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ABSTRACT Tracking maneuvering targets accurately is one of the most challenging tasks in the design of
aircraft tracking systems. For efficient tracking performance, the target motion predicted by the target motion
model needs to match the target’s actual motion during the maneuver. For tracking a maneuvering target,
a combination of the constant velocity (CV) model and the coordinated turn (CT) model with a known turn
rate are incorporated in the interacting multiple model (IMM) algorithm. However, in such a scheme when a
target performs an unexpected maneuver, the tracking performance deteriorates, or the scheme may even fail
to track the target. To overcome this problem, there exists a scheme in the literature, in which instead of using
an a priori knowledge of the target turn rate, it is estimated adaptively using the target acceleration and speed.
However, this algorithm uses a three-dimensional model to estimate the turn rate in two-dimensional space,
which may result in an inaccurate estimation of the target acceleration, and thus may lead to in inaccurate
turn rate value. In this paper, an adaptive algorithm to track a maneuvering target in an IMM framework is
proposed. Estimating the turn rate is based on the speed of the target and the radius of the turn, where the latter
is computed by a simple method using the previous three successive measurements. Further, a detailed study
to select an appropriate transition probability matrix for the proposed algorithm is carried out. Simulation
results demonstrate that the proposed tracking algorithm outperforms the other algorithms in terms of its
tracking accuracy and consistency, particularly in the realistic situation when neither an a priori knowledge
about the target turn rate nor about the range rate information is available to the tracking algorithm.

INDEX TERMS Interacting multiple model for radar tracking, target tracking, target turn rate estimation,

maneuvering targets.

I. INTRODUCTION
One of the major challenges faced by any target tracking sys-
tem is to track targets during maneuverability, i.e., when the
aircraft turns right or left with a certain angle. Two approaches
have been used for tracking a maneuvering target. One of
them uses a maneuver detector and the other does not. The
maneuver detector is a statistical test, which is formulated to
decide whether the target maneuver has begun or not. Same
framework is used to test whether the maneuver has ended or
not [1].

In the first approach, the algorithm uses a single filter in
all the tracking process. The algorithm is assumed to track
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the target in the non-maneuvering mode, when the detector
decides that a maneuver is begun, the algorithm switches to
track the target in the maneuvering mode. One of the most
basic algorithms in this approach uses the two-level white
noise filter [2], in which the filter models the target motion
with a constant velocity (CV) and switches between two
noise levels, the low noise level for the non-maneuvering
mode and the high noise level for the maneuvering mode.
Another algorithm in the maneuver-detector approach is the
variable dimension (VD) algorithm [3]. This algorithm also
uses one filter and utilizes two motion models: the CV model
is used for the non-maneuvering motion of the target, and
the constant acceleration (CA) model for the maneuvering
motion. In general, the algorithms in this approach show a
high peak position error at the beginning of the maneuver
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motion, which may be higher than the raw measurement
data [3].

The second approach is to track the target without a maneu-
ver detector. In this approach, a number of filters are used
in parallel, each of which uses a different motion model.
The output is a weighted sum of the outputs of these filters.
These weights are proportional to the probability of each
filter being the accurate one to track this target [4]. This
approach overcomes the problem of peak position error that
appears in the maneuver-detector algorithms [5], [6]. Several
algorithms have been proposed in this approach such as the
first order generalized pseudo-Bayesian (GPB1), the second
order of GPB (GPB2), and interacting multiple model (IMM)
[7]1-[11]. The IMM algorithm has a slightly higher complex-
ity, but a better performance compared to that of GPB1 algo-
rithm and significantly lower complexity than GPB2 with a
comparable tracking performance [12]. The implementation
of IMM with a large number of filters does not guarantee
a better performance, despite its increased complexity [13].
This algorithm shows an efficient tracking performance when
it utilizes the CV model and coordinated turn (CT) model
with known turn rate [14], [15]. However, the tracking per-
formance deteriorates when the turn rates deviate from the
maneuver performed by the target, i.e., a prior information
about the target maneuver is required for better tracking
performance [16].

For a practical implementation of the IMM algorithm,
we have to determine the turn rate, since it is not known.
The first method assumes that the maneuver range that will
be performed by the target is known a priori [17], and the
turn rate is selected to cover these expected maneuvers, but
the tracking performance degrades if this prior knowledge of
the range is inaccurate. The second method obtains the turn
rate by estimating the magnitude of target acceleration and
speed [18]. In general, the estimated accelerations may not
be precise and may cause biased estimation of the turn rate.
In the third method, the turn rate is included in the state vector
and is estimated along with the other elements of the state
vector [5], [19]. This results in a nonlinear CT model, which
is computationally more expensive to estimate the elements
of the state vector. Recently, it has been proposed that the
range rate information can be used to improve the turn rate
estimation [20]-[22]. However, this information may not be
available in all radar types [16].

