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ABSTRACT Non-contrast computed tomography (NCCT) is commonly used for volumetric follow-up
assessment of ischemic strokes. However, manual lesion segmentation is time-consuming and subject to
high inter-observer variability. The aim of this study was to develop and establish a baseline convolutional
neural network (CNN) model for automatic NCCT lesion segmentation. A total of 252 multi-center
clinical NCCT datasets, acquired from 22 centers, and corresponding manual segmentations were used
to train (204 datasets) and validate (48 datasets) a 3D multi-scale CNN model for lesion segmentation.
Post-processing methods were implemented to improve the CNN-based lesion segmentations. The final
CNN model and post-processing method was evaluated using 39 out-of-distribution holdout test datasets,
acquired at seven centers that did not contribute to the training or validation datasets. Each test image
was segmented by two or three neuroradiologists. The Dice similarity coefficient (DSC) and predicted
lesion volumes were used to evaluate the segmentations. The CNN model achieved a mean DSC score
of 0.47 on the validation NCCT datasets. Post-processing significantly improved the DSC to 0.50 (P< 0.01).
On the holdout test set, the CNN model achieved a mean DSC score of 0.42, which was also significantly
improved to 0.45 (P < 0.05) by post-processing. Importantly, the automatically segmented lesion volumes
were not significantly different from the lesion volumes determined by the expert observers (P > 0.05) and
showed excellent agreement with manual lesion segmentation volumes (intraclass correlation coefficient,
ICC = 0.88). The proposed CNN model can automatically and reliably segment ischemic stroke lesions in
clinical NCCT datasets. Post-processing techniques can further improve accuracy. As the model was trained
and evaluated on datasets from multiple centers, it is broadly applicable and is publicly available.

INDEX TERMS Artificial neural networks, brain, computed tomography, computer-assisted image analysis,
convolutional neural networks, deep learning, machine learning, stroke.

I. INTRODUCTION
Non-contrast computed tomography (NCCT) is the most
common imaging modality for volumetric assessment
of stroke lesions [1], [2]. Manual lesion segmentation
in NCCT images is time consuming and associated
with high inter-observer variability. Semi-automatic lesion
segmentation tools have been developed [3], [4] but still
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require human interaction, which could introduce a bias,
while previous work on automatic NCCT lesion segmenta-
tion is limited [5], [6].

Deep convolutional neural networks (CNNs) have shown
superior performance for various segmentation tasks in
medical imaging because of their ability to learn com-
plex patterns and relationships in the data [7]. Convolu-
tional kernels in CNNs enable the learning of non-localized
spatial relationships. The use of multi-scale features and
three-dimensional (3D) kernels [8] allows an automated seg-
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mentation algorithm to take advantage of the spatial conti-
guity of stroke lesions while maintaining localized context.
However, for stroke lesion segmentation, these methods
have only been applied to magnetic resonance imaging
(MRI) [9]–[11] or computed tomography perfusion and
angiography datasets [12], [13]. To date, multi-scale 3D
CNNs for a fully automatic stroke lesion segmentation have
not been evaluated in NCCT datasets, despite its common
application in stroke imaging [1], [2].

Thus, the aim of this work was to train and evaluate a
multi-scale 3D CNN model for stroke lesion segmentation
in follow-up NCCT datasets. For further improvement of the
CNN segmentations, post-processing methods were investi-
gated. We tested the model’s generalizability by evaluating it
on an out-of-distribution holdout test set, using multi-center
datasets acquired at entirely different centers that did not
contribute to the training and validation sets.

II. METHODS
A. DATASETS
A total of 291 clinical follow-up NCCT datasets from the
ESCAPE (252 datasets) [14] and ERASER (39 datasets) [15]
multi-center trials were used. These datasets were acquired
across 29 centers and corresponding manual segmentations
were available. Expert observers manually segmented patient
lesions in three orthogonal planes simultaneously using
ITK-SNAP [16]. The in-slice resolution ranged from 0.355
to 0.637mm, the slice thickness ranged from 1.00 to 10.0mm,
and the number of slices ranged from 10 to 141.

