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ABSTRACT Cannibalism is ubiquitous in natural communities and has the tendency to change the functional
connection among prey-predator interactions. Keeping in view the inclusion of prey cannibalism, a novel
discrete nonlinear predator-prey model is proposed. Asymptotic stability is carried out around biologically
feasible equilibria of proposed model. Center manifold theorem and bifurcation theory of normal form
ensure the existence of bifurcation in the system. Our study reveals that periodic outbreaks may result
due to incorporation of cannibalism in prey population and this periodic outbreak is limited to prey
population only without leaving an effect on predation. In order to control these periodic oscillations in
prey population density and other bifurcating and fluctuating behavior of the system, various chaos control
strategies are implemented. Ultimately, some extensive numerical simulations are elaborated to demonstrate
the effectiveness of our acquired analytical and theoretical results.

INDEX TERMS Discrete dynamical system, stability, bifurcation, chaos control, cannibalism.

I. INTRODUCTION
Cannibalism is precisely defined as the process of both eating
and killing individuals of the same species. Specially, in
socio-anthropological and ecological point of view, it is an
abominable and stimulating phenomenon occurring world-
wide. This behavioral attribute of cannibalism is merged in
an extensive range of animals composed of flour beetles,
locusts, insects, spider and fish, [1]–[5]. Usually, the canni-
bals as well as the sufferers belong to the various stages of
maturation such as, teenage and adult, adolescent and devel-
oped. Such type of explanation throws back a predator-prey
communication in the identical classes and the equivalent
scientific representations are dissimilar [6], [7]. The great
work of Polis regarding cannibalism has quoted about 1300
species, amongst which it occurs [7]. In the dynamics of
predator-prey models, a cannibalism factor is frequently a
process of survival, and is in fact a common place [8]. Further
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related studies can be found in [9], [10]. In the literature
of ecology and mathematical biology, massive investigation
has been carried out on cannibalism and it can influence in
population dynamics due to several counterintuitive effects.
Cannibalism seems to appear in numerous species have a
very large population size as compared with resources [11].
Consequently, it is sometimes competition arbitrated. It can
be observed in the literature that initially cannibalism is only
modeled in the predator species [12], [13] regardless of eco-
logical endorsement in both experimental and field work that
it frequently becomes visible in the prey species [14]–[16].
These experimental findings greatly inspire to develop new
ideas in current research. In [16] author investigated the
impact of prey cannibalism and is noticed that prey canni-
balism establish a density-conciliated indirect consequence
that results in various predator-prey phenomenon. Several
kinds of predator-prey models involving cannibalism are the
focus point of mathematical literature. Such models com-
prise of two and three species involving stage structure, two
species PDE models, discrete models and ratio dependent
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functional response. Furthermore, current models related to
cannibalism that involve diseased predators [17]–[21] are
also mentionable. In [22] authors proposed a Lotka-Volterra
model with predator cannibalism and considered the con-
trol of the system. Moreover, authors investigated that this
phenomena has constructive and destructive consequences
on the control which depends on the dynamic performance
of the original structure. Zhang et al. [23] reinvestigated a
predator-prey of stage-structured involving anthropophagy in
the predator inhabitants. This is separated into two stages,
a childish and an advanced stage. They proposed a new
non-dimensionalization approach. Moreover, global stability
of equilibria, supercritical and subcritical Hopf bifurcation
involving biological parameters are also established. Keeping
in view non-overlapping generation of predator-prey interac-
tion, Danca et al. [9] studied the subsequent scheme:{

xn+1 := rxn (1− xn)− bxnyn
yn+1 := dxnyn,

(1)

where xn and yn represents the number of prey and predator
inhabitants in the nth age group respectively. The growth of
prey is logistic having a basic growth rate ‘‘r’’ and carrying
capacity ‘‘1’’ with no predation. Positive parameters r, b, d
represent prey intrinsic growth rate, per capita searching
efficiency of the predator and adaptation frequency. Taking
into account the natural death rate for predator, system (1)
can be modified as follows:{

xn+1 := rxn (1− xn)− bxnyn
yn+1 := dxnyn − cyn,

(2)

