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ABSTRACT Rotary encoders are widely applied in a variety of industrial fields. However, as the exist of
the installation, processing and demodulation circuits errors, the test result of the encoder is superimposed
with periodic nonlinear errors and the encoder needs compensation to achieve high measurement accuracy.
Traditional methods including the least square method (LSM) and back propagation artificial neural network
(BP-ANN), are not capable of addressing nonlinear errors. Thus, a novel method based on improved particle
swarm optimization (IPSO) and support vector machines (SVM) is proposed to provide better compensation.
The proposedmethod incorporates the SVMmethod into the design of the compensationmodel, and the IPSO
algorithm is applied to tune the SVM parameters. To validate the algorithm, four sets of data were obtained
from encoders with different numbers of segments. The experimental results show that the IPSO-SVM
algorithm has a better prediction precision and the nonlinear standard deviation of 180 petal-shaped numbers
has dropped from 0.08◦ to 0.0005◦ after compensation over 0◦ to 360◦ measurement range. Based on the
results, the proposed IPSO-SVMmodel provided more accurate compensation on the nonlinear errors to the
capacitive angular encoders than other method.

INDEX TERMS Capacitive encoder, nonlinear compensation, support vector machine, improved particle
swarm optimization.

I. INTRODUCTION
Rotary encoders applied to measure the angular position and
speed have been broadly utilized in industrial automation
control systems [1]–[4]. They are expected to achieve high
precision, high resolution and high reliability in harsh envi-
ronments [5]–[7]. There are many types of encoders, such as,
electromagnetic, inductive, capacitive, optical types. In recent
years, the capacitive encoder which meets the requirement of
small size, low power consumption and strong environmen-
tal adaptability has become the research hotspot. In capaci-
tive encoder research filed, the single-excitation capacitance
sensing encoder is the most prominent research [8]–[10].
The measurement principle of single-excitation capacitive
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encoder is similar to the inductive synchronizer and the
capacitive encoder has good repeatability and high resolution.

However, as the influence of installation error, processing
error and demodulation circuit error, a periodic nonlinear
error exits in the measurement result. The researchers in [10]
investigated the sources of these periodic nonlinear errors
and introduced hardware methods to compensate for them.
However, hardware based compensation is typically compli-
cated and expensive [11] and is unable to fully eliminate the
effects of periodic nonlinear errors. An alternative approach
to improve the measurement precision is compensate the
periodic nonlinear error by way of a software algorithm.
Traditional software compensation approaches include the
least squares method (LSM) and artificial neural network
(ANN) [12]–[18]. While the LSM is commonly applied
to error compensation, its accuracy is limited as it often
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identifies a local optimum rather than the global optimum
when fitting periodic errors [16], [19]. With regard to ANN,
studies have found that an ANN can overcome periodic
nonlinear shortages and achieve a good fit [13], however,
their disadvantages are a slow convergence rate, a tendency to
over-fit, and a susceptibility to falling into a local extremum.

Compared to the LSM and ANN, the support vector
machine (SVM) is a new regression method and owns good
generalization ability [20]–[30]. Besides, SVM can be used
to solve problems with only a few samples, accommodate
nonlinear data, avoid local minima, and so on. However,
the generalization ability and working performance of SVM
relies on the selection of appropriate parameter. Choosing
the appropriate learning parameters is very important for
the learning performance and generalization ability of the
SVM model, which directly affects the prediction accuracy.
Traditional prediction methods often select parameters by
trial and error according to experience, but this does not
ensure that the training error of the SVM model reaches the
global minimum, and the prediction results cannot guarantee
to be the optimal results.