In this work, it is assumed that the target performs the
maneuver in a uniform circular motion in two-dimensional
plane with a constant speed, as mentioned in [23]. The frame-
work of IMM with three filters is used. One of these filters
uses the CV model and the other two use the CT model,
one of which is to track the target for the right turn and the
other for the left turn [24]. In this algorithm, the turn rate of
the target is adaptively estimated at each time step without
any prior knowledge about the target maneuverability or the
range rate. The turn rate is based on the estimation of the
radius of the turn and the speed of the target and is calculated
as the speed of the target divided by the radius of the turn.
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The performance of the proposed algorithm is evaluated and
compared with two other types of IMM tracking algorithms
that use linear models. One of these types uses a known turn
rate, whereas the other adaptively estimates it using the speed
and acceleration. These algorithms are evaluated in various
maneuvers in terms of the normalized position error [18] and
estimator consistency [25].

This manuscript is organized as follows: Section II intro-
duce the state space model (the target motion and measure-
ment models used in this work). A brief review of the IMM
algorithm is provided in Section III. In Section IV, we intro-
duce the proposed algorithm wherein a method of estimating
the turn rate is given. Section V is devoted to the performance
evaluation and comparison of the results with that of the other
existing linear IMM algorithms. Finally, Section VI contains
the conclusions.

Il. THE STATE SPACE MODEL

The precision of the target motion model is crucial to the
tracking accuracy of a tracker, in that the performance of the
tracker deteriorates if there is a mismatch between the motion
predicted by the assumed model and the actual motion of
the target. Assuming the target performs a two-dimensional
motion and a CT maneuver, the target kinematics may be
represented by its position and velocity, and the target state
vector is given by

xe = (&, & nes el )]

where &, and n; represent the target’s position in the x and
y directions, respectively, £ and 7 are the corresponding
target velocity components, and (-)" denotes the transpose.
The equation of the state-space model that describes the target
motion is given by [26].

Xp = Fro1Xg—1 + T'wi—g ()

where Fj_ is the state transition matrix and I" is the distur-
bance matrix that can be expressed as

0.572 0
T 0

r= 0 0.572 3
0 T

where T is the sampling period. Generally, radar systems pro-
vide the measurements in polar coordinates, that is, in terms
of azimuth and range. However, tracking using polar coor-
dinates is not as accurate as tracking using Cartesian coor-
dinates and hence the latter is recommended with a suitable
measurement conversion [27]. Therefore, using a suitable
conversion of the polar measurement such as used in [28],
we can track the target in Cartesian coordinates for better
tracking performance. Therefore, most of the algorithms that
have been proposed for target tracking assume that suitable
conversion has already been made of the polar measure-
ment to Cartesian coordinates [5], [11], [15], [18]. We have
also followed the same practice as others have done. Then,
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the measurement equation is given by
2 = Hixy + my 4)

with the measurement matrix

1 0 0 0
H":[o 0 1 o] ©)

where z;, is the received measurement, 'wy_{, and m; are
the additive white Gaussian process and measurement noise
vectors, respectively. Conventionally, I'w;_; and my are
assumed to be independent with zero mean and with covari-
ance matrices I'Qy_; T and Cy, respectively.

When the target performs a straight-line motion at a con-
stant velocity, the state transition matrix (Fy = F,fv) is given
by [26]

(6)

S OO =
S o =N
o= O O
— N oo

where FkCV corresponds to the CV model. When it performs
a CT motion with a known turn rate w, the state transition
matrix (Fy = FET) is given by [29]

| sin(wT) 0 1 — cos(wT)
w w
FCT — 0 cos(wT) 0 —sin(wT) 7
=1, LocoseD) sin(wT) Q)
w w
0 sin(wT') 0 cos(wT)

This corresponds to the CT model with a known turn rate.

lll. THE IMM ALGORITHM
The IMM algorithm is quite effective in tracking a maneu-
vering target, wherein the target maneuver is modeled as a
combination of different motion models. The output at each
time step is a combination of the outputs of all the filters
weighted by the corresponding mode probability, the mode
probability being defined as the probability of the model
matching the target motion. At each time step, the algorithm
decides as to which model is suitable to predict the motion of
the target (non-maneuvering or maneuvering motion) based
on the mode probability. The block diagram of a single cycle
of the IMM algorithm, which uses two Kalman filters each
using a different motion model, is shown in Fig. 1 [14].