where c is the death rate of predator.
Currently, there are numerous continued works to explore

the complexity and chaos control, stability and bifurca-
tion theory for some modified system of (2), for exam-
ple, [24], [25]. The feedback control strategies to control
the bifurcation and chaos for the Leslie-Gower prey-predator
model are studied in [26]. Discrete-time dynamic model of
population ecology by choosing a discrete-time version of the
classical Lotka-Volterra prey-predator model is considered
in [27]. In [28], the author analyzed a discrete predator-
prey model with nonmonotonic functional response exhibit
and proved the existence of fold bifurcation, transcritical
bifurcation, flip bifurcation and Neimark-Sacker bifurcations
(NSB). Similarly, some discrete-time predator-prey models
and hydra effect and paradox of enrichment are studied
in [29]. Furthermore, for several attracting findings asso-
ciated to the qualitative analysis of difference equations,
we refer to the work done by [30], [31]. Also authors
in [32] proposed and investigate the dynamics of cannibalism
in discrete-time predator-prey system and considering two-
stage population model where cannibalism factor involving
only in prey population. Additionally, a sufficient condition
relies on the boundary equilibrium is explored for which the
existence of both populations can ensure.

In this manuscript, we proposed the following predator-
prey model with cannibalism in prey and investigate the

dynamical behaviors of this system:xn+1 := rxn (1− xn)+ axn − bxnyn −
αx2n
xn + β

yn+1 := dxnyn − cyn.
(3)

It must be noted that the prey species x(t) is depredating on its
own species. Moreover, in prey equation, the generic canni-
balism factorC (x) = α×x× x

x+β , is added. Clearly, the can-
nibalistic prey has the functional response of Holling type II
where α represents cannibalism rate. Moreover, adding a
term ax in the prey equation because of reproduction in prey
population. We also restrict a < α, as it takes attack of a total
of prey.

The motivational aspects and novelty of this paper are
further described as follows:
• Considering the non-overlapping generations for
predator-prey interaction, a novel discrete predator-prey
system (3) involving cannibalism in prey population is
proposed and studied. Moreover, model (3) is a natural
extension of systems (1) and (2) under the influence of
cannibalism in prey species.

• Existence of steady-states, local stability analysis, tran-
scritical bifurcation, period-doubling bifurcation and
Neimark-Sacker bifurcation are studied for proposed
model (3).

• Some chaos control methods are introduced for control-
ling fluctuating and chaotic behavior of system (3).

The remaining investigation of this manuscript can be
summarized as follows. Section 2 is related to presence of
biologically practicable equilibrium as well as stability con-
ditions for these equilibria are also discussed. In Section 3,
bifurcation analysis for system (3) is investigated. We show
that trivial equilibrium of system (3) undergoes transcritical
bifurcation whenever growth parameter r of prey population
is taken as bifurcation parameter. Furthermore, it is shown
that system (3) go through the period-doubling bifurcation
on its boundary equilibrium point whenever cannibalism rate
α is taken as bifurcation parameter, and it experiences both
period-doubling and Neimark-Sacker bifurcations (NSB)
around its interior equilibrium point. Some chaos control
methods (that is, Ott-Grebogi-Yorke (OGY), hybrid control
method and an exponential type chaos control method) are
introduced in Section 4. Lastly, numerical imitations are pro-
vided in Section 5 to demonstrate our theoretical discussion.

II. STABILITY ANALYSIS
To obtain the equilibria of system (3), we can solve the
following algebraic equations:{

x = rx (1− x)+ ax − bxy− αx2
x+β

y = dxy− cy

It can be easily observed that system (3) has three bio-
logically feasible equilibria; trival equilibrium point ET =
(0, 0), boundary equilibrium EB=(k, 0) and unique positive
equilibrium EU := (x?, y?) . Moreover, k :, as shown
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at the bottom of this page. Furthermore, the Jacobian matrix
J (x, y) for system (3) calculated at any point (x, y) is given
by:

J (x, y) :=

(
a+ r − 2rx − by− xα(x+2β)

(x+β)2
−bx

dy dx − c

)
.

