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ABSTRACT Vector-borne diseases such as malaria, dengue fever, West Nile virus, and so forth are some
of the most prominent threats to human health. They are transmitted to the human population by infected
insects or by direct transmission between humans. The epidemic process relies on suitable environmental
and climatic conditions. Indeed, climatic factors affect the development of pathogens in vectors as well as the
population dynamics of the vectors impacting significantly the incidence of disease in the human population.
While the influence of the climatic conditions on Vector-borne diseases is well-documented, there is a strong
need to design more realistic epidemiological models incorporating environmental features that show a
close relationship with the epidemic process observed in the human population. Indeed, classical models
concentrate either on the climatic influence on the vector population dynamics or on the connectivity patterns
of the host population, loosing the full picture of the epidemic process dynamics. Inspired by real data
of infectious diseases, a Seasonal Susceptible-Infected-Recovered (Seasonal SIR) epidemiological model
is developed and analyzed. The proposed model incorporates the influence of the temperature variations
together with the heterogeneous structure of the human interaction network on the spreading process of
vector-borne diseases. Simulations are performed in order to get a better understanding of the climate
variations and of the heterogeneous nature of the contact network on the transmission dynamics. Results
show that failing to incorporate these features on the model can lead to a poor estimation of the maximum
fraction of infected individuals in the host population. Furthermore there is a serious influence on the time
needed to reach this maximum. The Seasonal SIR model proves to finely model the dynamics of outbreaks
observed in real-world situations. It provides a basis for more effective predictions of disease outbreaks that
can be used in order to implement appropriate control measures to contain epidemics.

INDEX TERMS Vector-borne diseases, epidemics, heterogeneous contact network, climate variations,
dynamics on networks, SIR model, epidemiological models.

I. INTRODUCTION
Some contagious diseases are transmitted through both direct
and indirect interactions between two populations. Direct
transmission occurs when a healthy (susceptible) person is
infected by physical or close contact with an infected person
of the host population. An indirect transmission refers to the
case where a healthy person is infected through a vector pop-
ulation. Vectors are living creatures that transmit infection of
pathogens between humans or from animals to humans. Com-
mon vector-borne diseases include Zika, Malaria, Dengue,
Chikungunya, West Nile Fever. Their transmission process
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relies on complex interactions between the host population,
the vector population (insect species mosquitoes, ticks, flies,
sandflies, fleas and bugs), and various pathogens.

The main route of transmission of Vector-borne dis-
eases is trough vectors, however, in some cases direct
transmission between two people can occur. For example,
there has been substantial evidence of sexual transmission
of zika Virus [1]–[4]. CCHF(Crimean-Congo haemorrhagic
fever) is primarily transmitted to people from vector. How-
ever, human-to-human transmission can occur resulting from
close contact with the blood, secretions, organs or other bod-
ily fluids of infected persons [5]. Researchers are suspecting
the role of vector in ebola transmission as well as direct
transmission between two people [6].
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Vector-borne diseases significantly affect human health
worldwide. According to the World Health Organization,
more than 120 million cases of vector-borne diseases are
reported annually, causing 1 million death. These diseases
develop rapidly throughout the world. Indeed, nowadays
more than 120 countries, and approximately 60% of the
world population [7] are at risk of these types of diseases.
Understanding the interdependence between host, vector, and
pathogen in order to design effective control strategies is
one of the major societal challenges. Although the world
has seen the reduction of many infectious diseases in recent
decades with the advances in medical care and treatment,
the global incidence of vector-borne diseases has increased.
Indeed, periodical epidemics have been observed in the last
three decades.

Global Warming is a key element of the development
of vector-borne diseases. As temperature rises, the threat
of vector-borne diseases such as Dengue, Zika, West Nile
Fever, and Chikungunya is expanding to temperate areas.
Besides global warming,local environmental conditions such
as temperature, precipitation, and humidity are also impor-
tant features affecting the development of vector-borne dis-
eases. The complex interactions between the three players
(host population, vector population, pathogens) of vector-
borne diseases are very sensitive to environmental conditions.
In particular, the development, reproduction and behavior of
vectors are highly influenced by climatic conditions [8]. The
reproduction rate of vectors increase in warm areas [9]. Other
factors such as natural surroundings demolition, land use,
pesticide campaign, impact the vector behavior (especially
the biting rate) throughout the year. Temperature also can
affect pathogen development within vectors. Concerning the
host population, the interactions within the individuals, their
mobility and connection patterns are essential components
in the propagation process of infectious diseases. Indeed,
the expansion of urban areas together with the increasing
humanmobility over the last decades accelerates the diffusion
of epidemic waves throughout the world.

A lot of mathematical frameworks inspired by the con-
tagion patterns of observed epidemic scenarios have been
proposed in order to predict future epidemics and to assess the
impact of immunization and control strategies. In the vector-
borne disease framework, they can be classified according
to the emphasis they give either on the characteristics of the
vector population or of the host population.

Early work of Ross [10] is one of the most influential at
the basis of the quantitative foundations of epidemiology. He
proposed a transmission model of human-vector crossed con-
tagions for malaria. The model enriched by Macdonald [11]
has influenced both the mathematical development of new
models and the design of control strategies of vector-borne
diseases [12], [13]. Since then, their work has been enriched
by the constant refinement of the so-called RossMacdonald
model. As temperature is one of the main environmental
factor with a direct impact on vector-borne diseases, a great
deal of work are conducted to study its influence on the epi-

demiology of vector-borne diseases. However, these works
focus mainly on the impact of the temperature on the vector
population dynamics. Indeed, the most common strategy to
eradicate vector-borne diseases is to control the vector pop-
ulation. While these works generally acknowledge that the
pattern of interactions in the host population is an important
factor for vector-borne diseases transmission, they neglect
this aspect. In line with classical epidemic models, they
assume that all the individuals forming the host populations
have homogeneous characteristics.

In recent years, a number of mathematical models that
account for the fact that diseases spread over an hetero-
geneous contact network of the host population have been
proposed and analyzed. Incorporating human connectivity
and mobility patterns into the disease transmission process,
these refined models allow designing new strategies to con-
tain epidemics spreading. Unfortunately, except for a few
cases, these models deal principally with a direct transmis-
sion scenario neglecting the vector-borne disease framework.
Therefore, intensive researches integrating recent advances
on the impact of environmental conditions on the vector
population together with the influence of the heterogeneity
observed in the host population in vector-borne diseases
dynamics are required. Indeed, understanding the complex
interdependency between human activity and environmental
conditions of the vector population is essential to explain
the development of large-scale epidemics of vector-borne
diseases. New models considering the dual-route of spread-
ing between host and vector population, the environmental
conditions as well as the contact structure of the host pop-
ulation are needed. There is an urgent need to control the
threat of vector-borne diseases such as Zika and Chikun-
gunya on the world population lives. Therefore, designing an
adequate model for the spreading pattern of disease through
vector-host interaction as well as host-to-host interaction
and climatic environmental conditions is a must to achieve
this goal.