Approval and informed consent for the datasets from the
two trials was approved by the respective ethics board at
each site contributing to the two trials. All datasets used in
this retrospective secondary study were made available after
complete anonymization. Thus, additional ethics approval
and informed consent were not required.

1) TRAINING AND VALIDATION SETS
The ESCAPE datasets collected from 22 centers were used
for training and validation of the 3D CNN-based lesion seg-
mentation model. Out of the 252 ESCAPE datasets, 204 were
used for training and 48 were used for validation.

2) OUT-OF-DISTRIBUTION HOLDOUT TEST SET
The 39 ERASER datasets used for the out-of-distribution
holdout test set were collected from seven centers that did
not contribute to the training or validation sets. Experienced
neuroradiologists manually segmented the test datasets. Each
example was segmented by two (19 datasets) or three
(20 datasets) observers with multiple years of dedicated
experience in stroke imaging. By using out-of-distribution
datasets that were segmented by multiple expert observers,
this completely independent test set provides a stronger esti-
mate of the model’s generalization performance.

B. NCCT SCAN PRE-PROCESSING
As NCCT images were acquired from multiple centers with
differing scanners and imaging protocols, training a CNN

directly on NCCT images without pre-processing resulted in
very poor performance on the training set (data not shown).
Thus, the datasets were pre-processed to ensure consistency
between NCCT images collected from different centers.

First, the bone structures were removed from each dataset,
retaining only the brain tissue in the images. To remove
the bone structures, which have high Hounsfield values,
a six-step procedure following the approach described by
Muschelli et al. [17] was performed in a slice-wise manner.
This approach was implemented using the Insight Segmen-
tation and Registration Toolkit (ITK) [18]. Briefly described,
a Gaussian filter with a variance of 4 pixels is used to smooth
each slice. In the next step, the intensities are thresholded
between 0 and 100 Hounsfield units, which removes most of
the artifacts from bone and other high-intensity tissue. After
this, a circular structural element with a radius of 1 pixel
is used to erode the resulting segmentation. Subsequently,
the largest connected component in each slice is extracted
and a circular structural element with a radius of 1 pixel
is used to dilate this component in order to create a brain
mask for the slice. After performing the these three steps in
each slice, the masks from each slice are combined into a
final mask for the entire volume and any holes in this final
mask are filled using the ‘‘Voting Binary Hole Filling Image
Filter’’ in ITK. Finally, the images were thresholded again
between 0 and 100 Hounsfield units to remove the remaining
high-intensity tissue artifacts resulting from the morpholog-
ical erosion and dilation. The images are then normalized to
zero mean and unit variance to account for potential differ-
ences in scanner tube potential and different reconstruction
algorithms. All images in the training, validation, and holdout
test datasets underwent the same pre-processing procedure.

C. CNN ARCHITECTURE
The CNN used in this work is based on the DeepMedic model
proposed by Kamnitsas et al. [8] and modified for NCCT
stroke lesion segmentation. The network parameters were
optimized with cross-validation. We used a total of 11 layers.
The first eight layers consist of three parallel convolutional
pathways for processing the images at multiple scales. The
multi-scale pathways were created by using down-sampled
versions of the NCCT images (by factors of 3× and 5×)
as inputs to the parallel convolutional pathways, in addition
to the original image. Each parallel pathway has eight con-
volutional layers consisting of 30, 30, 40, 40, 40, 40, 50,
and 50 feature maps and uses convolutional kernels of size
3× 3 × 3. Additionally, residual skip connections between
layers two and four, between layers four and six, and between
layers six and eight are used in each parallel pathway. The
ninth layer combines the three multi-scale pathways together
by using the concatenated outputs from layer eight of each
parallel pathway. Layer nine uses 3×3× 3 convolutional ker-
nels and has 250 feature maps. Layer ten is a fully-connected
convolutional layer with 1× 1× 1 convolutional kernels and
250 feature maps. Additionally, a residual skip connection
between layers eight and ten was used. The final softmax
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FIGURE 1. Examples of manual and CNN-based segmentations from the independent holdout test dataset.

classification layer, layer eleven, produces the lesion prob-
ability maps. A threshold of >0.5 is used to binarize the
probability map to a final lesion segmentation.