Now, we describe a general result for local stability of fixed
points of system (3). If Q? be any arbitrary fixed point of
system (3) and suppose that:

J
(
Q?
)
:=

(
a11 a12
a21 a22

)
be the variational matrix evaluated at Q?. Then the quadratic
characteristic polynomial is expressed by:

F (λ) := λ2 − T λ+D,

where T = a11 + a22 and D = a11a22 − a12a21.
For the sake of investigating stability, the following lemma

demonstrates the best interpretation regarding local stability
analysis of feasible equilibria, see also [33].
Lemma 1: Let F(ξ ) = ξ2 − T ξ + D, and F(1) > 0.

Moreover, ξ1, ξ2 are root of the equation ξ2 − T ξ + D = 0
then, the following assumptions hold:
(i) |ξ1| < 1; |ξ2| < 1⇐⇒ F (−1) > 0;D < 1
(ii) |ξ1| > 1; |ξ2| > 1⇐⇒ F (−1) > 0;D > 1
(iii) |ξ1| < 1; |ξ2| > 1 or (|ξ1| > 1; |ξ2| < 1) ⇐⇒

F (−1) < 0;
(iv) ξ1 = −1; |ξ2| 6= 1⇐⇒ F (−1) = 0; T 6= 0, 2;
(v) ξ1, ξ2 are complex conjugates with |ξ1| = 1 =
|ξ2| ⇐⇒ T 2

− 4D < 0&D = 1.
Since, the eigenvalues of (3) are ξ1, ξ2, then to discuss the the
stability ofQ?, the following topological type results has been
developed .
(i) Fixed pointQ? is known as sink if |ξ1| < 1 and |ξ2| < 1,

as it is locally asymptotic stable.
(ii) Fixed point Q? is known as source if |ξ1| > 1 and
|ξ2| > 1, as source is repeller hence it remains unstable.
(iii) Fixed point Q? is a saddle point if |ξ1| < 1 and
|ξ2| > 1or|ξ1| > 1&|ξ2| < 1.
(iv) Fixed point Q? is said to be non-hyperbolic if condi-

tions (iv) and (v) of the Lemma 1 are satisfied.
Now, using Lemma 1, we discuss the topological classifi-

cation of system (3) at trivial, boundary and interior equilib-
rium points.
At trivial equilibrium ET = (0, 0) , the variational matrix

J (x, y) of system (3) is expressed as:

J (ET ) :=
(
a+ r 0
0 −c

)
.

Clearly, the following topological results hold:
• ET is a sink⇐⇒ 0 < a+ r < 1 & 0 < c < 1.
• ET is a source⇐⇒ a+ r > 1 & c > 1.
• ET is saddle point ⇐⇒ a + r > 1 & c < 1 or
(a+ r < 1&c > 1) .

• ET is non-hyperbolic at a+ r = 1 or c = 1.
Moreover, in ac-plane topological classification of ET is
depicted in Figure 1(a).
Furthermore, J (x, y) at EB is given by:

J (EB) :=
(
a+ r + αk8(k8− 2)− 2kr −bk

0 dk − c

)
,

where 8 = 1
k+β .

The following result gives the topological classification of
(3) at boundary equilibrium EB:
Theorem 1:Assume that a > 1, r > 0, β > 0, α > 0, then

the following results hold:
1) EB is a sink if and only if 2k (r + α8) < 1+ a+ r +

αk282 < 2 (1+ k (r + α8)) and c− 1 < dk < 1+ c.
2) EB is a source if and only if a + r + αk282 > 1 +

2k (r + α8) and dk > 1+ c.
3) EB is known as saddle point ⇐⇒ dk > 1 +

c and 2k (r + α8) < 1 + a + r + αk282 <

2 (1+ k (r + α8)) .
4) EB is non-hyperbolic⇐⇒ a+r+αk282

= 1+2k(r+
α8) or dk = 1+ c.