In view of these considerations, a Seasonal SIR model
that incorporates relevant features of the vector and the
host population in the transmission process is proposed and
systematically analyzed in order to understand its complex
dynamics. This model considers both the impact of tem-
perature and the network structure of the host population
on the epidemic dynamics. In a preliminary work [14] an
homogeneous contact network (Small-World Network) has
been used to model the interactions in the host population.
In the current work, we take the model one step further
by relaxing the homogeneous contact network assumption.
We consider the heterogeneous contact behavior observed
in most real-world networks. Indeed, in an homogeneous
contact network, each host has a similar number of connec-
tivity, while in a realistic scenario the connectivity patterns
of the hosts are generally quite different. Most empirical
studies reported in the literature on the topology of real-world
networks show that there is a small number of nodes that are
highly connected, while the vast majority of nodes have few
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connections. This heterogeneous nature of the distribution of
the number of contact is well approximated by a power-law
distribution [15]–[19].

Our goal is not to focus on any vector-borne dis-
ease in particular. Investigating a generic model that
account for common properties shared by various vector-
borne diseases allows getting a clear idea of the influ-
ence of both temperature and heterogeneity of the host
population.

The main contributions of this study are as follows.
First of all, we propose a new model in order to improve

the understanding of vector-borne diseases dynamics in real-
istic situations. Under the mean-field formalism, we provide
analytical results to assess the impact of both the temperature
and the contact network topology on the Seasonal SIR model
dynamics.

Second, we conduct an extensive investigation of the Sea-
sonal SIRmodel to analyze the influence of its various param-
eters on the epidemic spreading process. The simulations are
performed under the assumptions that the contact network can
be approximated by the Barabasi-Albert Model (B-A) [20],
[21], and that the biting rate of the vectors is a Gaussian
function of the temperature. Additionally, comparisons with a
temperature-independent model and an homogeneous contact
network model are conducted. We also derive an analytical
expression of the basic reproduction number that captures the
critical conditions leading to epidemics.

Finally, through an improved understanding of trans-
mission dynamics, we show that the proposed model
has the potential to predict more accurately seasonal
patterns observed in vector-borne diseases and to pro-
vide a basis for more efficient treatment and control
measures.

The remaining part of this paper is structured as follows.
Section II describes the related works. Studies dealing with
either the climatic impact on the vector population or the
interaction patterns of the host population are presented.
Section III present the proposed model and its mathemat-
ical formulation using the mean-field formalism. Numeri-
cal simulations of the proposed model and the analysis of
the results are discussed in section IV. At last, the con-
clusions and future research directions are described in
section V.

II. RELATED WORKS
In this section, first, various remarkable results related to the
impact of climatic factors on the vector population dynamics
are reported. Works departing from the classical assumption
of well-mixed population for the host population based on the
metapopulation concept are also presented. Then, we turn to
studies that specifically model the heterogeneous nature of
the individuals in the host population. These studies pave the
way for more realistic models that explore simultaneously the
influence of the climatic conditions on the vector population
and the heterogeneous nature of the interactions in the host
population in vector-borne diseases.

A. INFLUENCE OF ENVIRONMENTAL FACTORS ON
VECTOR-BORNE DISEASES
To predict the dynamics of vector-borne diseases in the host
population, one must understand the ability of the vectors to
transmit the disease under various environmental conditions.
Many researchers have studied the relationship between the
vector population dynamics and the conditions of their habit-
ual environments. Indeed, environmental conditions may
affect the vector population, and in turn the period of exis-
tence, the range of spreading and the intensity of disease.
Temperature is one of the main environmental variables influ-
encing vector-borne disease dynamics. For a complete review
of the temperature dependence of transmission across vec-
tors, pathogens, and environment, the reader can refer to [22].
Field-based experimental data across different vector species
that transmit different pathogens show that various features
such as biting rate, relative fecundity, mosquito develop-
ment rate exhibit similar sensitivity to temperature varia-
tions. A key principle of thermal biology is that the effects
of temperature on mosquito-borne disease transmission are
unimodal with lower and upper limits. Starting at zero for a
lower temperature limit, their value increase with the tem-
perature until a maximum, then it starts to decrease until an
upper temperature limit is reached [23]. Such behavior can be
well approximated by a Gaussian distribution. Harvell et al.
stated that some infectious diseases like Malaria, Red Fever
and Dengue are expanding their territories due to the global
warming, pushing vectors to move from lower latitude to
higher latitude [24]. Temperature variation limits the distri-
bution as well as the density of vectors. For example, dengue
fever vectors is at the larval state at 34◦C , and adult vector
dies when the temperature is above 40◦C [25]. Literature
also suggests that temperature has also an impact on the
life cycle of pathogens, especially reproduction and extrinsic
incubation period affecting disease dynamics [24], [26]–[28].
Environmental changes may affect positively the dynamics
of water-borne infectious diseases during rainfall [29]. How-
ever, it does not always provide favourable condition for the
survival of vector. Indeed, heavy rain can have a catastrophic
impact on the vector population by sweeping the breeding
site of vectors [30]. In contrast, dryness in humid regions
provides the best option and propitious condition for vec-
tors to breed and grow [31]. Yang et al. proposed a model
to study the impact of seasonal variation on the incidence
of Dengue [32]. In their research, the authors performed
temperature-controlled experiments explaining the impact of
varying temperature on the mosquito life-cycle. Andrea Egizi
et al. gave the experimental proof that the vector population
is capable of rapid evolution because of their habitat changes.
They suggest to incorporate this characteristic into models of
vector-borne disease [33]. Paul E. Parham et al. explained
the theoretical approach on the impact of environmental
changes on vector-borne sicknesses of people [34]. Lindsay
P. Campbell et al. investigated the impact of environmen-
tal changes on worldwide dispersion of vectors involved in
Dengue and Chikungunya. They contemplated and inspected
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the worldwide potential dispersion of Aedes aegypti and
Aedes albopictus in connection to climatic conditions world-
wide to create environmental speciality models [35].

In parallel with this very substantial body of work, there
have been some attempts to incorporate the host population
mobility features into the framework of vector-borne diseases
using the meta-population concept. The goal of this approach
is to represent the disease transmission process involving a
set of cities or patches that can be visited by hosts. The
populations belonging to the various patches are considered
well-mixed. Infected host can transmit the disease to suscep-
tible host in other patches either by short visits from their
home or by migrating to another patch.

Moon et al proposed a spatio-temporal framework for the
spreading of West Nile virus using three distance dispersal
kernal model considering short-range dispersal, long-range
dispersal and flyway direction of mosquitoes. Authors sug-
gested that flyway direction kernel is the best kernel to fit
WNV human case data [36]. Sekamatte et al studied the
spreading of Rift Valley fever using individual based network
model. Rift Valley fever is spread through mosquito to live-
stock and wildlife but also affect humans. Author suggested
that spatial spread of Rift Valley fever can be controlled
by restricting the cattle movement during the periods of
high mosquito abundance [37] Ferdousi et al proposed an
indivual based interconnected network model to explain the
both route of transmission of zika virus as through vector-
human interaction as well as human-human interaction. They
claimed that survival probability of zika virus is high in the
human population. Authors suggested that zika outbreaks are
impacted by time of introduction of pathogen, proportion of
available indivdual and their transmissibility [4].