D. CNN TRAINING
All CNN model training was performed in Python 2.7
on Compute Canada and Calcul Quebec computing clus-
ters. The DeepMedic framework (v.0.7.3), available from
https://github.com/deepmedic/deepmedic, was used for
model training. The DeepMedic framework performs model
training on image segments extracted from the original
image, rather than the entire image. In this work, segments
of 37 × 37 × 37 were used. The network was trained for
35 epochs with a batch size of 10. Each epoch was divided
into 20 sub-epochs, within which 1000 image segments were
extracted and used for model training. An initial learning
rate of 0.001, which decreases through training using a
polynomial decay function, was employed. Root mean square

propagation was used as the optimizer. L1 and L2 regu-
larizations of 10−6 and 10−4 were used, respectively. Data
augmentation consisted of mirroring along the sagittal axis.
The CNN model achieved a mean Dice similarity coefficient
(DSC) of 0.52 in the training set evaluated by 10-fold cross-
validation.

The DSC scores and lesion volumes for the automatic
segmentations of the validation and holdout test sets were
obtained using a single CNN model that was trained on the
entire training data.

E. POST-PROCESSING OF CNN SEGMENTATIONS
The CNN-based binary lesion segmentations were post-
processed to further improve the segmentation accuracy
(Fig. 1). The implemented post-processing consists of a con-
nected component analysis to exclude small lesion compo-
nents, most likely caused by noise artifacts, and an automatic
hole-filling approach. Post-processing was performed using
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the ITK toolkit. Using a connected components analysis,
components smaller than an empirically determined cut-off
were removed. The exception was in segmentations where
the largest connected component was smaller than the cut-off
value, in which case no cutoff was applied. Afterwards,
a hole-filling algorithm was used to fill gaps within the
segmentation.

The validation dataset was used to estimate the opti-
mum minimum object size cut-off and the hole-filling kernel
radius. The minimum object size cut-off was optimized first,
by varying the cut-off range from 0.3 cm3 to 2.5 cm3. The
cut-off that maximized the DSC was 1.5 cm3 and was used
for post-processing.

Using this minimum object size cut-off, the hole-filling
radius was optimized next using values of 2, 3, 5, 7,
and 10 voxels. As hole-filling causes the segmented lesion
volumes to grow, and subsequently increased the error in
lesion volume estimates, both the DSC and lesion volume
error were consideredwhen choosing the optimal value.More
precisely, the DSC was maximized while the lesion volume
error was minimized. The optimal radius was found to be
3 voxels and was used for post-processing.

F. SEGMENTATION EVALUATION
The DSC was used as the primary outcome measurement
for evaluation of the automatic lesion segmentations. The
DSC measures the overlap between two segmentations and is
defined between 0 and 1, where 1 indicates perfect consensus.
The DSC is calculated as:

DSC = (2∗|A ∩ B|)/(|A| + |B|)

where A and B are two binary segmentations of the same
dataset.

The DSC scores in the validation set, for which only a
single manual segmentation was available for each dataset,
were computed by comparing the manual segmentations to
the CNN-based methods (CNN or CNN + post-processing).
The DSC scores for CNN-based methods in the holdout

test set, for which two or three manual lesion segmentations
were available for each dataset, were computed indepen-
dently for each observer (e.g. CNN vs. observer A, CNN vs.
observer B, for two observers) and averaged together using
the arithmetic mean. This average value was then used as
the DSC score for the CNN-based methods (CNN or CNN+
post-processing) vs. Observers.