In this paper, the learning parameters of the SVMalgorithm
are optimized using the improved particle swarm optimiza-
tion (PSO) method, which is a global parallel optimiza-
tion method based on population that has the advantages
of fast convergence and easy implementation. However, to
overcome the shortcomings of the traditional PSO algorithm,
such as slow convergence and the likelihood of falling into
a local minimum, its performance was improved by reducing
the speed and search range. These modifications were similar
to those described for the restricted range PSO algorithm in
[22], [23], [28], [31], [32]. In the following, the improved
PSO algorithm is referred to as the IPSO algorithm and is
used for the optimal selection of SVM learning parameters.
As will be shown, the results of the analysis confirm the effec-
tiveness of the IPSO algorithm in optimizing the selection of
SVM learning parameters to providemore accurate and stable
parametric predictions in nonlinear method.

The paper is organized as follows. The measurement
principles and nonlinear error compensation model are
described in Section 2. The results of compensation via the
LSM and artificial neural network (ANN) are presented in
Section 3. The proposed IPSO tuning support vector machine
(IPSO-SVM) is introduced in Sections 4 and 5, followed by a
discussion of the results in Section 6. Finally, the conclusion
is presented in Section 7.

II. ENCODER PRINCIPLE AND ERROR MODEL
A. MEASUREMENT PRINCIPLE
The capacitive angular encoder is fabricated by printed circuit
board (PCB) technology and the principle is similar to induc-
tive synchronizer. First, an excitation signal acted on the sta-
tor. Then, four feedback signals are available on the four sets
of collection electrodes. More details about the measurement
principle is presented in Ref. [8] and [10]. After differential
amplification, the four voltage signals are converted into two

FIGURE 1. (a) model of the encoder, the division number N is equal to 6;
(b) model of stator with four sets of colored collection electrodes;
(c) schematic of demodulation circuit. More details are shown in Ref
[8] and [10].

orthogonal amplitude modulated signals:

USIN = U · sin(Nφ) · sin(wt)

UCOS = U · cos(Nφ) · sin(wt), (1)

whereU ·sin(wt) is the excitation signal,φ is the relative angle
between the rotor and stator, and N is the division number
which divides the mechanical angle from 0 toa 360◦ into
an electrical angle of 0 to 360◦/N to achieve high precision
measurement. Then, the angle information can obtained after
arctangent calculation via a resolver chip.

θ = arc tan(
sin(N · φ)
cos(N · φ)

) (2)

The model of the capacitive encoder is presented in
Figure 1(a) and the circuit schematic is shown in Figure 1(b).

B. NONLINEAR ERROR
Due to the installation, processing and demodulation circuit’s
errors, a period nonlinear errors is superimposed in the final
measurement result as shown in Figure 2(a). The spectral
analysis of nonlinear errors is shown in Figure 2(b), and it is
obvious that the result includes DC error, mechanical period
error, and electrical period error [6], [12].

The periodic nonlinear error in the test results greatly
limits the measurement accuracy of the encoder. Further,
the repeatability of the encoder was tested. The test results
showed that the repeated error did not exceed 0.0005◦.
Excellent repeatability indicates that the capacitive angular
encoder can achieve high measurement accuracy through
compensation. The compensation model is shown in the
Figure 3. Therefore, the quality of the compensation algo-
rithm becomes the key to improve the accuracy of the sensor.

124266 VOLUME 8, 2020



B. Hou et al.: Nonlinear Error Compensation of Capacitive Angular Encoders Based on IPSO SVM

FIGURE 2. (a) Nonlinearity over a full measurement range of an encoder
with subdivide number of 180. And the nonlinearity error has been
obtained by compare the encoder output with the turntable output.
(b) Spectral analysis of the nonlinear errors, which include DC,
mechanical, and electrical cycle errors (corresponding to 0 upr, 1 upr,
180 upr, 360 upr and 720 upr).

FIGURE 3. The schematic diagram of compensation model.

An accurate error fitting model can greatly improve the
compensation accuracy of the sensor.

The actual angular output transfer function is expressed,

f (φ)e = φ + f (φ) (3)

To achieve high-precision measurement, the most
appealing method is to construct an accurate compensation
model function f (φ)−1.