Wang et al. study the spreading process between two
patches where host can migrate from one patch to
another [38]. Their SIS model incorporates differences
between the migration rates of susceptible and infected
individuals. They give the various situations leading to
persistence or extinction of the disease according to the
migration conditions. Arino et al. proposed a multiple-route
epidemic model to investigate the dynamics of vector-borne
disease in human population considering the travel pattern
of an infected individual between different geographical
region [39], [40]. Their model consider N patches and short
visits between patches so that the patches population is con-
stant. Their results are quite comparable with the work of
Wang and Mulone [38]. Auger et al. extended the Ross-
Macdonald model to a meta-population setting [41]. They
assume that the hosts can migrate but vectors do not migrate.
The migration rate of the hosts is constant and indepen-
dent of the host status (Susceptible or Infected). They also
assume that the epidemiological parameters are identical for
all the patches. Results of an extensive investigation of the
influence of the various parameters on the spatial and tempo-
ral epidemic dynamics are reported. More recently Soriano-
Paños et al. [42] proposed a multi-patches Ross-Macdonald
model in the same vein. Considering short visits between

the patches, it incorporates a human mobility model and
a variable vector population size. Under these assumptions
they derive the epidemic threshold and an indicator allowing
to measure the risk for the patches to be affected by the
disease. In order to study the dynamics of Dengue, Phaijoo
andGurung [43] proposed amulti-patch SIR-SImodel where
individuals can migrate to different patches. The disease
prevalence is assumed to be variable for the different patches
and the mobility rate between patches is also variable in
their model. They show that reducing exchanges from highly
infected patches to low infected patches can help controlling
the disease.

B. INFLUENCE OF THE HETEROGENEITY OF THE HOST
POPULATION
Classical epidemic models describe the dynamics of infec-
tions at the population level. They consider that the entire
population is divided into a number of sub-populations that
share the same state. For example, in the basic SIR model,
the population is divided into three compartments (Suscep-
tible, Infected, Recovered) and the dynamics consist of fol-
lowing the evolution of the size of each sub-population.
The underlying assumption is that the individuals in each
group are homogeneous. However, heterogeneity is one of
the main features of real populations. Individuals are different
in various aspects, in particular regarding their pattern of
interactions with other individuals. Indeed, each individual
has a finite set of contacts and infection pass trough these
contact. Therefore, one needs to integrate the spreading at the
individual level in the contact network in order to compute the
epidemic dynamics at the population level.

Meta-population models are a convenient framework
allowing to relax the homogeneous mixing hypothesis at the
sub-population level. However, they are not appropriate to
represent the extraordinary complexity of the connectivity
pattern of individuals. It is essential to integrate the contact
network topology in the epidemic model in order to get a
clear idea of the epidemic process. Furthermore, it allows to
design control strategies such as contact tracing that can be
very helpful at the beginning of the epidemic. Advances in
complex networks begin the new era of research for epidemic
dynamics in heterogeneous populations. It is the starting
point of a great number of studies related to direct route
disease [19], [44], [45]. Various network models are used
by researchers to account for different underlying patterns.
For example, many emerging phenomena in social and bio-
logical networks are explained using the theory of complex
networks [20]. Considering the network structure allows to
capture at the individual level the complex patterns of the
epidemics in the human population. The reader can refer to
the reviews [46], [47] to get a good idea of the vast research
activity on the subject. In the following, other recent and/or
influential works are recalled.

Vespignani study the behavior of the epidemic model con-
sidering scale-free networks. He analyze real data set of
computer virus infections and investigate the meantime of
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the existence of viral infection on the Internet in the absence
of the epidemic threshold [48] . Mendiola et al. present and
analyze a SIS model on coupled interconnected complex
networks. They use a heterogeneous mean-field approach to
find under which condition the endemic state exists. They
show that adding links between the two networks can lead to
an endemic state in the overall network even if each network
taken separately is below its epidemic threshold [49]. Hong
et al. propose an epidemiological model by exploring the
mobility of nodes in a dynamical network. Heterogeneity is
caused by the movement of nodes. It affects the propagation
dynamics of disease [50]. Castellano et al. study the effect
of the threshold for epidemic spreading in contact network
considering heterogeneity [51]. They show that in the SIS
model the power-law degree distribution of the contact net-
work has no crucial effect on the epidemic threshold while
this is not the case for the SIR model. Li et al. propose an
epidemic model based on a synthetic mobility model and
a resistance factor that account for the heterogeneity of the
individuals. They investigate the influence of nonlinear inci-
dence rate and time delay in the SIR epidemic model, and
elaborate the dependence of the basic reproduction number
(R0) on both parameters [52]. Arquam et al. propose a delayed
SIR model that consider the delay in the infection process.
They derive the critical threshold of infection using various
underlying network structure [53]. Huang et al. present a
modified SIS epidemic model that incorporate the individuals
heterogeneous contact network patterns. Furthermore, rather
than using a constant infection rate for all the population,
they propose to relate it to the number of infected in the
individual neighborhood. Results of their analysis show that
the final number of infected nodes is quite dependant of the
heterogeneous infection rate. They establish a relationship
between the immunization rate and the recovery rate. They
also evaluate various immunization strategies [54]. Hosseini
et al. present a SEIRS-QV model for malware propagation
in an heterogeneous network considering vaccination and
quarantine methods. They derive the basic reproductive ratio
considering user awareness, network delay and diverse con-
figuration of nodes. They establish the stability conditions
to reduce the malware propagation speed [55]. Zhou et al.
study the continuous-time epidemicmodel using a SISmodel.
The authors use edge weights to differentiate the interactions.
They derive the epidemic size for a scale-free network and
Erdos-Renyi (ER) network. They suggest that the weights
play an important role on the epidemic outbreak, and that the
final epidemic size is quite variable according to the network
topology [56].

III. MODEL DESCRIPTION AND FORMULATION
A block diagram illustrating the vector-host interactions as
well as the host to host interactions in the Seasonal SIRmodel
is given in Fig. 1. A healthy host may be infected by both
routes: 1) a bite by an infected vector, 2) a direct interaction
with an infected host. An infected host may transmit the
infection to a susceptible vector that bites him. The popu-

FIGURE 1. Block diagram of the Seasonal SIR model. The host population
(top) is split into 3 states: Susceptible Sh,Infectious Ih, and recovered Rh.
The vector population (bottom) is split into 2 states: Susceptible Sv and
Infectious Iv . Solid arrows indicate the direction individuals can move
between states and dashed arrows indicate the direction of transmission.
Relevant parameters are the vector biting rate which is temperature
dependent b(T ), the spreading rate from vector to host βvh, the spreading
rate from host to vector βhv , the spreading rate from host to host βh, and
the recovery rate of infected hosts µh.

lations density and dynamics are quite different. The vector
population is much larger than the host population, and its
lifespan is much shorter. For the sake of simplicity, we do not
consider the demography of the vector and host populations
during the epidemic process.

