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ABSTRACT The continuous access of new energy and distributed energy, as well as the random disturbance
of load power, affect the security and stability of microgrids. A virtual generation ecosystem control (VGEC)
strategy is proposed in this paper, which adopts the idea of time tunnel and the principle of a new win-
loss criterion to achieve a fast automatic generation control power dispatch, optimal coordinated control of
microgrids. A two-layer dynamic power dispatch structure is introduced in the proposed strategy, which
combines hierarchical Q-learning with consensus theory to improve the adaptability of the consistency
algorithm in complex random environments. Both the IEEE standard two-area load frequency control model
and the interconnected microgrids model are used in simulation for comparison and verification. The results
show that, by using the VGEC strategy, the control performance of microgrids can be improved, while can
reduce power generation cost, and obtain faster convergence speed and stronger robustness compared with
other algorithms.

INDEX TERMS Automatic generation control, virtual generation ecosystem control, time tunnel idea,
interconnected microgrids.

I. INTRODUCTION
The microgrids can integrate all kinds of distributed
generation technologies effectively, and provide an effec-
tive technical way for the large-scale access of new energy
and distributed energy, which has become an important part
of smart grid research and construction [1]–[4]. However,
because of environmental uncertainties and load fluctua-
tions, the energy management system (EMS) of microgrids
faces many challenges [5]–[7]. Automatic generation control
(AGC) [8], as one of the most important control functions
in EMS, can effectively improve the frequency quality and
economic efficiency.

The traditional AGC strategies are usually composed
of two categories: a) track the total power references of
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AGC usually controlled; b) assign the total power refer-
ences to each unit by a fixed allocation method. In prac-
tice, proportional-integral (PI) controller is widely used in
the total power references tracking of AGC in microgrids.
Moreover, bacterial foraging optimization (BFO) [9], particle
swarm optimization (PSO) [10], genetic algorithm (GA) [11],
and conventional gradient descent algorithm were applied
to simultaneously optimize all the control parameters of
microgrids. In previous studies of the authors, the rein-
forcement learning (RL) has been applied to the traditional
AGC [12]–[14] of the interconnected power grid to solve
the random disturbance caused by massive integration of dis-
tributed energy. However, the aforementioned studies are all
based on centralized control structure, which is an inefficient
cooperation with economical dispatch due to the ignorance of
power grid topology. Particularly, the overall AGC command
of provincial dispatch centre is assigned through a fixed
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FIGURE 1. The control framework of interconnected microgrids based on VGEC strategy.

proportion of the adjustable capacity rather than a dynamic
optimization, and it cannot effectively cooperate with the
AGC of interconnected microgirds.

Therefore, a wolf pack hunting (WPH) [15] strategy
based on the multi-agent system stochastic consensus game
(MAS-SCG) [16] framework is presented to obtain opti-
mal coordinated control of the islanded distribution network
model with a large amount of distributed energy. How-
ever, the control method based on the multi-agent system
stochastic game (MAS-SG) [17] in the WPH strategy is the
DWoLF-PHC(λ), which cannot accurately calculate the win-
and-loss criterion and quickly converge to the Nash. Hence
the author proposes an ecological population cooperative
control (EPCC) [18] to solve above problems, and its con-
trol method is PDWoLF-PHC(λ) which has new win-and-
loss criterion and integrates time tunnel ideas. The power
allocation algorithms in both WPH and EPCC adopt simple
first-order consensus algorithm based on multi-agent system
collaborative consensus (MAS-CC) [19], which relies heavily
on the model and falls easily into the local optimal solution.