III. COMPENSATION VIA LSM AND BP-ANN
If the compensation function f (φ)−1 is exactly the inverse
of the transfer function of the encoder, the compensation
result will remain consistent with the input angle and the
errors caused by the installation, processing, and demodula-
tion circuits will be eliminated. After analyzing the nonlinear
error via the fast Fourier transform, it was found that the
error curve of the capacitive angle encoder is periodic. Thus,
the compensation function can be constructed in the form of
a multi-order sine function:

f (φ)−1 = d + A0 sin(φ + β0)+ A1 sin(N · φ + β1)

+A2 sin(2N · φ + β2)+ A3 sin(3N · φ + β3)

+A4 sin(4N · φ + β4) (4)

The parameters of the function can be obtained via
the LSM method. The encoder with 180 segments after
compensation via the LSM are shown in Figure 4.

FIGURE 4. Nonlinear errors after compensation via the LSM. (a) The
original error, least squares fitting function, and compensated error
within one electronic period (0-2◦). (b) The compensation error over the
range from 0 to 60◦.

Compare Figure 4(b) with Figure 2(a), it can be seen
that the maximum nonlinear error decreased from 0.08◦ to
0.006◦ over all the measurement range. However, the resid-
ual error still remains large and exhibits obvious periodic
characteristics. As the formula used for LSM fitting can-
not fully represent the characteristics of nonlinear errors,
the compensation provided by the LSM was inadequate.
To address this, another nonlinear algorithm will be selected
for compensation purposes.

Besides the LSM, the ANN algorithm has been conducted
to compensate the nonlinear error. The artificial neural net-
work methods has been widely used in many applications.
The experiment is conducted via the Neural Net Fitting tool-
box in MATLAB. In experiment, the training, validation, and
testing percentages were 70%, 15%, and 15%, and the num-
ber of hidden neurons was 20. The results of compensation
via the BP-ANN are shown in Figure 5.

It can be seen that the error in the electrical cycle can be
effectively suppressed and the BP-ANN fitting error is more
consistent with the original error. The nonlinear error of the
capacitive encoder compensated by the BP-ANN has been
obviously reduced from 0.08◦ to 0.005◦ over all the mea-
surement range. Compare Figure 5(a) with Figure 4(a), the
conclusion can be obtained that BP-ANN shows a better com-
pensation than LSM in electrical cycle (0◦ - 2◦). However,
the compensated error is slowly changing over the entire
measurement range as shown in Figure 5(b). With the ANN
algorithm it is difficult to achieve an effective compensation
for periodic nonlinear errors over a full scale range of 0◦

to 360◦. In order to achieve higher measurement precision,
the nonlinear error is compensated by IPSO-SVM.

IV. SUPPORT VECTOR MACHINE (SVM) ALGORITHM
SVM is a machine learning algorithm, which is proposed
in 1995 by Vapnik and Cortes. The main concept of sup-
port vector machine is to try to transform the data on input
space to a high dimensional feature space via a nonlinear
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FIGURE 5. Sensor measurement errors after compensation by the ANN.
(a) Original error, least squares fitting function, and compensation error
within one electronic period (0-2◦). Note that the BP-ANN fitting error is
very consistent with the original error. (b) The compensation error from 0◦

to 60◦. Note that the error changes slowly over the measurement range.

mapping, then conduct the linear regression operations in
the high dimensional feature space. Compared LSM and
ANN, SVM effectively improves the calculation accuracy
and convergence speed.