To define the Seasonal SIR model, the following points are
assumed.

• Nh represents the size of the host population. It is
constant and subdivided into three groups: Susceptible
Shk (t), Infected Ihk (t), and Recovered Rhk (t) of degree k
at time t .

• Nv represents the size of the vector population. It is
constant and divided into two groups: Susceptible Sv,
and Infected Iv. The recovered group is not considered
in the vector population due to their short lifespan.

• An infected vector may bite and infect a susceptible host
with a rate of βvhb(T ) where βvh is the spreading rate
from vector to host, and b(T ) is the biting rate of vectors
which is a function of temperature T .

• An infected host, may propagate the disease to a suscep-
tible vector that bites him with a rate βhvb(T ) where βhv
is the spreading rate from host to vector.

• The recovery rate of infected hosts is µh
• An infected host can spread the disease to a susceptible
host at the rate of βh.

Note that this model can be used for dual-route disease trans-
mission as well as only vector transmitted disease by setting
the transmission rate between hosts βh at zero.

A. MATHEMATICAL FORMULATION OF THE SEASONAL
SIR MODEL
Lets consider a contact networkG of size Nh where the nodes
represent the host population and the set of links between the
hosts is represented by E .

The total host population Nh is divided into Susceptible
(Shk (t)), Infected (Ihk (t)) and Recovered (Rhk (t)) nodes at
time t with degree k in such a way that Shk (t) + Ihk (t) +
Rhk (t) = 1.

Assume p(k) is the degree distribution of the network,
where k ∈ [1,N − 1]. The infection and recovery rates of the
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host population are represented by βh and µh respectively. βh
and µh are ∈ [0, 1].
Suppose the vector population size is Nv and the fraction

of the Susceptible and Infected vectors are Sv(t) and Iv(t)
respectively at time t . The vector-borne diseases propagate
among hosts by direct contact. It spreads also between the two
populations through vectors biting of susceptible or infected
hosts.

The transition rules from one state to another are as fol-
lows:
• An infected host may propagates the infection directly
to a susceptible host by direct contact or indirectly by
transmitting it to a susceptible vector that bite him.

• A contaminated vector may spread the infection to a
susceptible host when biting him.

• The vector population is sensitive to temperature vari-
ations. This dependency is expressed trough the biting
rate.

• The recovery process of a host is spontaneous, it does
not require any contact. We consider that the recovery
rate µh = 1 in the following.

• A recovered node can never be infected again.
• Demography is not considered for host and vector pop-
ulations. The total population of hosts and vectors are
constant throughout the epidemic process.

Temperature drives the disease transmission trough various
traits of the vector population such as reproduction, develop-
ment, lifespan and biting rate. It is now well established that
between lower and upper temperature limits, the transmission
increases until an maximum value and then decreases. Fur-
thermore, extensive empirical and theoretical work has estab-
lished that most physiological and life history traits respond
nonlinearly to temperature – increasing from zero at a thermal
minimum approximately up to an optimum before declining
back to zero at a thermal maximum. This hump-shaped rela-
tionship is nearly universal across measured responses from
ectotherm taxa and traits and is predicted from first principles
of enzyme kinetic and physiology [57]–[59].

Based on recent studies on the ecology of various vector
population [22], [60], [61], we adopt a Gaussian behavior to
model the variation of the biting rate with the temperature.
It is expressed as follows:

b(T ) = b0e−C(T−T0)
2

(1)

where C is constant and b0 is the maximum biting rate at
temperature T0. The maximum temperature value T0 varies
geographically and across the various vector populations.
In tropical or sub-tropical regions, T0 evolves between 23◦C
and 32◦C .

B. TEMPERATURE DEPENDENT EPIDEMIC SPREADING
OVER HETEROGENEOUS NETWORK
We adopt a non-homogeneous mean-field approach in order
to integrate the heterogeneity of the host population and the
temperature dependence. Considering the above mentioned

TABLE 1. List of the parameters used in the Seasonal SIR model with
their description.

transitions we get:

dShk (t)
dt

= −βhkShk (t)�kh (t)

−βvhb(T )Shk (t)Iv(t) (2)
dIhk (t)
dt

= βhkShk (t)�kh (t)

+βvhb(T )Shk (t)Iv(t)− Ihk (t) (3)
dRhk (t)
dt

= Ihk (t). (4)

dSv(t)
dt
= −βhvb(T )Sv(t)Ihk (t)− µvSv(t) (5)

dIv(t)
dt
= βhvb(T )Sv(t)Ihk (t)− µvIv(t) (6)

where, �kh (t) is the coupling function. It contains the proba-
bility of a link between a susceptible node of degree k and an
infected node at time t .

�kh (t) =
∑kmax

k=1
P(k ′|k)Ihk (t) (7)

where P(k ′|k) is the degree-degree correlation.
For an heterogeneous network it is given by P(k ′|k) =

k ′p(k ′)
〈k〉 [44]. k ′ is the number of infected nodes connected with

a node of degree k
All the variables used in Eqs. ((2) - (6)) are defined

in Table 1.
An epidemic occurs if the number of infected vectors

increases, i.e., dIv(t)dt > 0, Hence, from equation 6,

dIv(t)
dt

> 0

βhvb(T )Sv(t)Ihk (t)− µvIv(t) > 0

βhvb(T )Sv(t)Ihk (t) > µvIv(t)
βhvb(T )Sv(t)Ihk (t)

µv
> Iv(t)

At the outset of an epidemic, Sv(t) ≈ 1 so that,

βhvb(T )Ihk (t) > Iv(t) (8)

The basic reproduction number of the vector population is
given by

R0v = βhvb(T )Ihk (0) (9)
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Reporting the left side of equation 8 into Eq. (2) and (3),
we get

dShk (t)
dt

= −βhkShk (t)�kh (t)

−βvhb(T )2Shk (t)βhvIhk (t) (10)
dIhk (t)
dt

= βhkShk (t)�kh (t)

+βvhb(T )2Shk (t)βhvIhk (t)− Ihk (t) (11)

Combining Eqs. (10) and (4) we get,

dShk (t)
dRhk (t)

=
−βhkSkh (t)

∑kmax
k=1 P(k

′
|k)Ihk (t)

Ihk (t)

+
βvhb(T )Shk (t){βhvb(T )Ihk (t)}

Ihk (t)
. (12)

Integrating both side,

Shk (t) = e−βhk
∑kmax

k=1 P(k ′|k)Rhk (t)+βvhb(T ){βhvb(T )}Rhk (t)

Assume,

kmax∑
k=1

P(k ′|k)Rhk (t) = θhk (t) (13)

At t → ∞, the epidemic reaches a steady state hence,
Ihk (∞) = 0. Therefore,

Shk (∞) = 1− Ihk (∞)− Rhk (∞) (14)

Shk (∞) = e−βhkθhk (∞)+βvhb(T )2βhvRhk (∞)

Rhk (∞) = 1− e−βhkθhk (∞)+βvhb(T )2βhvRhk (∞) (15)

Now, assume f (Rhk (∞)) as a function of Rhk (∞) is strictly
increasing. If we put Rhk (∞) = 0, then the total population of
host recover and it gives us a very common solution with no
significance. It also describes that the system is in the disease
free state.