The inter-observer DSC for the holdout test set was calcu-
lated for pairs of observers. In examples with three observers,
three pair-wise DSC scores (e.g. observer A vs. observer B,
observer A vs. observer C, observer B vs. observer C) were
calculated and averaged together using the arithmetic mean
to obtain a single, average, inter-observer DSC score.

Lesion volumeswere calculated bymultiplying the number
of lesion voxels in the binary segmentation mask by the vol-
ume of each voxel. Asmultiple observers segmented the hold-
out test set, an average lesion volume estimate was obtained

for each example. This was calculated as the arithmetic mean
of the lesion volumes segmented by the individual observers.

Intra-class correlation coefficients (ICC) were used to
assess inter-rater reliability in lesion volume estimates [19].
ICC was calculated for absolute agreement between
observers for manual lesion volume estimates, and for abso-
lute agreement between manual lesion volume estimates
(average of observers) and automated lesion volume esti-
mates (CNN or CNN with post-processing) [20]. ICCs above
0.75 were considered as excellent inter-rater reliability, fol-
lowing the guidelines established by the American Psycho-
logical Association [21].

G. STATISTICS
Results are reported as mean ± standard deviation (SD) or
median [interquartile range] as appropriate. The Wilcoxon
signed-rank test or Friedman test with Dunn’s multiple com-
parison post-hoc correction was used for comparisons. Cor-
relation was quantified using Spearman’s rank correlation.
Statistical significancewas set as P<0.05. Significance in fig-
ures is denoted by ∗(P< 0.05) and ∗∗(P< 0.01). All statistical
analyses were performed using Graphpad Prism 8.4.

III. RESULTS
The median lesion volumes for the training and validation
sets were 40.4 [14.1–96.3] cm3 and 41.5 [20.0–107.1] cm3,
respectively. As the out-of-distribution holdout test set was
segmented by multiple observers, the manual segmentation
lesion volume for each example was defined as the aver-
age volume calculated across observers. It was not possible
to ensure the volume distribution of the holdout test set is
similar to the training and validation sets. This is because
the test set was drawn from an entirely different multi-center
trial and completely independent of the training and vali-
dation sets. The median lesion volume for the test set was
20.9 [9.7–63.7] cm3, which is considerably lower compered
to the training and validation sets.

A. VOXEL-WISE AGREEMENT
The CNN model achieved a mean DSC score of 0.47 ±
0.22 in the validation set. Post-processing significantly
improved the DSC to 0.50± 0.23 (Wilcoxon signed-rank test,
P < 0.01; Fig. 2).
The model’s generalizability was assessed using the out-

of-distribution holdout test set (Fig. 1). These datasets
were manually segmented by multiple independent observers
and had an inter-observer DSC score of 0.73 ± 0.13
(Fig. 3). The CNN lesion segmentations had a DSC score
of 0.42 ± 0.25 compared to manual segmentations (average
of observers), which was lower than the inter-observer DSC
(Friedman test with Dunn’s multiple comparisons, P< 0.01).
Post-processing of CNN-based segmentations significantly
improved the DSC to 0.45± 0.26 (Friedman test with Dunn’s
multiple comparisons, P < 0.05).

The decreased DSC score on the out-of-distribution hold-
out test data may be partly attributable to an abundance
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FIGURE 2. Evaluation of DSC score comparing manual segmentations
with the trained CNN model and post-processing on the validation set.
Bar plots express the mean + standard deviation (SD).