To improve the adaptability of the consensus algorithm
in a dynamic random environment, a multi-robot behavior
consensus Q-learning algorithm [20] that combined consen-
sus algorithm and RL is proposed to realize robot behavior
control. Inspired by this, a two-layer model for dynamic
power dispatch is constructed. Based on this model, a novel
hierarchical Q-learning consensus (HQC) strategy is pro-
posed to obtain the optimal solution of power allocation
and solve the dimension disaster. Then a virtual generation
ecosystem control (VGEC) strategy is proposed to achieve
a fast automatic generation control power dispatch, optimal

coordinated control of microgrids, which is a hybrid of con-
trol (PDWoLF-PHC(λ) based on MAS-SG) and optimization
(HQC based onMAS-CC). In particular, PDWoLF-PHC(λ) is
used underMAS-SG to rapidly obtain the overall power refer-
ence (control), then HQC is firstly adopted underMAS-CC to
optimally distribute the obtained overall power command into
each unit (optimization). Both the IEEE standard two-area
load frequency control (LFC) model and the interconnected
microgrids model are used for simulation comparison and
verification. The results show that the proposed strategy can
improve the control performance of interconnected micro-
grids, reduce power generation cost, and obtain faster con-
vergence speed and stronger robustness compared with other
algorithms.

II. FRAMEWROK DEVELOPMENT
The interconnectedmicrogrids integratedwith a large number
of distributed energy resources can be divided into several
small area grid virtually according to the graph theory cut
method, and the control framework is shown in Fig. 1. Each
small area micro-network is considered as a VGE. Each VGE
exchanges power through the regional boundary to maintain
the frequency stability of the interconnectedmicrogrid.When
a serious fault occurs in the microgrid, each VGE is automat-
ically separated as an island operation. At this time, the fre-
quency of each VGE needs to be maintained by autonomous
control.

The PDWoLF-PHC(λ) is adopted to obtain the total power
command of each VGE through a multi-agent dynamic game
since each VGE can be regarded as an agent. Each VGE
contains multiple types of generator unit groups (GUGs),
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which will select the generator unit with the largest capacity
as the leader and the other units as the followers. Total power
command of different GUGs is obtained through hierarchical
Q-learning (HQL) [21], meanwhile power command of each
unit in GUGs is assigned using the consensus algorithm.

III. VEGC
The VGEC strategy is a mixed strategy based on MAS-SCG
framework. The PDWoLF-PHC(λ) based on the MAS-SG
principle is adopted to obtain the total power command in the
AGC control part of each VGE. An HQC strategy is proposed
to distribute the power in an optimal dynamic way, which
combines HQL algorithm with a consensus method based on
the MAS-CC principle.

A. AGC CONTROL ALGORITHM
In the VGE, the PDWoLF-PHC(λ) is used as the AGC control
algorithm, and its corresponding controller is equivalent
to an agent, which can frequently exchange information
with other agents. The key idea of the proposed
PDWoLF-PHC(λ) algorithm is to explicitly use the time
tunnel idea with backward multi-step prediction function to
effectively backtrack the online reinforcement information
of future multi-step decision-making. At the same time,
each agent uses experience sharing to update the Q-function
table, through the dynamic competition or cooperation appro-
priately adjust its own control strategy, and maximize the
overall learning efficiency of the multi-agent system, so that
the proposed algorithm can obtain the optimal cooperative
control.

The control system is a multiple-agent system, and the
actions of other agents can change the state of the entire
system. At this time, the agent uses the product of the decision
change rate and the decision space slope value to be negative
to design the variable learning rate, and agent changes the
learning rate as the state changes.

In the case of the state sk and the reward function R1,
the agent executes the search action ak according to themixed
table π (sk , ak ), and its state transits to the next state sk+1. The
update rule of π (sk , ak ) is as follows:

π (sk , ak ) ← π (sk , ak )+1skak (1)

1skak =

{
−δskak , ak 6=argmaxak+1 Q (sk , ak+1)∑

δskak+1 , otherwise

(2)

δskak = min
(
π (sk , ak) , ϕi

/
(|Ai| − 1)

)
(3)

where 1skak is the change of policy update at kth step iter-
ation, |Ai| is the number of optional actions, and ϕ is the
variable learning rate. Its update law is as follows:

φ =

{
φwin, 1(sk−1, ak−1)×12(sk−1, ak−1) < 0
φlose, otherwise

(4)

where 1 (sk−1, ak−1) represents the decision change rate
at k − 1th step iteration, and 12(sk−1, ak−1) is the deci-
sion space slope. If the product of the decision change rate

1(sk−1, ak−1) and the decision space slope 12(sk−1, ak−1)
is negative, φwin is selected as the variable learning rate, oth-
erwise φlose is selected, where φlose > φwin. In the next step
iteration,1(sk , ak ) and12(sk , ak ) will be updated according
to (5) and (6):

12(sk , ak ) ← 1skak −1(sk−1, ak−1) (5)

1(sk , ak ) ← 1skak (6)

This paper selects the eligibility trace based on
SARSA(λ) [19]:

ek+1(s, a) =

{
γ λek (s, a)+ 1, (s, a) = (sk , ak )
γ λek (s, a), otherwise

(7)

where ek (s, a) is eligibility trace at kth step iteration under
state s and action a, γ is the discount factor, and λ is the
attenuation factor.

The agent uses the current reward R to calculate the evalu-
ation value of Q function error:

ρk = R(sk , sk+1, ak )+ γQk (sk+1, ag)− Qk (sk , ak ) (8)

Mk = R(sk , sk+1, ak )+ γQk (sk+1, ag)+ Qk (sk , ag) (9)

In (8) and (9), R(sk , sk+1, ak ) is the agent reward function
at the state from sk to sk+1 under the selected action ak , ag
is the greedy action, ρk is the Q function error at kth step
iteration, and Mk is the evaluation of Q function error.
The Q(λ) [22] is iteratively updated as follows:

Qk+1(s, a) = Qk (s, a)+ αMkek (s, a) (10)

Qk+1(sk , ak ) = Qk (sk , ak )+ αρk (11)

where α is the learning rate.
After experiencing enough trial and error iterations,

the state value function Qk (s, a) will converge to the
Q∗ matrix with a probability of 1, and finally obtain an
optimal control strategy represented by the Q∗ matrix.
In general, area control error (ACE) can maximize the

long-term benefits of CPS and avoid large power fluctua-
tions. Meanwhile, generation cost takes into account the eco-
nomic impact of the energy management system. Therefore,
the weighted sum of ACE and Ctotal is chosen as a reward
function, in which a larger weighted sum will result in a
smaller reward. The reward function is expressed as follows:

R1(sk , sk+1, ak ) = −ρ[ACE(k)]2 −
(1− ρ)Ctotal(k)

50000
(12)

where ACE and Ctotal represent the instantaneous absolute
value of the ACE and the actual generation cost of all units at
the kth step iteration, ρ and 1−ρ are the weight ratio of ACE
and Ctotal, respectively, and ρ = 0.5 is chosen.
After several trial and error tests, the parameters of control

algorithm are set in Table 1.

B. AGC POWER ALLOCATION ALGORITHM
1) MATHEMATICAL MODEL OF POWER ALLOCATION
Power deviation, regulation cost, and ramp time are chosen
as three objective functions. The power command allocation
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TABLE 1. PDWoLF-PHC(λ) parameters setting.

process for each VGE is described by the following mathe-
matical model:

min f1 = 1P2error +
m∑
i=1

Ctotal−i

min f2 =
m∑
i=1

Wi∑
w=1

1Piw/1Prateiw

s.t. 1Perror = 1P6 −
m∑
i=1

1Pi

1P6 =
m∑
i=1

Wi∑
w=1

1Piw

1Pi = ηi1P6
m∑
i=1

ηi = 1, 0 ≤ ηi ≤ 1

(13)

where f1 is the linear weighted multiple-objective function of
power deviation and regulation cost;
f2 is the objective function of ramp time;
1Perror is the deviation of the total power command calcu-

lated by the AGC controller and the total power of all GUGs;
Ctotal−i is the regulation cost of the whole generator units

in GUGi;
1Piw and1Prateiw are the power command and ramp rate of

the wth generator unit of GUGi respectively;
1P6 is the total power command calculated by the

AGC controller;
1Pi is the power command of GUGi;
ηi is the power allocation factor;
m is the number of GUG in each territorial power grid;
Wi is the number of generator units in GUGi.