Therefore, we have to find a solution which lies between
0 and 1. But, we cannot express Eq. (15) in term of Rhk (∞) as
it is coupled with the network parameters. Therefore, we need
to solve it using Eq. (13),

θhk (t) =
kmax∑
k=1

P(k ′|k)Rhk (t)

θhk (∞) =
kmax∑
k=1

P(k ′|k)Rhk (∞) (16)

θhk (∞) =
kmax∑
k=1

P(k ′|k)

×

[
1−e−βhkθhk (∞)+βvhb(T )2βhvRhk (∞)

]
(17)

df (θhk (∞))
dθhk (∞)

∣∣∣
θhk (∞)=0

> 1 (18)

Putting the right side of equation (17) in equation (18) and
derivating by θhk (∞), we get

kmax∑
k=1

P(k ′|k)(βhk + βvhb(T )2βhv
dRhk (∞)
dθhk (∞)

)

×e−βhkθhk (∞)−βvhb(T )2βhvRhk (∞)
∣∣∣
θhk (∞)=0

> 1 (19)

dRhk (∞)
dθhk (∞)

=

dRhk (∞)
dRhk (∞)

dθhk (∞)
dRhk (∞)

dRhk (∞)
dθhk (∞)

=
1∑kmax

k=1 P(k
′|k)

(20)

Reporting the value of Eq. (20) into the above Eq. (18),

df (θhk (∞))
dθhk (∞)

∣∣∣
θhk (∞)=0

> 1

kmax∑
k=1

P(k ′|k)βhk + βvhb(T )2βhv > 1 (21)

Reporting
∑kmax

k=1 P(k
′
|k) =

∑kmax
k=1 kp(k)
〈k〉 in Eq. (21)∑kmax

k=1 kp(k)

〈k〉
βhk + βvhb(T )2βhv > 1

〈k2〉
〈k〉

βh + βvhb(T )2βhv > 1 (22)

The left side of the Eq. (22) is the basic reproduction
number R0h .

R0h =
〈k2〉
〈k〉

βh + βvhb(T )2βhv (23)

where βh, βvh and βhv are constant characterizing the disease,
and 〈k

2
〉

〈k〉 is a constant characterizing the contact network
statistics.

Indeed, 〈k2〉 is the second moment and 〈k〉 is the first
moment of the degree distribution of the contact network.
Therefore, for a given network, R0h is proportional to the
square of the biting rate i.e. b(T )2.
For an homogeneous network [14], the basic reproduction

number is given by:

R0h = (βh〈k〉 + βvhb(T )2βhv) (24)

IV. RESULTS AND ANALYSIS
In this section simulations are performed based on the non-
homogeneous mean field derivation. The simulation setup is
given, and the results of the simulations are discussed. The
B-AModel is used as the underlying contact network in order
to evaluate the proposed Seasonal SIR model. The values of
the various parameters used in the simulations are reported
in Table 2. They have been chosen on the basis of the literature
survey.

Our primary goal is to analyze the impact of the tem-
perature on the epidemic process in the heterogeneous host
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TABLE 2. Values of the parameters values used in the simulations.

population as well as the vector population. In the simula-
tions, we choose to use a temperature range between 4.3◦C
to 37◦C because a vast majority of vector species live in this
temperature range. Beyond this range, the vector population
vanishes and the biting rate is equal to zero [26]. In case
one wants to tailor the experiments to a specific vector-borne
disease, temperature rangemust be adapted. To see the impact
of transmission rate on evolution of the epidemic spreading,
we choose the value of various transmission rate, βh, βvh and
βhv from 0.1 to 0.9, as we do not focus on a specific vector-
borne disease. There are many ways to introduce heterogene-
ity in the interactions of the host population. We choose to
use the Barabasi - Albert model for the simulations, as it is the
most influential model that allows accounting for heterogene-
ity in the complex network literature [20], [21], [62], [63].

A. EPIDEMIC SPREADING IN AN HETEROGENEOUS
NETWORK
The disease spreading dynamics with the Seasonal SIRModel
based on an heterogeneous contact network topology (B-A
model) is shown in Figure 2. The simulations are performed
considering a temperature range from 4.3◦C to 37◦C in order
to assess the impact of temperature variations. As the vector
population is coupled with the host population trough biting,
it leads to the seasonal disease spreading depending upon
the environmental condition. Epidemic spreading in the host
population increases with the increase of vector biting. Such
type of seasonal disease exists until the extinction of the
vector population. Susceptible population decreases to 0 at
9 time steps. The size of the infectious population grows
until it reaches 0.79 of the population quite quickly, then it
decreases slowly. This process is completed after 70 time
steps when the whole host population recover. Note that time
steps need to be converted in real time units according to the
disease under consideration.

Figure 3 represents the Seasonal SIR model dynamics
when there is a single route of transmission. In this case,
infections are only due to interactions between the hosts.
We use the same set of parameters used in the previous
experiment for comparative purposes. The model reduces in
this case to the classical SIR model. One can notice that
the proportion of infected individuals is lower and that the

FIGURE 2. Evolution of the epidemic spreading considering both routes
of transmission. The contact network of the host population follows the
B-A model with m = 10. The transmission rate values are βh = 0.6, βvh =
0.4 and βhv = 0.6. The seasonal biting rate parameters are b0 = 0.4,
T0 = 25◦C and C = 0.008.

FIGURE 3. Evolution of the epidemic spreading considering a single route
of transmission (host to host). The contact network of the host
population follows the B-A model with m = 10. The transmission rate
values are βh = 0.6, βvh = 0 and βhv = 0.

FIGURE 4. Evolution of the epidemic spreading in an heterogeneous host
population. the contact network follows the B-A model with m = 10. The
transmission rate values are βh = 0.6, βvh = 0.4 and βhv = 0.6. The biting
rate parameter does not depend on temperature b0 = 0.4.

duration of the epidemics is shorter as compared to the two
routes case. Susceptible population decreases to 0 at 13 time
steps. Indeed, with both vectors and hosts, the infection peak
at 0.79 and get extinct after 70 time steps, while without
vector transmission, the peak value is 0.704 and the disease
last after 65 time steps. As expected, the epidemic reaches
more people and last longer when there is two routes of
transmissions rather than with a single route.
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FIGURE 5. Evolution of the epidemic spreading in an homogeneous host
population. The contact network follows the Watts-Strogatz Model with
p = 0.2 and k = 30. The transmission rate values are βh = 0.6, βvh = 0.4
and βhv = 0.6. The seasonal biting rate parameters are b0 = 0.4,
T0 = 25◦C and C = 0.008.