FIGURE 3. Comparison of DSC scores from inter-observer agreement and
CNN-based automated segmentations vs. observer segmentations on the
out-of-distribution test set segmented by multiple observers. Bar plots
express the mean + standard deviation (SD).

of smaller lesions in the test set, as the manual vs. auto-
mated DSC scores showed a strong positive correlation with
manually segmented lesion volumes (before post-processing:
Spearman’s ρ = 0.77, P < 0.01; after post-processing:
Spearman’s ρ = 0.74, P < 0.01, Fig. 4). Indeed, even
the inter-observer agreement was lower on smaller lesions
and showed a strong positive correlation with lesion volume
(Spearman’s ρ = 0.68, P < 0.01).

B. LESION VOLUME ESTIMATES
Median lesion volume estimates for the holdout test
datasets calculated from CNN lesion segmentations before

FIGURE 4. Correlation between test set DSC scores from CNN-based
segmentations after post-processing with lesion volumes, indicating that
automated segmentations perform better on larger lesions.

FIGURE 5. Calculated lesion volumes in the out-of-distribution test set
for CNN segmentations and CNN segmentations after post-processing
were not significantly different from manual segmentations. Box plots
express the median and inter-quartile range.

(30.1[10.9–68.9] cm3) and after (30.2 [8.2–72.2] cm3)
post-processing were not significantly different from
lesion volumes measured by manual segmentations (20.9
[9.7–63.7] cm3) (Friedman test with Dunn’s multiple com-
parisons, P > 0.05, Fig. 5). Bland-Altman analysis reflected
a tendency for the model to over-predict lesion volumes,
though this bias was minimal (Fig. 6).

Importantly, lesion volume estimates from CNN segmen-
tations showed excellent agreement with manual segmen-
tations. The ICC for CNN lesion segmentations was 0.86,
which was further improved by post-processing to 0.88
(Fig. 7). The agreement between observers for manual seg-
mentations was lower, with an ICC of 0.80.
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FIGURE 6. Bland-Altman agreement analysis of test set lesion volumes
from manual segmentations and CNN segmentations with
post-processing, showing minimal bias. SD: standard deviation.

FIGURE 7. Excellent agreement between calculated lesion volumes from
automatic and manual lesion segmentations in the out-of-distribution
test set. ICC: Intraclass correlation coefficient.

IV. DISCUSSION
In this study, we developed an automatic method for clin-
ical NCCT stroke lesion segmentation using a 3D multi-
scale CNN. Volumetric assessments from the automatic
CNN-based method were in excellent agreement with mul-
tiple neuroradiologists. We used an out-of-distribution test
set, which was completely independent from the training and
validation data, in order to obtain a reliable estimate of the
method’s generalizability and establish a reproducible base-
line for automated NCCT stroke lesion segmentation with
CNNs. AsNCCT is a standard imaging procedure available in
most stroke centers for follow-up assessment, a generalizable
automatic lesion segmentation pipeline for this modality is of
high demand.

CNN models for automatic follow-up lesion segmenta-
tion have primarily been developed and investigated for
MRI [8]–[11], [22]–[24]. Though reported DSC scores for
lesion segmentation in MRI are typically higher (0.67–0.79)
than seen in our study, the proposed method is neverthe-
less a promising approach for NCCT segmentation. Lesion
segmentation in NCCT is more challenging compared to
typical MRI follow-up sequences such as diffusion-weighted
MRI [25], as the ischemic changes in NCCT images are more
subtle.

To prevent over-fitting of the CNN model to a spe-
cific dataset and imaging protocol, it was trained using
multi-center NCCT datasets. Testing the model on out-of-
distribution datasets with multiple manual expert observer
segmentations from seven completely independent centers
revealed that our model generalizes well. Decreases in
voxel-wise agreement in the holdout test set, compared to
the validation set, may be attributable to multiple factors.
First, as previously mentioned, the test dataset came from
independent centers that did not contribute to the training
or validation datasets. This stands in contrast to the often
used method of creating a test set by sampling from the
same data source as the training set, which increases the
risk of over-fitting the model to a specific data distribution
and inflating model performance. Evaluating the model on
test data from independent centers as done in this study may
provide a more reliable and reproducible estimate of model’s
generalizability.