On the other hand, topological classification of boundary
equilibrium EB in ac-plane with r = 1.32, d = 0.23,
α = 0.79 and β = 1.2 is depicted in Figure 1(b).
Furthermore, let J(EU ) be variational matrix of the sys-

tem (3) about unique positive equilibrium EU , then J(EU )
is shown at the bottom of the next page. The characteristic
polynomial is given by:
F (λ)

:= λ2−

(
2−

(1+ c) r
d

+
(1+ c)2 α

(1+ c+ dβ)2
−

(1+ c) α
1+ c+ dβ

)
λ

+
(1+ c) (d − c− 2) r

d
+

(1+ c)2 α

(1+ c+ dβ)2

−
(1+ c) (2+ c) α

1+ c+ dβ
+ a (1+ c)− c. (4)

Furthermore, by performing simple algebraic calculations
and letting (1+c)α

1+c+dβ +
d+r(1+c)

d < a+ r, we get:

F (−1) :=
2 (1+ c)2 α

(1+ c+ dβ)2
−
(1+ c) (3+ c) α

1+c+dβ

+
(1+ c) (d − c− 3) r

d
+ 3+a−c+ac.

F (1) := (1+c)
(
a−1+

(−1−c+d) r
d

−
(1+ c) α
1+ c+ dβ

)
(5)


k :=

a+ r − α − rβ − 1+
√
4r (−1+ a+ r) β + (1− a− r + α + rβ)2

2r
; where a > 1, r > 0, β > 0, α > 0.

x? :=
1+ c
d

and y? :=
1
b

(
d (a− 1)+ (d − c− 1) r

d
−

(1+ c) α
1+ c+ dβ

)
; where

(1+ c) α
1+ c+ dβ

+
d + r(1+ c)

d
< a+ r .
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From (5), we see that F(1) > 0. Therefore, the following
results can be deduced by applying Lemma 1.
Theorem 2:Assume that (1+c)α

1+c+dβ +
d+r(1+c)

d < a+ r, such
that the unique positive equilibrium EU := (x?, y?) of (3)
exist, then the following results remain true:
(i)EU is locally asymptotically stable if and only if(
a+ r +

2 (1+ c) α

(1+ c+ dβ)2

)
(1+ c)+ 3

>

(
r
d
+

α

1+ c+ dβ

)
(1+ c) (3+ c)+ c,

and

a+r+
(1+ c)α

(1+ c+ dβ)2
<1+(2+ c)

(
r
d
+

α

1+ c+ dβ

)
.

(ii)EU is unstable equilibrium point if and only if(
2 (1+ c) α

(1+ c+ dβ)2
+ a+ r

)
(1+ c)+ 3

>

(
r
d
+

α

1+ c+ dβ

)
(1+ c) (3+ c)+ c,

and

1+ (2+ c)
(
r
d
+

α

1+ c+ dβ

)
< a+ r +

(1+ c)α

(1+ c+ dβ)2
.

(iii)EU is saddle point if and only if(
2 (1+ c) α

(1+ c+ dβ)2
+ a+ r

)
(1+ c)+ 3

<

(
r
d
+

α

1+ c+ dβ

)
(1+ c) (3+ c)+ c.

At the end of this section, topological classification for
positive equilibrium in rc-plane with a = 2.88, d = 1.45,
α = 2.4 and β = 2.5 is shown in Figure 1(c).

III. BIFURCATION ANALYSIS
In this section, we investigate transcritical bifurcation of
system (3) at trivial equilibrium point ET , period-doubling
bifurcation at boundary equilibrium EB and both period-
doubling and NSB at interior equilibrium EU .

A. TRANSCRITICAL BIFURCATION AT TRIVIAL
EQUILIBRIUM ET
Initially, we investigate that trivial equilibrium (0, 0) under-
goes transcritial bifurcation [31]. For this, we assume that:

r ≡ r0 := 1− a.

Consider the set

ψT VT :=
{
(r0, a, b, c, d, α, β) ∈ R7

+ : r0 := 1− a
}
.

Assume that (r0, a, b, c, d, α, β) ∈ ψT V, then map (1.3) is
equivalently expressed by the map:

(
x
y

)
→

(r0 + ř) x (1− x)+ ax − bxy− αx2

x + β
dxy− cy


where ř be a small bifurcation parameter in r0.