Figure 4 represents the epidemic spreading in the host
population with the same set of parameters used in the previ-
ous simulations. The only difference is that in this case the
biting rate is not dependant of the temperature. It has the
same constant value b0 = 0.4. One can see that the infection
propagates immediately to a maximum and then it decreases
monotonically during 55 time steps. Additionally the propor-
tion of infected hosts is much higher with amaximum number
of 0.99 of the population infected as compared to 0.79 with
the Seasonal SIR model. The main lesson learned so far is
that neglecting to take into account the temperature influence
in the epidemic dynamics can lead to overestimating the
proportion of the population that can be infected and the
transmission speed of the disease.

Figure 5 represents the epidemic spreading in the host
population in the same conditions than in the previous exper-
iments. The difference lies in the topology of the contact
network. While in results reported in Figure 2 the B-A model
is used,in this case, the contact network is homogeneous
(Watts & Strogatz model). It appears that the topology of the
contact network affects both the peak value of the fraction
of infected host Ihm and the time to reach this value tm.
Indeed, the peak value is 0.79 for the heterogeneous network
as compared to 0.61 for the homogeneous network. This value
is reached two times earlier in the heterogeneous network. So,
one can conclude that using an homogeneous contact network
hypothesis instead of a more realistic topology, can lead to an
underestimation of the proportion of the infected population
and also of the speed of the disease spreading. This result is
quite important, as it may guide the decision process in order
to design efficient control strategies in real situations.

The epidemic dynamics in the vector population with the
temperature dependence is shown in Fig. 6(a)&(b). The frac-
tion of infected vectors increases until it reaches a maxi-
mum value of 0.35 after a few time steps, then it decreases
monotonically. The epidemic persists until there is no more
susceptible in the vector population, as shown in Figure 6(b).

The evolution of the proportion of susceptible and
infected vectors while varying the temperature is plotted

FIGURE 6. Evolution of the epidemic spreading in the vector population.
The transmission rate values are βh = 0.6, βvh = 0.4 and βhv = 0.6. The
seasonal biting rate parameters values are T0 = 25◦C , b0 = 0.4 and
C = 0.008.

FIGURE 7. Evolution of the epidemic spreading in the vector population
versus the temperature. The transmission rate values are βh = 0.6,
βvh = 0.4 and βhv = 0.6. The seasonal biting rate parameters are b0 =
0.4 at T0 = 25◦C and C = 0.008.

in Fig.7(a)&(b) respectively. One can see that after 37◦C ,
the vector population vanishes. It is highly infected in the
temperature range between 5◦C to 30◦C . These results are in
line with findings reported in the literature. Indeed, Accord-
ing to [64], [65], the vector population is highly dependent
on the local temperature and especially after the rainy season.
During this period, the size of the vector population increases.
In tropical and sub-tropical regions when the temperature
increases above 37◦C , the vector population vanishes.

The impact of temperature variations on the infection
dynamics in the host population is shown in Fig. 8.
An infected vector can bite multiple hosts causing the infec-
tion in the host population. The infection in the host popu-
lation propagates much faster than in the vector population
because the host population is infected both by host to host
interactions as well as vector to host interactions. As the tem-
perature increases, the biting rate decreases and the infection
in the host population also vanishes.

The effect of temperature variations on the infection
dynamics in the host population with single route transmis-
sion (vector to human) is shown in Fig. 9. The infection in
the host population is only due to vector to host interactions.
As the temperature increases, infection increase to a maxi-
mum value at 25◦C . After that the biting rate and the infection
in the host population decreases with the temperature untill it
vanishes.

The effect of temperature variations on the infection
dynamics in the vector population with single transmission
route (vector to human) is shown in Fig. 10. The infection in
the vector population is transmitted due to biting of vector to
host. Therefore the human to human transmission rate βh is
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FIGURE 8. Evolution of the epidemic spreading in the heterogeneous
host population versus the temperature. The contact network follows the
B-A model with m = 10. The transmission rate values are βh = 0.6,
βvh = 0.4 and βhv = 0.6. The seasonal biting rate parameters are
b0 = 0.4 at T0 = 25◦C and C = 0.008.

FIGURE 9. Evolution of the epidemic spreading in the host population
versus the temperature using a single transmission route (vector to
human). The transmission rate values are βh = 0, βvh = 0.4 and
βhv = 0.6. The seasonal biting rate parameters are b0 = 0.4 at T0 = 25◦C
and C = 0.008.

FIGURE 10. Evolution of the epidemic spreading in the vector population
versus the temperature using a single transmission route (vector to
human). The transmission rate values are βh = 0, βvh = 0.4 and
βhv = 0.6. The seasonal biting rate parameters are b0 = 0.4 at T0 = 25◦C
and C = 0.008.

equal to zero. As the temperature increases, the infection in
the vector population also increase to a maximum at 25◦C .
Then for higher temperature values, the biting rate and the
infection in the vector population decreases untill it vanishes
at 37◦C .

B. INFLUENCE OF THE TRANSMISSION RATES ON THE
EPIDEMIC DYNAMICS
In order to investigate the impact of the various spreading
rates on the epidemic dynamics, we perform a number of

TABLE 3. Influence of the host to host transmission rate βh on the
maximum proportion of infected individuals in the host population Ihm at
time tm. The contact network follows the B-A model with m = 10. The
other transmission rate values are βhv = 0.5 and βvh = 0.4 . The seasonal
biting rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008 .

FIGURE 11. Evolution of the epidemic spreading in an heterogeneous
host population for various values of the host to host transmission rate
βh . The contact network follows the B-A model with m = 10. The other
transmission rate values are βvh = 0.4 and βhv = 0.5. The seasonal biting
rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

simulations with different values of βh, βvh, βhv. First of
all, we consider the influence of the transmission parameters
separately, then we investigate their combination.

Fig. 11 illustrates the effect of variation of the host to host
transmission rate parameter βh on the fraction of infected
host population. All the curves exhibit the same behavior. The
proportion of infected host increases rapidly to a maximum
value Ihmand then it decreases slowly until there is no more
infected host. As the value of βh increases, the epidemic
spreads much faster in the host population. The value of the
maximum proportion of infected individuals Ihm at time tm in
the host population with βh varying in the range 0.1 to 0.9 is
given in Table 3.
One can see in Table 3 that increasing the value of βh

increases the peak of infection Ihm in the host population, and
that this value is reached sooner. However, it does not affect
the disease duration that last around 65 time steps.

The values of βh have little effects on the epidemic dynam-
ics in the vector population as compared to host population
as shown in Fig. 12. Increasing βh does not change too much
the value of the maximum fraction of infected vectors Ivm .
Variations of βh is directly affecting the proportion of infected
hosts, while it has less impact in the infection spreading in
the vector population. Values of the maximum proportion of
infected vector Ivm and associated time tm while varying the
transmission rate in the host population βh in the range 0.1 to
0.9 are reported in Table 4. One can see that the variations are
much more smaller as compared to the variations in the host
population.

In order to investigate the influence of the vector to host
transmission rate in the epidemic dynamics independently
of the host to host interaction, the value of βvh is increased
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TABLE 4. Influence of the host to host transmission rate βh on the
maximum proportion of infected individuals in the vector population Ivm
at time tm. The contact network follows the B-A model with m = 10. The
other transmission rate values are βhv = 0.5 and βvh = 0.4 . The seasonal
biting rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008 .