The predicted state vector ;‘;{ for a Kalman filter j is given
by [30]

%, =F %7, ®)

where X}’ | is the input state vector for the filter j. The
predicted error covariance matrix, P/, is given by

f’;{ = Fk—lf,zj_]Fifl + FQk—lF/ (9)

where PZJ_I is the error covariance matrix of the input state
vector for the filter j. The measurement innovation or the
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FIGURE 1. One cycle of the IMM algorithm when r = 2 [14].

residual of the filter ﬂ],;
j]‘( =175 — Hki;{ (10)

where z;, is the received measurement vector. The innovation
error covariance matrix, Sjk, is given by

S, = HyP,H), + C; (11)
The Kalman gain K’,; is defined as
K| = P, H}(S))" (12)

The output state estimate 5(2 of the Kalman filter j and its error
covariance matrix P} are expressed as

% =% + KBy (13)
P, = [1- K, H P, (14)

where I is the identity matrix.

Assuming the IMM algorithm to contain only two Kalman
filters, each of which is used to find the output state estimate
of the target according to a specific type of motion (e.g. non-
maneuvering, referred to as mode 1, and maneuvering mode,
referred to as mode 2). The algorithm starts with initial values
for the mode probabilities ,1_ , and u,%_l . In addition, a fixed
matrix Py, is assumed, whose (i, j)th element, p;, i,j =1, 2,
is the probability of transition from mode i to mode j, wherein
the sum of the elements of each row in this matrix is unity.
The mode probabilities as well as the transition probabilities
are used to calculate the mixing probabilities /,L;(ll_l i,j =
1, 2). These mixing probabilities along with the filter outputs
’Agk—l ,j = 1,2 of the previous cycle are utilized to calculate

the inputs to the filters, figj_] ,j = 1, 2. In other words, each
filter input is calculated as a weighted sum of all the filter
outputs of the previous cycle. When the new measurement
z; is received, each filter updates its output state, f(,i and
f(,% Then, the likelihood probabilities of the filters, A,i and
A,%, are computed from the measurement innovation 8, and
the corresponding covariance matrix S for each filter. Next,
the mode probabilities are updated to u,i and ,u,%, using A,l
and A7, ), and |, and P, Finally, the output state esti-
mate X; is computed as a weighted sum of the outputs of the
filters using the weights of the updated mode probabilities,
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/,LII{ and ,u% The outputs of the filters and the updated mode
probabilities are set as the initial data for the next cycle. More
details about the IMM algorithm can be found in [31]. The
steps of the IMM algorithm with r filters are as follows

1) State interaction: In this step, the previous state esti-
mates and their covariance matrices are mixed using the
calculated mixing probabilities /L;{lil. The input state

vector of the jth filter, )A(ZC] and its covariance matrix
132]7] are calculated as

,
X, =Y % !y ij=1-.r (15
i=1
and

.
PZJ—I = Z%V_l[f’z_l + Xy — ﬁzj—1]

i=1

x[& =7 11, ij=1,--,r (16)
where

wily =gy, Lj=1r A7)

with the normalization constant

r
&= pimi_y. Li=1l-.r (18)

i=1
2) Mode probability update: when the measurement zj
is received, each Kalman filter uses its input state
and its error covariance matrix to calculate its output
state &2 and its error govariance matrix IA‘Z Moreover,
both the innovation ﬂ]k and its error covariance matrix
SJ,; [30] are used to calculate the likelihood of each

filter, which is given by

A= _ exp[—0.5(8)) (SOBL.  j=1,---,r

27'[S],<
(19)

Then, the mode probability update for the jth filter is
computed as
; 1

I‘L]=5 ]kE]’ j=17"'7r (20)

and
r ..
G=Y A& 1)
j=1

3) Fusion of the outputs: The output state estimate Xk
and its error covariance matrix Py are computed as a
fusion of all the filter output states and their covariance
matrices weighted by the updated model probabilities,
respectively.