SVM can be described as follows. Assume (xi, yi) are
training data sets, where xi is the input data and yi is the
corresponding nonlinear error value. The basic idea of SVM
is try to map the input data xi to a high dimensional feature
space by way of a nonlinear mapping ϕ(xi), then try to con-
duct linear regression operations in this space. The function
can be expressed as follows:

min J (ω, ξ ) =
1
2
ωTω +

C
2

l∑
i=1

ξ2i (5)

s.t. yi = ωTϕ(xi)+ b+ ω + ςi (i = 1, 2, . . . , l) (6)

where xi ∈ Rl and yi ∈ R represent the input and output
vectors of the model, J is defined as a loss function, w is
a weight vector, T denotes a vector transposition, ςi ∈ R
is an empirical error, b is an offset, C ∈ R+ is a penalty
parameter, and ϕ(xi) is a nonlinear mapping from the input
space to the feature space. To solve thementioned constrained
optimization problem, the Lagrange polynomial function of
the dual problem can be presented as:

L(ω, b, ξ, α)=J (ω, ξ )−
l∑
i=1

αi(ωTϕ(xi)+b+ξi−yi) (7)

where αi represents a Lagrange multiplier, and, by the
Karush–Kuhn–Tucker condition, ω b ξ α can be solved by
partial derivatives and set equal to zero. The following linear
equation can be obtained by eliminating ω, ξi.[

0 IT

I �+ C−1E

]
×

[
b
a

]
=

[
0
y

]
(8)

where I = [1, 1, · · · , 1]T , E is identity matrix;
a = [a1, a2, · · · , al]T y = [y1, y2, · · · , yl]T , and

�ij = ϕ(xi) · ϕ(xj) = K (xi, xj) are kernel functions that
satisfy Mercer’s condition. Note that there are many types
of kernel functions that can be used as least squares support
vector regression (LSSVR) kernel functions and satisfy this
condition. While there are differences between various kernel
functions, there is no unified standard describing kernel selec-
tion in SVM applications. In this paper, the Gaussian RBF
kernel function with a limited number of parameters and a
strong learning ability was selected for use in the LSSVM
model. The LSSVM decision function obtained by solving
the above equation is:

f (x) =
l∑
i=1

ai × exp(−

∥∥x i − x j ∥∥2
2σ 2 )+ b (9)

where x i represents any input sample vector, x j represents the
center of the Gaussian RBF kernel function, and σ represents
the width of the Gaussian RBF kernel function.

The generalization and learning abilities of the SVM are
determined by parameters. The penalty parameter C and
the width of RBF kernel function σ are directly related to
the prediction efficiency and accuracy of the model. The
penalty parameter C affects generalization and empirical
error. Larger values of C will increase the complexity of the
model andmake it more susceptive to overfitting, and, smaller
values of C will reduce the complexity of the model, making
it more susceptible to over fitting. In next study, the improved
PSO algorithm was used to optimize parameters C and σ to
achieve better prediction results.

V. PARAMETERS OPTIMIZATION BY
IMPROVED PSO ALGORITHM
The particle swarm optimization (PSO) algorithm is a random
search algorithm based on group collaboration developed by
simulating bird foraging behavior. First, a group of random
particles (random solutions) is initialized, all of which have
an associated fitness value from the optimized function and a
speed to determine its flight direction and distance. In opera-
tion, particles in a swarm follow the current best particlewhile
searching the solution space until the best solution is finally
identified. Updating the particle position in each iteration
is accomplished by tracking two extrema. The first is the
best solution found by the particle itself, i.e., the individual
extremum, and second is the best solution identified by the
entire population of the swarm, i.e., the global extremum.

The equations used to update each particle’s position and
velocity are shown as follows:

V k+1
id = ωV k

id + c1r1(p
k
id − x

k
id )+ c2r2(p

k
gd − x

k
id ) (10)