2) HQC STRATEGY
In the AGC allocation process, a novel HQC strategy that
combines HQL with consensus algorithm is adopted to allo-
cate power command. Each generator unit is regarded as
an agent, the unit with the largest capacity is selected as
the leader, and others are the followers. The leader interacts
with the environment and gets an environment state s. The
reward R of the environment and the next state s + 1 are
obtained by the leader through taking an action, and the
self-learning process is completed. Through the consensus

algorithm, leader–follower and follower–follower can fre-
quently interact. Therefore, the optimal allocation can be
obtained through self-learning and collaborative learning.

a: HQL ALGORITHM
HQL can realize the self-learning processes to obtain power
command of each GUG. HQL is based on the Q(λ), and
the eligibility trace is iteratively updated by (7), in which
γ = 0.9, and λ = 0.5.
The agent obtains reward value R2 through the current

exploration. R2(sk , sk+1, ak ) is the agent reward function
through executing action ak from state sk to sk+1. Reward
function R2(sk , sk+1, ak ) is designed as follows:

R2(sk , sk+1, ak ) = −1P2error −
Ctotal

1000
(14)

The iteration of HQL is updated according to (10) and (11).
Assuming that the probability of the action occurring in
the initial state is the same, the action ak is executed,
and the state is transferred to sk+1. The action probability
function P is updated as follows:
Pk+1(sk+1, ag) = Pk (sk , ag)+ θ (1− πk (sk , ag))
Pk+1(sk+1, ak ) = Pk (sk , ag)(1− θ ), ∀ak ∈ A, ak 6= ag
Pk+1(sk+1, ak+1) = Pk+1(sk , ak )

(15)

where θ is the action search speed with 0 ≤ θ ≤ 1, and
θ = 0.9 is chosen.
The total power command is taken as a state vari-

able, which is discretized into (−∞, −650), [−650, 20],
[20, 850], and (850, +∞). The action set is Ai = [η1,
η2, . . . , ηi]= [(η11, η12, . . . , η1i), (η21, η22, . . . , η1i), . . . (ηn1,
ηn2, . . . , ηni)], where ηi is a distribution factor of GUG.

b: MAS-CC ALGORITHM
Each GUG is treated as a hierarchical multiple-agent system
network. Suppose that the GUG has a network of p agents,
and the agents are represented by p(p = 1, . . . , n), respec-
tively. The relationship of the interactions between agents is
represented by a graph G = (V , E , A). V = (Vp, p =
1, . . . , n) is a node set, and each node represents an agent;
E ∈ V × V is the edge set, and its element represents the
relationship between agents through a directed or undirected
connection.

It is assumed that communication between agents vp and
vq is determined by probability bpq(0 ≤ bpq ≤ 1) and inde-
pendent from other agents. Communication between agents
means there is an information connection. Laplace matrix
L = [lpq] can reflect the topology of multi-agent net-
work [23], which is expressed as follows:

lpp =
p∑

q=1,p 6=q

bpq

lpp = −bpq, ∀p 6= q

(16)
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The ramp time is chosen as a consensus variable for
the GUG. The leader with a higher ramp rate undertakes
more disturbances. The ramp time of the wth unit of GUGi
is expressed as follows:

tiw = 1Piw/1Prateiw (17)

where 1Piw and 1Prateiw are the power command and ramp
rate of the wth unit of GUGi, respectively. And 1Prateiw is
expressed as follows:

1Prateiw =

{
1Prate+iw , 1Pi > 0
1Prate−iw , 1Pi < 0

(18)

where 1Prate+iw and 1Prate−iw are the upper and lower bounds
of the ramp rate, respectively.