,
k= R (22)
j=1
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and

Pe= [P, + IR — &R, - /1 (23)

j=1

IV. THE PROPOSED TRACKING ALGORITHM
Consider a target that is moving in a circular path around a
fixed center at a speed v in a 2-D space. Then its angular speed
(or the turn rate) w is given by [32], [33]

v

W= R (24)

where R is the radius of the circle. If v is assumed to be
constant, then angular speed, i.e., the turn rate is also constant.
The speed v of the target can be calculated at each time step
from the estimated velocity components in the output state
estimate vector given by

v=1/E2 472 (25)

where & and 7 are the velocity components in the x and y
directions. Therefore, our aim is to estimate the radius R of
the turn at a given instant.

For this purpose, we assume that the target motion consists
of three sub-motions as depicted in Fig. 2. The sub-motions
are two straight-line motions before and after the turn, and a
circular motion during the turn with its center at (0g, o)
For the circular part of the motion, we assume that the target
moves on the circumference of a circle with radius Ry, such
that the received measurements are at the same distance from
the center of the circle.

Suppose we have three consecutive measurements given
by (§k—2, Mk—2), (§k—1, Nk—1), and (&, ny). Then,

Rik—2 = Ri—1 = Ry (26)

Then using the distance formula between two points and (26),
we can determine (og; , 0y,), the coordinates of the center and
then the radius Ry. The detailed proof is in Appendix A.
The block diagram of the proposed tracking IMM algo-
rithm is shown in Fig. 3. The algorithm uses three Kalman
filters, first of which uses the CV model to account for the
straight-line motion of the target, and the second and third
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FIGURE 3. The block diagram of one cycle of the proposed tracking algorithm.

Algorithm 1 Determination of the Turn Rate wy

1 Input: (52, me—2),  (Gx—1, me—1)s &k ),
(&K 11c)

and

: Find: oy

: begin

: Obtain og, using (A.5)
Obtain oy, using (A.7)
: Obtain Ry using (A.8)
: Obtain v, using (25)

: Obtain wy using (24)
end

filters, denoted by CTL and CTR filters, use the CT model
to account for the left turning and right turning motions,
respectively. For left turns, the estimated turn rate takes a
positive sign, while negative values are used for the right
turns [26]. A sign-changing block is located at the input of
the CTR filter to switch the sign of the turn rate provided to
the CT model in that filter to account for the right turn. The
three measurements z;, z;_, and z;_, are fed to the block
that calculates the radius Ry, at the current time step, as shown
in Fig. 3. Furthermore, the speed of the target is calculated
from the output state estimate of the algorithm. This output
state vector contains the estimated components for both the
position and velocity of the target, where the target speed is
calculated using (25). The output of the last two mentioned
blocks, Ry and v, are then used to calculate the turn rate wy,
which in turn is used in the next time step of the algorithm.

C 1L

of "t = wx 27)
€T
o = —ox (28)
CT CTgr .
where w;*" and w, "~ are the left and right turn rates, respec-

tively. Once wkc L and a)kCTR have been determined and the

new measurement z; is received, the measurement z;_, is
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Algorithm 2 The Proposed Tracking Algorithm
1: Input: P)"7, [,Q,C, py o WS,
2: Find: f(k and Pk R
3: Initialization: using z; and 2, find X, and P, V KF

ST N, and 7

from (36) and (37)
4: Atk =3, Set:
S| 22 23 N
Xp—1 = Xg—1 = X1 = X0
e 3 N

Pk 1 =P =P =P

Ki—1 = Mo

o =

{7 = o7
5: begin the process atk =3 to N
6 forj=1:3do
7: Obtain & and uk g usmg (18) and (17)
8 Obtain X xk " andP _, using (15) and (16)
9 Obtain x] and ch using (13) and (14) with
wkCT’f and a)kC_Ll

10: Obtain ﬁ]k_ and S’k using (10) and (11)
11 Obtain A}, using (19)
12: Obtain G and ,u/k using (21) and (20)
13: end for .
14: Compute X; and Py using (22) and (23)
15: Compute wk usmg Algorithm 1
16: Compute a)k L and w; Tk using (27) and (28)

17: end the process

discarded, and the other two previous measurements z;_1 and
Zj are retained as z;_ and z;_1, respectively, and the process
is repeated. The complete algorithm is given as Algorithm 2,
wherein I'QI"” and C are the covariance matrices for any
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value of k, and

5 0
Q=[UOQ az] 29)
Q
2
[fy

where o and o are, respectively, the standard deviations of
the process noise and measurement noise in x or y directions.

It is to be pointed out that if only one KF is employed for
the turning motion using the CT model, then the model can
be designed either with a positive value or a negative value
of the turn rate. For example, in the former case, the model
can estimate the turn rate only for left turns, but will not be
able to make a good estimate in the case of right turns. This
is due to the fact that when the target performs a right turn,
the algorithm will assign a higher weight to the KF with the
CV model, thus resulting in a less accurate prediction of the
target position. Hence, it is not appropriate to use only one
KF for estimating both the right and left turn rates.