FIGURE 12. Evolution of the epidemic spreading in the vector population
for various values of the host to host transmission rate βh. The contact
network follows the B-A model with m = 10. The other transmission rate
values are βvh = 0.4 and βhv = 0.5. The seasonal biting rate parameters
are b0 = 0.4 at T0 = 25◦C and C = 0.008.

TABLE 5. Influence of the vector to host transmission rate βv h on the
maximum proportion of infected individuals in the host population Ihm at
time tm. The contact network follows the B-A model with m = 10. The
other transmission rate values are βh = 0 and βvh = 0.4 . The seasonal
biting rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

linearly in the range 0.1 to 0.9 with a step of 0.1 while
keeping βh = 0. The evolution of the infected fraction in the
host population versus time for the various values of the βvh
parameter are reported in Figure 13. All the curves exhibit the
same behavior. As time increases, the proportion of infected
hosts increases until a maximum value, and then it decreases
until there is no more host infected. However, both the max
proportion of infected hosts Ihm and the time tm needed to
reach this value are impacted by the variations of βvh. Table 5
reports the values of Ihm and tm to illustrate this behavior.

One can notice that as βvh increases, the max proportion
of infected host Ihm increases. However the time needed to
reach this maximum value decreases. The higher the value of
βvh, the higher the proportion of infected and the sooner this
proportion is reached.

Variations of the vector to host transmission rate βvh also
affect the epidemic spreading behavior in the vector popu-
lation. Figure 14 reports the results of the vector population
dynamics versus time while varying βvh from 0.1 to 0.9 with
a step of 0.1 and keeping βh = 0. The overall behavior
is quite similar to the one observed in the host population.
As βvh increases, the maximum fraction of infected vectors
Ivm increases and this value is reached sooner. Note however
that the vector population is impacted to a lesser extent as

FIGURE 13. Evolution of the epidemic spreading in an heterogeneous
host population for various values of the vector to host transmission rate
βvh. The contact network follows the B-A model with m = 10. The other
transmission rate values are βh = 0 and βhv = 0.5. The seasonal biting
rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

FIGURE 14. Evolution of the epidemic spreading in the vector population
for various value of the vector to host transmission rate βvh. The contact
network follows the B-A model with m = 10. The other transmission rate
values are βh = 0 and βhv = 0.5. The seasonal biting rate parameters are
b0 = 0.4 at T0 = 25◦C and C = 0.008.

TABLE 6. Influence of the vector to host transmission rate βv h on the
maximum proportion of infected individuals in the vector population Ivm
at time tm. The contact network follows the B-A model with m = 10. The
other transmission rate values are βh = 0 and βvh = 0.4 . The seasonal
biting rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

compared to the host population. Table 6 reports the values
of Ivm and associated time tm for various values of βvh to
illustrate our findings.

We now turn to the evaluation of the influence of the host
to vector transmission rate βhv in the epidemic dynamics.
To do so, starting from 0.1, the value of βhv is increased until
0.9 with a step of 0.1 while keeping βh = 0.4. As there
is no difference between all the curves, we report only the
results for βhv = 0.5 in Figure 15. Modifying the value of
βhv does not affect the epidemic spreading in the host popu-
lation. In other words, βhv has no influence on the epidemic
dynamics in the host population. The value of the maximum
fraction of infected individuals in the host population Ihm at
time tm does not change whatever the value of βhv. It is around
0.78. Indeed, as βhv measures the transfer rate of the disease
from the host to the vector population, it doesn’t affect the
infection process in the host population directly.
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FIGURE 15. Evolution of the epidemic spreading in the host population
with the host to vector transmission rate βhv = 0.5. The contact network
follows the BA model with m = 10. The other transmission rate values are
βh = 0.4 and βvh = 0.5. The seasonal biting rate parameters are b0 = 0.4
at T0 = 25◦C and C = 0.008.

FIGURE 16. Evolution of the epidemic spreading in the vector population
for various values of the host to vector transmission rate βhv . The contact
network of the host population follows the B-A model with m = 10. The
other transmission rate values are βh = 0.4 and βvh = 0.5. The seasonal
biting rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

TABLE 7. Influence of the host to vector transmission rate βhv on the
maximum proportion of infected individuals in the vector population Ivm
at time tm. The contact network follows the B-A model with m = 10. The
other transmission rate values are βh = 0 and βvh = 0.5 . The seasonal
biting rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

Now lets evaluate the impact of βhv on the epidemic
dynamics in the vector population in the same conditions than
above. Results are shown in Figure 16. According to these
curves, it is clear that the value of βhv has a huge impact
on the epidemic spreading process in the vector population.
As βhv increases from 0.1 to 0.9, the value of the peak of
infection Ivm increases from 0.10 to 0.42 Furthermore the
peak is reached faster. Ten time steps are needed to reach
the peak value for βvh = 0.1, while it is reached in 5 time
steps for βvh = 0.9. Table 7 reports the values of Ivm and the
corresponding time tm for the various values of βhv. It shows
that βhv is a quite important parameter in order to evaluate the
epidemic spreading in the vector population.

We now evaluate the combined effect of both routes of
infection (vector to host and host to host) by varying the
transmission rates βh and βvh simultaneously. Both values are
kept equal and vary in the range 0.1 to 0.9 with a step of 0.1.
The combined effects of both parameters on the epidemic
spreading in the host population is shown in Figure 17. All
the curves exhibit a similar behavior. The fraction of infected

FIGURE 17. Evolution of the epidemic spreading in an heterogeneous
host population for various value of the transmission rates βh and βvh.
The contact network follows the B-A model with m = 10. The host to
vector transmission rate value is βhv = 0.5. The seasonal biting rate
parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

TABLE 8. Influence of the combination of the host to vector transmission
rate βh and the vector to host transmission rate βvh on the maximum
proportion of infected individuals in the host population Ihm at time tm.
The contact network follows the B-A model with m = 10. The other
transmission rate values are βh = 0 and βvh = 0.5 . The seasonal biting
rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

individuals increases quickly to a maximum value, and then
it decreases slowly until all the population recover. The peak
value of the epidemic Ihm increases from 0.62 to 0.83 when
the values of βh and βvh increase from 0.1 to 0.6, then we
observe a saturation process. Indeed, the value of Ihm is equal
to 0.84 for βh = 0.7 and βvh = 0.7. It reaches 0.86 when the
values of βh and βvh are equal to 0.9. Note that as the values of
the infection rates increase the peak is reached faster. Table 8
reports the values of Ihm and tm for the various values ofβh and
βvh. While 14 time steps are needed to reach the maximum
fraction of infection Ihm for βh = 0.1 and βvh = 0.1, it is
reached almost five times earlier when both values are equal
to 0.9.