X k+1id = X kid + V
k+1
id (11)

where ω is the inertia factor; c1 and c2 are the learning
or acceleration factors, and are usually equal to 2; r1 and
r2 are random numbers distributed in the interval [0,1];
Vmax represents the maximum speed that can be achieved by
a particle; pki represents the d-th dimension of the individual
extremum of the I -th variable; and pkgd represents the d-th
dimension of the global optimal solution.
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In an implementation of the PSO algorithm, parameters
ω, c1, c2, r1, and r2 all significantly affect the convergence
of the algorithm. The common PSO algorithm has a fast
convergence speed, but, it converges slower in the later stages.
To improve the solution quality and speed up the convergence
speed, the following three strategies were applied to improve
the PSO algorithm:
• Particle Velocity
At the completion of each fitness calculation, the current

speed is compared to the initial speed before updating the
position to ensure the speed is within the initially specified
range. The initial range of the random particle position is
defined as:

(xmin
j − ε)− x

0
ij ≤ x

0
ij ≤ (xmax

j + ε)− x0ij, (12)

where ε is a tiny positive real number, xmin
j and xmax

j are
the minimum and maximum positions of the particle, respec-
tively, and x0ij is the original position of the particle. The initial
velocity of the particle is randomly selected within a certain
range. At (k + 1) iterations, the velocity limit of element j of
particle i is:

Vk+1
ij =


Vmax
ij , Vk+1

ij ≥ Vmax
ij

Vk+1
ij , −Vmax

ij ≥ Vk+1
ij ≥ −V

max
ij

-Vmax
ij , Vk+1

ij ≥ −V
max
ij ,

(13)

where Vmax
ij = (Xmax

j − Xmin
j )

/
R and R is a real number in

the range [5], [10]; V k+1
ij is the velocity at which the particle

iterates (k + 1) times; and Vmax
ij is the maximum velocity of

the particle.
• Particle Search Space
Reducing the search space is conducive to speeding up the

convergence. In this case, the search space is dynamically
adjusted to reach the expected range. First, the minimum and
maximum values of control variable j in particle i are limited:

X0
j,max = Xmax

j ,

X0
j,min = Xmin

j . (14)

After (k + 1) iterations, the search space is limited to:

X k+1j,max = X kj,max − (X kj,max − gbest
k
j )1,

X k+1j,min = X kj,min − (gbestkj − X
k
j,min)1, (15)

where the optional range of1 is (0, 1);X k+1j,max is the maximum
position after (k + 1) iterations; X kj,max is the maximum
position after k iterations; gbestkj is the global extremum of
the particle after k iterations; X k+1j,min is the minimum position
of the particle after (k+1) iterations; and X kj,min is the position
of the particle after the k-th iteration.
• Crossover Operation
A crossover operation was implemented as per the

following equation:

cx1 = x1 · e+ x2 · (1− e)

cx2 = x1 · (1− e)+ x2 · e, (16)

where cx1 and cx2 are new particles generated by the
crossover operation, x1 and x2 are parent particles, and e rep-
resents a D-dimensional random sequence of (0, 1) intervals.
After the crossover operation, the fitness value of the

new particle is calculated, and if the fitness value improved,
the original particle is replaced by the new particle. On the
other hand, if the fitness value did not change, then amutation
operation is conducted to strengthen the search around the
particle. After mutation, the particle with a higher fitness
value is selected to replace the original particle. The mutation
operation is defined as:

mx1 = x + (1−
t
T
)a(ub− x)

mx2 = x − (1−
t
T
)a(x − lb), (17)

where mx1 and mx2 are mutated particles and a is the weight
of the variation.

Once the local search for the global best particle has been
strengthened, a search is conducted around the optimal parti-
cle to improve the accuracy of the solution. The initial value
of the SVM algorithm parameters can then be obtained based
on the shrinkage of the adaptive PSO algorithm. The SVM
algorithm is then applied to complete the error prediction
model.

The process of applying the IPSO algorithm to optimize
the parameters C and σ of SVM is depicted in Figure 6. The
steps in the process are as follows.

Step 1 Initialize the number of IPSO algorithm parameters
and the maximum number of iterations, set parameters such
as particle velocity, weight, learning factor, and randomly
initialize SVM parameters C and σ .
Step 2: By evaluating the objective function of each

particle, steady-state penalty function and transient stability
simulation, the penalty function of transient stability of each
particle is evaluated, and the current parameter value of the
particle is evaluated.