V. PERFORMANCE EVALUATION
In this section, the performance of the proposed algorithm
as well as that of the existing linear IMM algorithms are
compared and evaluated using the following metrics.

The normalized position error (NPE) [18] is used to com-
pare the tracking accuracy of the position, and is given by

S g

NPE;, = L
Vi T G -2+ L

€1y

where é,é and ﬁ}c are the estimated positions in the x and y
directions, respectively, while &; and n;, are the corresponding
true positions, z‘S ' and z’,’ . are the measured positions, and M
is the number of runs performed in the Monte-Carlo simula-
tion. When the value of NPE is less than unity, the estimator
performance is acceptable; on the other hand, when it is not
less than unity, the estimator performance is not acceptable,
at this time step.

Another test to check whether the error of the state is
well-suited with the corresponding covariance matrix of the
estimated state or not, which is the average normalized esti-
mation error squared (ANEES) test [28]. It is given by

ANEES; =

M
1 . A , ,
i AN IRl W I
x, —X;.) (P X, —X 32
Mnx_leu D PHTIR — %) (32)
1=
where X;; and f(}( are the true and estimated state vectors,
respectively, and P}, is the estimated error covariance matrix
of the target at the time step k in the Monte-Carlo run number

i, while n, is the dimension of the state vector. The logarith-
mic ANEES (LANEEYS) is given by

LANEES; = log,, (ANEES}) (33)

is more expressive in terms of displaying the results [25].
When the value of LANEES is equal or less than zero,
the estimator is said to be consistent at this time step.
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For all the algorithms, the Kalman filters are initialized by
using the first two consecutive measurements of the target
position [16]. Let the first two consecutive measurements
received be z| and z; given by

21 = [z, 2] (34)
7 = [Zéz, an]/ (35)

where z¢ | and z¢, are the measured positions in the x direc-
tion at time k = 1,2, respectively, while z,, and z,, are
the measured positions in the y direction at time k = 1,2,
respectively. Then, the initial estimate state vector X, is given
by
%) T2 Znp — 20y

T T I (36)
where T is the sampling period. The initial error covariance
matrix P, is given by [16]

X, = [Zézs

aé aé/T 0 0
. o%/T 202)T? 0 0
— C C
Po=1"% 0 o2 o2/T 37)
0 0 02/T 20¢/T?

where o is the standard deviation of the measurement noise.
Assuming that the target moves nearly in a straight-line at the
beginning of the tracking process, the initial mode probability
is given by [18]

0.6 striaght line motion

= 0.4 38
Ko other motions (38)

r—
where r is the total number of filters in each of the four IMM
algorithms under consideration.

We use a sampling period T of 1 second, which conforms
to the sampling period of modern radar systems [11]. The
standard deviation o¢ of the measurement noise to be 10 m.
Monte-Carlo simulations of 100 runs is performed assuming
the noise for all the algorithms to be the same, for fair
comparison.

The three algorithms that are used in the comparison are
described below

The first algorithm, which we denote by Al, is an IMM
algorithm that employs three filters; one of the filters uses the
CV model and the other two the CT model with known turn
rates of +2.5°/s. The standard deviation for the process noise
for all the models is assumed to be 0.003 m/s2. The transition
probability matrix of the algorithm is assumed as

09 005 005
PAl=1005 09 005 (39)
0.05 005 09

The second algorithm, which we denote by A2, is the same
as Al except for the turn rates of the CT models that is
assumed to be +3.5°/s.

The third algorithm [18], which we denote as A3, is also
an IMM algorithm but employs only two filters; one uses a
CV model, and the other a turning rate model that utilizes
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the target’s position, velocity, and acceleration to estimate the
target position, which we denote by 3CTR. The 3CTR model
is given by [18]

sctR _ |Ar O
F _[0 A (40)
where
1 o lsinl) o 21 - cos(wT))
Ar =10  cos(wT) ™ sin(wT) (41)
0 —owsin(wT) cos(wT)

Its corresponding disturbance matrix can be expressed as

0.16773 0
Iy=| 0512 0 (42)
T 0

The initial value of the turn rate is assumed to be 0.2°/s.
The standard deviation for the process noise for both the CV
model and the 3CTR model is assumed to be 0.1 m/s* and
10.5 m/s?, respectively, and the transition probability matrix
of the algorithm to be [18]