Second, the test dataset was segmented by multiple
observers who did not contribute segmentations to the train-
ing or validation sets. The inter-observer voxel-wise agree-
ment was variable, with an inter-observer DSC of 0.73.
This variability in the ground truth segmentations can be
expected to impact the voxel-wise agreement of automati-
cally extracted segmentations. However, evaluating themodel
using segmentations from multiple observers who did not
contribute to the training set segmentations may further
strengthen the estimate of model’s generalizability.

Other recent studies on automatic NCCT segmentation of
stroke lesions have used single-scale CNN models [5], [6],
reporting mean DSC scores (0.54–0.57) and volumetric ICCs
(0.88) comparable to ours (DSC = 0.45, ICC = 0.88). How-
ever, these studies only evaluated their models on test data
that belonged to the same distribution as their training set
and were only compared against single reference segmen-
tations [5], [6]. How these methods generalize to datasets
outside their training distribution and against multiple expert
observers, important for evaluating their broader applica-
bility, was not evaluated in detail in the original studies.
As the developed models are not publicly available, it was
not possible to evaluate them in this study. In contrast to this,
our model was tested on out-of-distribution datasets from
seven completely independent centers with segmentations
from multiple expert observers, which demonstrated that our
model generalizes well.
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Finally, the test dataset contained a greater number of small
lesions. Due to the higher surface area to volume ratio, a high
voxel-wise agreement for small lesions is harder to achieve.
This was also reflected in the fact that manual segmentations
also showed less agreement for smaller lesions. A similar
result was seen for CNN segmentations of NCCT images by
Barros et al., where the DSC scores were lower for subtle
injuries with smaller stroke lesions (0.37) [5].

Though the voxel-wise agreement of the CNN-based seg-
mentations was inferior to the inter-observer agreement,
the corresponding lesion volumes were not significantly
different from manual segmentations and had excellent
agreement with them. The agreement between automati-
cally and manually segmented lesion volumes was higher
than the inter-observer agreement between manual segmen-
tations. This suggests a potential application of the model
for consistent volumetric assessment of follow-up lesions in
multi-center studies. Providing consistent results is an advan-
tage of automatic segmentation algorithms, thereby reducing
variability between sites or studies.

To improve the CNN-based lesion segmentations, sim-
ple post-processing techniques were used to correct for
the speckly nature of CNN segmentations. However, more
sophisticated analyses such as hidden Markov random fields
may achieve further improvements [26].

Though promising, this preliminary study has some
limitations. First, the CNN architecture used was origi-
nally designed for MRI images [8]. While this DeepMedic
model establishes a baseline for NCCT segmentation with
multi-scale 3D CNNs, future work may investigate mod-
ifications such as applying the well-known U-Net [27]
for improved multi-scale segmentations. Second, segmenta-
tions of smaller lesions need to be improved. Future work
may investigate training models specifically for segmenting
small lesions, whether through CNN architecture modifi-
cations or using a small lesion training dataset. As clini-
cal datasets may be difficult to acquire, data augmentation
methods such as generative adversarial networks may be
explored [28]. Third, the training of deep learning mod-
els is stochastic in nature. Future work may investigate
ensembling multiple models trained on subsets of the train-
ing data, as this may allow averaging out deficiencies in
single models [5], [10], [24]. Addressing these limitations
may further improve CNN-based lesion segmentations in
NCCT datasets.

V. CONCLUSION
This study demonstrated the successful use of a CNN-based
automated method for follow-up stroke lesion segmenta-
tion in clinical NCCT datasets. This lays the foundation for
developing more advanced automatic lesion analysis tools
for NCCT images and can contribute toward consistent and
high-throughput analysis of large multi-center studies.

To facilitate further development of NCCT lesion segmen-
tation methods and to provide a baseline for future evalua-
tions, the trained CNN model is publicly available [29].
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10.21227/jps9-0b57 [29].
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