The ramp time for each follower in GUG is updated as (19).

tiw[k + 1] =
Wi∑
v=1

dwv[k]tiv[k] (19)

where Wi is the number of generator units of GUGi, and
dwv[k] represents the term [w, v] of the discrete time k of the
row randommatrixD= dwv[k] ∈ RWi×Wi. It can be expressed
as follows.

dwv[k] =
|lwv|

Wi∑
v=1
|lwv|

, w = 1, 2, . . . ,Wi (20)

The collaborative consensus of the agents can be achieved
under the condition of frequent information interaction
among the agents and constant gain bwv if and only if the
directed graph is connected strongly [24].

The ramp time of the leader can be updated according to
Reference [25] as follows:

tiw[k + 1] =



Wi∑
v=1

dwv[k]tiv[k]+ σi1Perror-i, if 1Pi > 0

Wi∑
v=1

dwv[k]tiv[k]− σi1Perror-i, if 1Pi < 0

(21)

where σi is the power regulation factor for the GUGi, D =
dwv[k] ∈ RWi×Wi is a row randommatrix, and1Perror−i is the
power deviation for the GUGi, which is expressed as follows.

1Perror−i = 1Pi −
Wi∑
w=1

1Piw (22)

Similarly, the power generation commands 1Piw and the
maximum ramp time tiw are expressed in (23) and (24) as the
boundary conditions are achieved.

1Piw =

{
1Pmax

iw , 1Piw > 1Pmax
iw

1Pmin
iw , 1Piw < 1Pmin

iw
(23)

FIGURE 2. Execution steps of the VGEC strategy.

tiw = tmax
iw =


1Pmax

iw

1Prate+iw

, 1Piw > 1Pmax
iw

1Pmin
iw

1Prate−iw

, 1Piw < 1Pmin
iw

(24)

where 1Pmaxiw and 1Pminiw are the maximum and minimum
reserve capacity of the wth units of GUGi, respectively.
Moreover, the weighed factor will be changed as shown in

Eq. (25) if the power command1Piw of the wth unit of GUGi
exceeds the limitation.

bwv = 0, v = 1, 2 · · · ,Wi (25)

C. VGEC PROCEDURE
The execution steps of the VGEC are shown as in Fig. 2.

IV. CASE STUDIES
In the section of case studies, two-area LFC power sys-
tem model and interconnected microgrids model are built
to analyze the performance of the proposed strategy. All
the simulation cases in this paper are run in MATLAB
R2016b environment and the total instruction control period
of the dispatcher is 4 seconds. Meanwhile, Simulink is used
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FIGURE 3. IEEE standard two-area LFC power system.

for modeling and simulation, and the proposed algorithm
and controller of VGEC strategy are written by S-function
module.

A. TWO-AREA LFC MODEL
Based on the IEEE standard two-area LFC power system
model [26], one equivalent unit in area A and B is replaced
by GUGs that contain thermal power (TP) plant, liquefied
natural gas (LNG) plant, and large hydropower (LH) plant.
The framework structure of the two-area LFC power system
model is shown in Fig. 3, and the system parameters are
selected from [27].

Before running on-line, numerous explorations are needed
to identify the optimal action strategy through off-line trial-
and-error that optimizes Q function and state value func-
tion [28], and achieves sufficient pre-learning. Sinusoidal
load disturbance with period of 5000 s and amplitude
of 1000 MW is also introduced in area A and B, respectively.
The pre-learning process of two areas produced by continu-
ous sinusoidal disturbance is shown in Fig. 4.