Step 3: Calculate the fitness of each particle. The fitness
value of each particle as the following equation:

f (C, g) =
n∑
i=1

(yi−y
,
i)
2/n, (18)

where yi is the nonlinear error value, y
,
i is the fitted value and

n is the number of input data.
Step 4: Update the velocity and position of each particle

and evaluate the fitness value. Then, randomly select a new
position in the neighborhood of the particle and compute the
fitness value of the new position.

Step 5: Calculate the fitness values under different
particles, consider the particle velocity and position when
performing different particle calculations, and carry out the
cross-variation operation.

Step 6: Determine if the current iteration is the last based
on the limit. If so, then stop iterating and output the most
suitable SVM parameter. Otherwise, recalculate the weight,
position, and speed of the particle and return to Step 2
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FIGURE 6. Flow chart of the proposed compensation method.

Step 7: Determine if the current iteration number is up to
the maximum iterations or gbest is the lowest fitness value,
then output the parameters C and σ . Otherwise, return to
Step 2.

Step 8: Obtain the optimized SVM parameter, apply it
to SVM to carry out error classification regression, and
determine the high precision error compensation model.

VI. ENCODER COMPENSATION VIA THE IPSO-SVM
In this section, the performance of the proposed IPSO-SVM
method was analyzed by applying it to a capacitive
encoder. To ensure the algorithm was sufficiently versatile,
experiments were conducted with several different subdivide
numbers. A porotype with four channels (each channel’s
divide number is 119, 120, 179 and 180) is fabricated. The
prototype is illustrated in Figure 7 and the experimental setup
is presented in Figure 8. The setup included a high-precision
turntable and the positional accuracy of the turntable is better
than±0.8 arcsec, and an encoder containing rotor, stator, and
demodulation circuit.

Table 1 shows the initial values for the IPSO algorithm.
Consider convergence time and compensation accuracy,
the particles number and population size are set 50 and
20respectively. The evolutions number is set 20.

The optimal parameters (C and σ ) after training by the
IPSO model are listed in Table 2. Obtain the optimized
SVM parameter, apply it to SVM to carry out error classi-
fication regression, and determine the high precision error
compensation model.

The experiment is conducted, and the fitting curve and
nonlinear error compensated by IPSO-SVM algorithm is

FIGURE 7. Sensitive structures of prototype including stator and rotor.
The fabricated prototype with four channels and each channel’s divide
number is 180, 179, 120, and 119.

shown in Figure 9, where it can be seen that the curve
is consistent with the trends in the experimental samples.
In essence, the IPSO-SVM model effectively compensated
for the nonlinear error arising from the installation, process-
ing, and demodulation circuits. The measurement error after
compensated was less than 0.0005◦ over full measurement
range. Additional experiments were conducted for different
subdivide number, and the results are shown in Figure 10
to 12. It can be seen from these figures that the proposed
method successfully compensated for the nonlinear errors in
the capacitive angular encoder.
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FIGURE 8. Experimental setup, which included a high-precision
air-floating turntable (positional accuracy better than ±0.8 arcsec),
a demodulation circuit, a computer for data acquisition,
and a computer for turntable controlling.

TABLE 1. Initialization parameters of the IPSO algorithm.

TABLE 2. Optimal parameters by IPSO of SVM.

FIGURE 9. Compensated result with the number of petal-shape on 180.
(a) Original and fitted point by IPSO-SVM; (b) compensated error from
0 to 60.

To further evaluate the IPSO-SVM method, the mean
absolute error (MAE), average relative error (ARE) and root
mean square error (RMSE) are applied as indices to evaluate

FIGURE 10. Compensated result with the number of petal-shape on 179.
(a) Original and fitted point by IPSO-SVM; (b) compensated error from
0 to 60.