5 [0.98 0.02
P _[0.02 0.98 “43)

In order to compare the performance of our algorithm with
that of other two algorithms, we assume that the target moves
at a speed of 100 m/s with white Gaussian atmospheric noise
having zero mean and standard deviation of 0.1 /s in both
the x and y directions. The parameter (standard deviation) of
the process noise is tuned to provide good tracking perfor-
mance for given statistics of the atmospheric and measure-
ment noises. In our proposed algorithm, it has been found that
the standard deviation of the process noise of 0.003 /s> for
all the filters in all the scenarios for an atmospheric noise with
a standard deviation of 0.1m/s* and 10m for the standard
deviation of measurement noise provides good performance.
However, if the levels of the atmospheric and measurement
noises change, the parameter of the process noise in the
proposed algorithm needs to be re-tuned. After having con-
sidered a number of probability transition matrices, it has
been found that the best transition probability matrix from
the point of view of both NPE and LANEES is given by

0.9 0.05 0.05
PP’ =101 08 0.1 (44)
0.1 0.1 08

For details regarding the above choice, see Appendix B.
We choose the initial values of the turn rates of the two CT
models to be 0.2°/s and —0.2°/s.

Comparison is now carried out under five scenarios,
in which the targets performs various maneuvers. These sce-
narios along with the corresponding performance results in
terms of NPE and consistency, as measured by LANEES,
are shown in the sub-figures (a), (b), and (c), respectively,
in Fig. 4 to Fig. 8.

In the first scenario, the target starts with a straight-line
motion for 15 seconds, then performs the first maneuver to
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FIGURE 4. The results of the first scenario for a target that performs turns

of 1.5°/s, and 2.5°/s. (a) True target trajectory. (b) Normalized position
error. (c) Consistency test.

the left with a turn rate of 1.5°/s for 15 seconds. Afterwards,
it moves again in a straight-line motion for 10 seconds, and
then performs another turn to the left with a turn rate of 2.5° /s
for 30 seconds. Finally, it goes in a straight-line motion for a
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FIGURE 5. The results of the second scenario for a target that performs
turns of 1.5°/s, and 3°/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

further 10 seconds. This target trajectory of this scenario is
shown Fig. 4a. The initial state vector is assumed to be

X, = [12500m, —70.5m/s, 10000m, —70.5m/s]" (45)
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FIGURE 6. The results of the third scenario for a target that performs

turns of 1.5°/s, and 3.5°/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

It is seen from Fig. 4b that all the four algorithms
exhibit acceptable performance in terms of NPE. However,
as expected, Al exhibits the best performance, particularly at
the second maneuver in view of the fact that the algorithm
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design matches the target maneuver. In addition, it is seen
from Fig. 4c that throughout the tracking period, LANEES
value is always negative for all the algorithms and hence,
the algorithms are consistent, except for A3, which has a
positive value at the beginning of the second maneuver.

The second scenario is the same as the first one except that
the second turn rate of the target is increased to 3°/s. This
scenario is depicted in Fig. 5a. From Fig. 5b, it is observed
that the proposed algorithm and A2 exhibit acceptable per-
formance throughout the tracking period. The performance
of Al deteriorates, as expected, compared to its performance
in the previous scenario, since the turn rate of the target is
outside the range for which the algorithm is designed. Algo-
rithm A2 provides the best performance, as expected, since
the turn rate of the target is covered in the region for which the
algorithm is designed. The performance of A3 is acceptable
throughout the tracking period except at the beginning of
the second maneuver. As seen from Fig. Sc, the consistency of
A1 is not acceptable during the second maneuver, as is to be
expected. The other algorithms are consistent, but A3 again
has a positive value at the beginning of the second maneuver.

In the third scenario, the second turn rate is increased to
3.5°/s. This scenario is shown in Fig. 6a. It is seen from
Figs 6b and 6¢ that Al cannot track the second maneu-
ver. As expected, A2 gives the best performance, since the
turn rate of the target matches with one of the turn rates for
which the algorithm has been designed. The performance of
the proposed algorithm as well as that of A3 in terms of NPE
and LANEES are acceptable; however, as in the previous
scenarios, A3 exhibits positive value for LANEES at the
beginning of the second maneuver.