As shown in Fig. 4(a), the strategy can quickly track load
disturbance in two areas. The AGC control performance is
evaluated by control performance standard (CPS) and ACE.
Fig. 4(b) illustrates that CPS1 in areas A and area B are
maintained within the range of 185% to 200% and 150% to
200%, respectively. Moreover, Fig. 4(c) shows that the ACE
in area A and area B remains in the range of −88 MW to
0 MW and −158 MW to 0 MW and finally reaches a stable
value. The CPS standards are as follows:

FIGURE 4. Pre-learning of VGEC strategy in each area.

(1) If CPS1 ≥ 200%, and CPS2 is an arbitrary value,
the CPS is qualified;

(2) If 100%≤ CPS1<200% and CPS2≥ 90%, the CPS is
qualified;

(3) If CPS1 < 100%, the CPS is unqualified.

B. INTERCONNECTED MICROGRIDS MODEL
In this paper, a interconnected microgrids model is estab-
lished that includes three microgrids with the communication
topology shown in Fig. 1. The model integrates a large num-
ber of new energy and distributed energy including photo-
voltaics (PV), wind farms (WF), small hydro-powers (SH),
micro-gas turbines (MT), diesel generators (DG), biomass
energy (BE), and fuel cells (FC). The model is simplified to
some extent because it does not include PV, WF, and electric
vehicles (EVs) as participants in the system frequency mod-
ulation. The corresponding PV model [29] was established
by simulating the change of the full-day light intensity; the
output model of the WF [30], and other generator set models
are established in previous studies [31]–[35].
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FIGURE 5. Three areas interconnected microgrid model.

FIGURE 6. Pre-learning of different algorithms in VGE1.

Fig. 5 shows the structure of a three-area intercon-
nected microgrid cluster including VGE1, VGE2, and VGE3.
The model parameters and unit parameters of VGE1 and
VGE3 are the same, so only VGE1 and VGE2 are analyzed.
The regulation power of the three areas is 2350, 2590, and
2350 kW, respectively, and the non-adjustable units (PV, WF,
and EV) are regarded as load disturbances. Each adjustable
unit (SH, MT, FC, DG, and BE) is treated as a different agent,

FIGURE 7. Impulsive load tracking curve of different algorithms in VGE1.

FIGURE 8. White noise load tracking curve of different algorithms in VGE1.

and the connection weight bwv between the agents is chosen
to be 1. The parameters of the AGC unit [36], [37] are shown
in Table 2. Ci represents the cost of microgrid generation,
and its formula is Ci(PGi,actual) = Ci(PGi,plan + 1PGi) =
αi1P2Gi+βi1PGi+γi, where PGi,actual is actual active power
for the ith unit, PGi,plan is the planned power generation of
the ith unit,1PGi is the AGC regulation power of the ith unit,
and positive constants αi, βi, and γi are dynamic coefficients
under load disturbance with αi = ai, βi = 2aiPGi,plan + bi,
and γi = P2Gi,plan + biPGi,plan + ci.

1) IMPULSIVE DISTURBANCE AND WHITE NOISE
DISTURBANCE
In the pre-learning stage, the sinusoidal load disturbance with
a period of 5000 s and an amplitude of 1000 kW is introduced
in the VGE1, and the VGEC strategy is contrasted with three
algorithms, namely EPCC [18], HQL [21], and WPH [15].
Fig. 6 shows the load disturbance tracking curves for different
algorithms during the pre-learning process. Compared with
other algorithms, the VGEC strategy can quickly track load
disturbances with faster convergence.
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TABLE 2. AGC unit parameters. TABLE 3. Control index values of different algorithms under impulsive
and white noise disturbance.

After the full pre-learning process, impulsive disturbance
and white noise are introduced into the VGE1 to simulate
different types of disturbances in the power system. The
long-term performance of theVGEC strategywas statistically
evaluated using 24 h experimental results under given impul-
sive disturbance and white noise disturbance. Fig. 7 and 8 are
the load tracing curves of different algorithms. It can be seen
fromFig. 7 and 8 that theVGEC strategy has smoother adjust-
ment commands and can quickly track load disturbances.