FIGURE 11. Compensated result with the number of petal-shape on 120.
(a) Original and fitted point by IPSO-SVM; (b) compensated error from
0 to 60.

model performance. Their definitions are as follows:

MAE =
1
n
·

n∑
i=1

∣∣Y (i)− Y (i)∗∣∣ (19)

ARE =
1
n
·

n∑
i=1

|Y (i)− Y (i)∗|
Y (i)

(20)

RMSE =

√√√√1
n
·

n∑
i=1

(Y (i)− Y (i)∗)2 (21)

where Y (i)∗ is the modeling value, Y (i) is the actual value
obtained via high-precision turntable, and n is number of
testing samples.

The results of compensation via the LSM, BP-ANN, and
IPSO-SVM methods are listed in Table 3 and shown in
Figure 13. The dataset of 1, 2, 3, and 4 shown the
compensation results of the encoders with 119, 120, 179,
and 180 segments, respectively. It can be seen in the
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TABLE 3. Performance comparison of three methods.

FIGURE 12. Compensated result with the number of petal-shape on 119.
(a) Original and fitted point by IPSO-SVM; (b) compensated error from
0 to 60.

FIGURE 13. Results of the MAE, ARE, and RMSE evaluation of the LSM
(a), BP-ANN (b), and IPSO-SVM (c) methods on the data from encoder: 1,
2, 3, and 4 shown the compensation results of the encoders with 119,
120, 179, and 180 segments, respectively.

figures that the IPSO-SVMalgorithm demonstrated outstand-
ing performance on three evaluation indicators compared to

TABLE 4. The nonlinear error before and after compensation adopts the
IPSOSVM method.

FIGURE 14. Nonlinearity error after compensation by IPSO-SVM method
of an encoder with 180 subdivide numbers. (a) Error compensation over
the full measurement range. (b) Compensated nonlinear error from 0◦ to
360◦. (c) Error spectrum before and after compensation.

the LSM and ANN. The better compensation performance
may be due to the global search capability of the IPSO
algorithm and the effective regression classification of the
SVM. IPSO-SVM combines both the advantages of PSO and
SVM. Themeasurement accuracy of the four groups is shown
in Table 4, where the accuracy after compensation via the
IPSO-SVM algorithm was below 0.0005◦.
The results after the compensation is shown in

Fig. 14(a), (b), and (c). The nonlinear error of the sensor
is reduced to less than 0.0002◦ over the full range, which
indicates the capacitive encoder has great potential to be
applied in high-precision applications with low cost.
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Figure 14(a) and (b) show the error distribution over the
full-scale range of a capacitive angular displacement sensor
with 180 segments after compensation via the IPSO-SVM
algorithm. In the figure, it can be seen the nonlinear errors
were effectively reduced and the error after compensation
over the full-scale measurement range from 0◦ to 360◦ did
not exceed 0.0005◦. The periodic nonlinear was almost totally
eliminated. A spectral analysis before and after compensation
is shown Figure 14(c), where it can be seen that the com-
pensation was sufficient to overcome the periodic nonlinear
errors. These results indicate the algorithm significantly
improved themeasurement accuracy of the capacitive angular
encoder.

VII. CONCLUSION
The focus of this research was to develop a method to
compensate the periodic nonlinear which effected by instal-
lation, processing, and demodulation circuit errors. The pro-
posed nonlinear error compensation method is based on an
improved particle swarm optimization (IPSO) method and
support vector machine (SVM). The IPSO algorithm was
adopted to determine optimal parameters of the SVM algo-
rithm to further improve the precision of the compensa-
tion results. The proposed method was validated, the results
showed that the compensation provided by the IPSO-SVM
method was able to reduce the nonlinear error from 0.08◦ to
0.0005◦ which is better than LSM and ANN. This method
can be widely used in the error compensation and effectively
improve the measurement accuracy of the encoder. In the
future, more efficient and simple compensation algorithms
should be studied.
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