In the fourth scenario, the target performs two maneuvers
the first to the right at a turn rate of —3°/s and the second to
the left at a turn rate of 2° /5. This scenario is shown in Fig. 7a.
From Fig. 7b, it is seen that the performance of both Al and
A2 is better than that of A3 and the proposed one. As is
to be expected, the performance of Al is the best during
the second maneuver, since the target turn rate is close to
one of the turn rates employed in the design of the algorithm.
However, the performance of A2 is the best during the first
maneuver because the target turn rate is close to one of turn
rates used in the design of this algorithm. Both the proposed
algorithm and A3 exhibit acceptable performance in terms of
NPE; however, A3 has value of more than unity for NPE at
the beginning of the first maneuver. It is seen from Fig. 7c
that all the algorithms have acceptable consistency, except
that A1 and A3 have positive values for LANEES at the end
and the beginning of the first maneuver, respectively.

The fifth scenario is the same as the fourth scenario except
that the turn rate of the first maneuver is —4.5°/s and that
of the second is 4.5°/s. This scenario is depicted in Fig. 8a.
From Figs 8b and 8c it is seen that, as expected, both A1 and
A2 are unable to track the target for either of the maneuvers,
since the target turn rate is outside the ranges for which
these algorithms are designed. Both the proposed algorithm
and A3 show satisfactory performance in terms of the two
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FIGURE 7. The results of the fourth scenario for a target that performs

turns of —3°/s, and 2°/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

metrics. However, A3 exhibits a positive value for LANEES
at the beginning of both maneuvers, whereas the proposed
algorithm has acceptable consistency throughout the tracking
process.
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FIGURE 8. The results of the fifth scenario for a target that performs turns

of —4.5°/s, and 4.5°/s. (a) True target trajectory. (b) Normalized position
error. (c) Consistency test.

It is noticed from these scenarios that the algorithms
Al and A2 exhibit a performance better than that of A3 or
the proposed algorithm, when the target turn rate is covered
in the region for which these algorithms have been designed.
However, when the turn rate is outside the range, then their
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FIGURE 9. The results of the first scenario for a target that performs turns

of —2.5°/s, and 3.25°/s. (a) True target trajectory. (b) Normalized position
error. (c) Consistency test.

performance may not be acceptable or they may even fail
to track the target. Further, it is observed that A3 and the
proposed algorithm exhibit acceptable performance in all the
scenarios. But, the performance of the proposed algorithm is
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FIGURE 10. The results of the second scenario for a target that performs

turns of 3°/s, and —2°/s. (a) True target trajectory. (b) Normalized
position error. (c) Consistency test.

always better than that of A3 during all the scenarios in terms
of both NPE and the consistency, whereas the consistency of
A3 may have a positive value at the beginning of a maneuver,
when the turn rate is outside the range of +2°/s. Based on
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these results, the proposed algorithm represents a promising
performance in realistic scenarios, where prior information
about the target turn rate is rarely available.

VI. CONCLUSION

In this paper, we have proposed an algorithm to track a
maneuvering target, when the information on the target turn
rate is not a priori known and the system information about
only the position of the target. The turn rate is obtained
adaptively based on the speed of the target and the radius
of the turn using the interacting multiple model framework.
We have proposed a simple method of computing the radius
of the turn using the previous three consecutive measure-
ments, assuming that the target performs a circular maneu-
ver. A detailed study has been carried out to choose an appro-
priate transition probability matrix, so that the performance of
the proposed algorithm is acceptable in terms of two metrics,
normalized position error (NPE) and the logarithmic average
normalized estimation error squared (LANEES). A compar-
ison of the proposed algorithm with two existing algorithms
has been carried out. One of these two algorithms assumes
that the target turn rate is known and the other one estimates
it during the tracking process. All the algorithms in this com-
parison use linear models, namely, the constant velocity (CV)
and coordinated turn (CT) models. Based on a number of sce-
narios with various target turn rates, it has been shown that the
proposed algorithm exhibits satisfactory performance in all of
the scenarios considered, and its performance is superior to
that of the adaptive algorithm. Further, when an unexpected
maneuver is performed by the target, and the target turn rate
is not covered by the algorithms that have been designed with
a prior information on the target turn rate, the performance of
these algorithms deteriorates or the algorithms may even fail
to track the target, whereas the proposed algorithm always
exhibits a satisfactory performance. These results foster the
use of the proposed algorithm in real life situations, where
the information on neither the target turn rate nor the range
rate is available to the tracking algorithm.