To evaluate the combined effect of βh and βvh on the
epidemic spreading in the vector population, we perform
the same simulation process than the one used for the host
population. That is to say, the values of βh and βvh vary
simultaneously from 0.1 to 0.9 with a step of 0.1. Results
are reported in Figure 18. We observe a similar behavior than
for the host population. Indeed, the value of the peak Iv(max)
increases from 0.28 to 0.32 when the value of βh and βvh vary
from 0.1 to 0.4. After that, increasing the value of βh and βvh
does not affect the value of the peak Ivm which remains around
0.32. Table 9 report the values of Ivm and tm for the various
values of βh and βvh to illustrate this behavior. One can see
that if the proportion of infected vectors is quite sensitive to
this parameters variations, the timing is not so affected as
compared to the host population in similar conditions.

However, for comparative purpose, the basic reproduction
number R0h is computed for an homogeneous and non homo-
geneous contact networks with the same set of parameters.
Results listed in Table 10 show that it is greater for the
heterogeneous than for the homogeneous topology. Indeed,
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FIGURE 18. Evolution of the epidemic spreading in the vector population
for various value of the transmission rates βh and βvh. The contact
network follows the B-A model with m = 10. The host to vector
transmission rate value is βhv = 0.5. The seasonal biting rate parameters
are b0 = 0.4 at T0 = 25◦C and C = 0.008.

TABLE 9. Influence of the combination of the host to vector transmission
rate βh, and the vector to host transmission rate βvh on the maximum
proportion of infected individuals in the vector population Ihm at time tm.
The contact network follows the BA model with m = 10. The other
transmission rate values are βh = 0 and βvh = 0.5 . The seasonal biting
rate parameters are b0 = 0.4 at T0 = 25◦C and C = 0.008.

TABLE 10. Effect of the network topology on the basic Reproduction
Rate(R0h

) at T0 = 25◦C .The parameter of the B-A model is m = 10. The
Watts and Strogatz model parameters are p = 0.2 and k = 30. The
transmission rate values are βh = 0.6 and βhv = 0.6 and βvh = 0.4 . The
seasonal biting rate parameter b0 = 0.4 at T0.

TABLE 11. Statistics of diseases.

in heterogeneous networks, high degree nodes are super
spreaders, and their high connectivity is a good activator of
the epidemics.

C. DISEASE DATASET
In order to evaluate the temperature dependence in real situa-
tions, we have collected data from the Hospital of New Delhi
for various vector-borne diseases together with environmen-
tal conditions. The raw data contains 2509 patients. After
refinement of data, the various diseases of interest observed
are classified in Table 11.

Although diseases spread all the year round, in summer
their impact is very high, as shown in Figure 19. The cor-
responding average temperature is also plotted in Figure 20.
The average temperature of various countries is also plotted
in Figure 21, where vector-borne diseases are prominent.
Previous models suggests that vector-borne diseases emerge
between 12◦C and 34◦C [66], [67]. They also suggests that
biting is linearly dependent on temperature [67]. Our new

model incorporates the influence of temperature in the epi-
demic process. It is inspired by the dataset of 2 types of
diseases, plotted in Fig. 19. These data show that epidemic
spreading is greatly affected by temperature variation, espe-
cially in the range of 22◦C to 34◦C . We also observe the
severe impact of epidemic spreading after a rainy season
especially in India where humidity is high, and the temper-
ature is within a range of 22◦C to 34◦C .

People are mostly infected between June to October of
Malaria, as shown in Figure 19(a). This period is the rainy
season in India. During the rainy season, when the temper-
ature is within the range of 22◦C to 34◦C , Dengue fever
spreads quickly between June and December. In September,
the cases of Dengue fever are maximum, as shown in Fig-
ure 19(b). These data show that the impact of disease spread-
ing is high from June toNovember. we can see in Figure 20(a)
that during these months, the temperature range is favorable
for the vector population. Such a situation leads to an increase
of biting. Another important environmental parameter that
affects the spreading of vector-borne disease is humidity. The
average humidity of Delhi-NCR is plotted in Figure 20(b).
The humidity between June and December is higher than the
other months. Vector-borne diseases show a severe impact
within the period of June to December. Lets look at Fig-
ure 21 reporting the average monthly temperature recorded
in four countries during one year. One can see that except for
philippines the curves are unimodal, and that they exhibit a
Gaussian shape.

V. CONCLUSION AND FUTURE WORK
In this paper, a seasonal vector-borne diseasemodel, Seasonal
SIR is proposed and investigated. It combines the impact
on the epidemic dynamics of the temperate conditions with
the heterogeneous nature of the contact network of the host
population. The impact of the temperature is integrated in
the model using the biting rate of the vector population.
It is defined as a Gaussian function of the temperature. The
heterogeneity of the contact network in the host population
is incorporated in the model using an heterogeneous mean-
field approach. The basic reproduction rate of vector-borne
diseases is derived. It is proportional to the square of the biting
rate (b(T )). Extensive simulations are performed in order to
investigate the influence of the temperature and of the hetero-
geneity of the contact network. To perform the simulations,
the B-A model is assumed for the heterogeneous contact net-
work and the Watts & Strogatz model for the homogeneous
contact network. Results allow a better interpretation of the
complex interplay between the host population, the vector
population and the environmental conditions of vector-borne
diseases. It appears that failing to integrate the temperature
variations in the model can lead to an overestimation of the
fraction of infected population and also to an underestimation
of the speed of the propagation of the epidemic. In the same
line, considering an homogeneous contact network instead
of an heterogeneous contact network can lead to a poor
appreciation of the epidemic dynamics. Indeed, comparison
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FIGURE 19. Evolution of the number of infection during the year for ((a) Malaria, (b) Dengue. Data recorded from the hospital of New
Delhi.

FIGURE 20. Average monthly temperatures (a) and humidity (b) recorded in Delhi-NCR during the 2018 civil year. Simulated temperature using a gaussian
distribution (c).

FIGURE 21. Average monthly temperatures recorder in countries with vector-borne diseases. China (a), Japan (b), Philippines (c), Poland (d).

between the WS and the B-A contact network models show
that with the homogeneous network model (WS) the peak of
the infection is lower than for the heterogeneous one (B-A)
and the epidemics propagate slower. These poor estimations
of the epidemic dynamics can have a very negative impact
on the control policies implementation. In other words, these
results highlight the need of more realistic models in order to
design and to tune adequately efficient control policies. Our
results are based on a generic model. They can be adapted to
specific vector-borne disease using an appropriate parameter
setting. However, one has to acknowledge that it is not a
straightforward issue.

There are various future directions for this work. One of the
future direction of this work is to tailor the model to specific

vector-borne diseases. This is not a simple issue, because
even when data are available, it is not easy to get all the
experimental conditions linked to these data. A significant
addition is to consider other environmental features such as
the impact of humidity. Indeed, most diseases proliferate
after the rainy season, where humidity is high, especially in
India. More sophisticated models with additional compart-
mental states can also be easily incorporated. Furthermore,
a more realistic scenario can be created by considering the
different interplay between hosts such as modular networks
and dynamic networks. [68]–[70]. The mobility and spatial
distribution of vector, as well as the host population may
also be examined by using point of interest based community
formation [71], [72].
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