Table 3 shows the control index values of different algo-
rithms under impulsive disturbance and white noise distur-
bance. In this case, |1f | is the average of the absolute values
of the frequency deviation, and all the indicators are the aver-
age values in the simulation time. CPS1 evaluates the effect
of ACE changes on system frequency, and CPS2 evaluates the
ACE amplitude. The CPS index considers the distribution of
CPS1 and CPS2 indicators, which are mainly used to evaluate
the control performance of the entire AGC system.

Values shown in Table 3 indicate that in the VGE1 area
impulsive disturbance, compared with other methods,
the VGEC strategy can reduce |1f | by 0.0004 Hz to
0.0104 Hz, |ACE| by 0.57 kW to 20.84 kW, while it can
increase CPS1 by 1.01% to 6.72%, CPS2 by 0.69% to
11.76%. Under white noise disturbance, the VGEC strategy
can reduce |1f | by 0.0012 Hz to 0.0176 Hz, |ACE| by
2.13 kW to 12.32 kW, while it can increase CPS1 0.18% to
0.22% and increase CPS2 0.00% to 0.33%.

2) RANDOM DISTURBANCE
Random disturbances are applied to the VGE1, VGE2, and
VGE3 over a simulation time of 24h to verify the robustness
of the VGEC strategy. Three algorithms are introduced for
comparison. As shown in Fig. 9, under the VGEC strategy,
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TABLE 4. Statistics of AGC control performance indexes of different algorithms under random disturbance.

FIGURE 9. The control performance of VGEC algorithm under random
disturbance in VGE1 and VGE2.

the total power command output of the unit can track the
load disturbance well, so that the AGC dynamic control index
can quickly return to its ideal value after the disturbance
occurs, including the 1f , ACE, CPS1, which also illustrates
the robustness of the VGEC strategy.

Table 4 shows the AGC control performance indicators
of the four algorithms under random disturbances, where
the cost is the sum of the total regulation costs of all units
within 24 h. VGEC has the highest value of CPS1, the small-
est value of ACE and 1f , and the lowest total control cost.
Compared with EPCC strategy, the HQC strategy is

adopted in the AGC power allocation part, so VGEC can
improve the convergence speed through the interaction
between the agents and the self-learning of the agent. Com-
pared with HQL, VGEC is not affected by the size of the AGC
unit, so the global optimal search capability is stronger, and
the optimal solution can be obtained. Compared with WPH,
VGEC uses the product of decision rate of change and the
value of slope of decision space to be negative to design a
variable learning rate, which has faster convergence speed
and can reduce the total adjustment cost of AGC.

V. CONCLUSION
The contribution of this paper can be summarized as
follows:

(1) Based on VGE framework, a novel VGEC strategy is
proposed to obtain the optimal cooperative control and fast
power allocation of the interconnected microgrids, such that
the energy autonomy of the microgrids is realized.

(2) Using PDWoLF-PHC(λ) as the control algorithm of
VGEC strategy, an accurate calculation of the winning and
losing criteria is possible, and can more quickly converge to
Nash equilibrium. HQC strategy with interactive coordina-
tion and self-learning is used as the power allocation algo-
rithm of VGEC strategy by constructing a hierarchical power
allocation mode. This strategy improves the adaptability of
the consistency algorithm in complex random environments
and effectively alleviates ‘‘dimension disaster’’ that typically
results from the large scale of the unit.

(3) The validity of the VGEC strategy is verified by
the IEEE standard two-area LFC model. An interconnected
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microgrids model with a large amount of distributed energy is
used for simulation comparison and verification. The results
show that the proposed strategy can improve the control
performance of the interconnected microgrids, reduce the
power generation cost, and realize the energy autonomy
of the microgrids cluster. Compared with other algorithms,
the VGEC strategy is more robust and has faster convergence.
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