectory, yielding poor
estimates of the true differential pressure. The ESIF was
still able to perform relatively well, and was bounded to the
true state trajectory. Similar to the linear case, this is due to
the inherent stability caused by the switching effects in the
ESIF gain. The RMSE results for the faulty case are summa-
rized in Tab. 5.

The RMSE results further highlight the robustness of the
proposed ESIF strategy. The sliding boundary layer δ and the
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TABLE 5. RMSE results for the nonlinear simulation: faulty case.

switching effect of the ESIF gain keep the estimated states
bounded to the true state trajectory. The sliding boundary
layer δ may be tuned manually to improve estimation results,
with initial values designed based on knowledge of the noise
or uncertainties present in the estimation problem. In this
scenario, it was initially tuned based on the amount of mea-
surement noise present (for example, δ = 10×diag (R)), and
then optimized based on the estimation error.

VI. CONCLUSION
In this paper, a new estimation strategy called the sliding
innovation filter (SIF) was proposed. The filter is called the
SIF due to the fact that the innovation slides along a boundary
layer close to the true states. The SIF gain structure is based
on variable structure and sliding mode theory. It utilizes a
switching term that allows the estimates to remain bounded
to a region within the true state trajectory. This improves
estimation robustness to modeling uncertainties, errors, and
disturbances. A nonlinear formulation of the SIF, referred
to as the extended sliding innovation filter (ESIF) was also
presented. The SIF and ESIF were applied on an aerospace
system and compared with the well-known Kalman filter and
its nonlinear form, the extended KF. The simulation results
demonstrated that the proposed SIF and ESIF strategies pro-
vide sub-optimal yet robust estimates for both linear and
nonlinear systems under the presence of uncertainties and
disturbances.
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