APPENDIX A

DETERMINATION OF THE RADIUS OF THE TURN USING
THREE MEASUREMENTS

In this derivation, we assume that the target performs a CT
motion during the maneuvering time on the circumference
of a circle with radius Ry, its center at (og,, 0, ) and the
target moves in a straight line motion before and after the
maneuver as shown in Fig. 2. Assume that three successive
measurements are received. These measurements are defined
as (§x—2, Mk—2), (§k—1, Mk—1), and (5, ni). Therefore, these
measurements will be at the same distance from the center of
the turn during the maneuver motion; thus

Ry 2 =R 1 =R (A.1)
Then, construct two equations such as
Ri—2 = Ry (A.2)
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CE & iy — D E— — &) — (EF — E ey — m)E—2 — E—1)

Op = (A7)
2((Mi—2 — Mk—1))Ek—1 — &) — 2((Mk—1 — M) (Ek—2 — Ek—1)
Ry_1 =Ry (A3) For purpose of illustration, we consider the following two
other transition matrices

From (A.3) we get [0.95  0.025 0.0257]

P> 02 038 0 (B.2)
(& — 0e) >+ 0k — 0ny)* = (Ert — 05> + (=1 — 0yy)* " los o 0.8
(A4 and

or [0.95 0.025 0.025]
P> =1015 08 005 (B.3)

o G =80+ iy — ) — 200 (m-t — ) [0.15 005 08 |

S =

g 2(5k—1 — &) and compare their performance with that of Ptl, under two

(A.5)
Similarly, from (A.2) we can derive that

b 2, — & D+, — 07 ) —20n(Mk—2 — Mk—1)
k= 2E 2 — & 1)

(A.6)

Hence, from (A.5) and (A.6) we get (A.7), as shown at the
top of this page.

Therefore, from (A.5) and (A.7), we get the center position
(0t 1> 0y )- We now calculate the radius Ry using (0g, 0y;)
and (&x, nx) as the last received information about the target.

Ri = [ — 06, + i — 0, (A8)
APPENDIX B

DETERMINATION OF THE STATE TRANSITION MATRIX

As mentioned earlier, the target has three modes of motion,
namely, straight-line motion (SL), left turning motion (LT),
and right turning motion (RT), which will be referred to as
modes 1, 2, and 3, respectively. The element p;;, i # j in
the transition probability matrix P, represents the probability
of the target transiting from mode i to mode j, while p;;
represents the probability of the target continuing to be in
mode i. It has been found in [2] that p;; should be between
0.8 and 0.98 for good tracking results.

We assume that py> and p33 should have values less than
p11 in view of the fact that we adaptively estimate w and
the predicted position by the CT models are not precise. The
other elements of this matrix are adjusted such that the sum
of the elements in each row is equal to unity. A number
of different transition matrices and various scenarios with
different maneuvers have been considered, and it has been
found that the best performance in terms of both NPE and
LANEES metrics is given by

0.9 0.05 0.05
P. =101 08 0.1 (B.1)
0.1 01 08
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different scenarios.

The first scenario is shown in Fig. 9a. The target starts
with a straight-line motion for 15 seconds, then performs
the first maneuver to the right with a turn rate of —2.5°/s
for 15 seconds. Afterwards, it moves again in a straight-line
motion for 10 seconds, and then performs another maneuver
to the left with a turn rate of 3.25°/s for 30 seconds. Finally,
it goes in a straight-line motion for a further 10 seconds. The
initial state vector used is

X, = [12500m, —70.5m/s, 10000m, —70.5m/s]" (B.4)

The algorithm with P,lr shows a better tracking performance
during the maneuvers in terms of NPE, as shown in Fig. 9b,
compared to that of the algorithm with P2 or P> .. It is clear
from Fig. 9c the algorithm with P,lr preserves its consistency
throughout the tracking period, while the other two do not in
the sense that LANEES for these two becomes positive during
the maneuvers.

The second scenario is the same as the first one except for
the maneuvering turn rates; the first maneuver is performed
to the left with a turn rate of 3°/s and the second maneuver
to the right with a turn rate of —2°/s, as shown in Fig. 10a.
It is see from Fig. 10b and Fig. 10c that the conclusions made
regarding NPE and consistency of the algorithm with Ptlr, Ptzr
and Pt3, for the previous scenario hold good for the present
scenario also.

From the above two scenarios, it is clear that the perfor-
mance of the algorithm in terms of both NPE and LANEES
is better with Ptlr as the transition probability matrix than with
P2 or P} . Similar performance of P!, has been observed in
other scenarios and with other transition probability matrices,
but are not reported here. In view of these findings, we choose
P! as the proposed transition probability matrix and denote

it by PO"7.
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