The elaboration of Taylor series expansion about(
x, y, ř

)
= (0, 0, 0) yields:(

x
y

)
→

(
a+ ř 0
0 −c

)(
x
y

)
+

(
f0(x, y, ř)
g0(x, y)

)
, (6)

where

f0
(
x, y, ř

)
:= −

(
ř +

α

β

)
x2 − bxy+

α

β2
x3 + xř

+O
((
|x| + |y| +

∣∣ř∣∣)4) ,
g0
(
x, y, ř

)
:= dxy.

Since, at r0 := 1−a, the map (6) having linear part is already
in canonical form andmap is also at origion (0, 0), then center
manifold W c(0, 0, 0) for (6) can be resembled to:

W c (0, 0, 0)

:=

{
u, v, ř ∈ R3

:

v = h1u2 + h2uř + h3ř2 + O
((
|u| +

∣∣ř∣∣)3)
}
.

Then simple calculation yields that h1 = h2 = h3 = 0.
Further, we explicate the map and restrain it to

W c (0, 0, 0) as :

F : u→ u+ ř + k1u2 + k2uř + k3ř2 + O
((
|u| +

∣∣ř∣∣)4) ,
where k1 = a− 1− α

β
k2 = 1 and k3 = 0.

Now, here we establish two real numbers L1 and L2:

L1 :=

(
∂2F
∂u2

)
(0,0)
= 2

(
a− 1−

α

β

)
6= 0,

and

L2 :=

(
∂2F
∂u∂ ř

)
(0,0)
= 1 6= 0.

Thus, aforemention analytical approach, the following result
regarding transcritical bifurcation has been acquired.
Theorem 3: The system (3) undergoes transcritical bifur-

cation at ET , if r = 1− a and a− 1− α
β
6= 0.

J (EU ) :=

 1−
(1+ c) r

d
+

(1+ c)2 α

(1+ c+ dβ)2
−

(1+ c) α
1+ c+ dβ

−
b (1+ c)

d
d (a+ r − 1)− r (1+ c)

b
−

(1+ c) αd
b (1+ c+ dβ)

1

 .
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B. PERIOD-DOUBLING BIFURCATION AT EQUILIBRIUM EB
Here, we discuss bifurcation of system (3) at boundary equi-
librium (k, 0). The Jacobian of linearized system about EB is
given by:

J (EB) :=

 r + a− 2kr −
kα(k + 2β)

(k + β)2
−bk

0 dk − c


Moreover, the condition that eigen value λ1 = −1 implies
that

α :=
(1+ a+ r − 2kr) (k + β)2

k (k + 2β)
.

Assume that

ψPVB :=


(r, a, b, c, d, α, β) ∈ R7

+ :

α =
(1+ a+ r − 2kr)(k + β)2

k(k + 2β)

 .
The boundary equilibrium EB of map (3) undergoes

period-doubling bifurcation when the parameters changes
values in the small neighboring points of ψPVB. Let
α1 =

(1+c+r−2kr)(k+β)2

k(k+2β) and taking the arbitrary parameters
(α1, r, a, b, c, d, β) ∈ ψPVB, then in terms of parameters
(α1, r, a, b, c, d, β) , map (3) can be demonstrated in the
following map:(

x

y

)
→

 rx (1− x)+ ax− bxy −
α1x

2

x+ β
dxy − cy

 (7)

Assume that a new small perturbation parameter α̃, then (7)
can be examined and consequently, we have the following
map:(
x

y

)
→

 rx (1− x)+ ax− bxy −
(α1 + α̌)x

2

x+ β
dxy − cy

 (8)

where
∣∣α̌∣∣� 1, a small perturbation parameter.

Assume that x = x − k and y = y, then map (8) is
transformed to:(

x
y

)
→

(
c11 c12
c21 c22

)(
x
y

)
+

(
h1(x, y, α̌)
h2(x, y)

)
, (9)

where

h1
(
x, y, α̌

)
:= c13x2 + c14xy+ c15x3 + c16xα̃ + c17x2α̃

+O
((
|x| + |y| +

∣∣α̌∣∣)4) ,
h2
(
x, y, α̌

)
:= c23xy.

c11 := a+ r − 2kr −
kα̌ (k + 2β)

(k + β)2
; c12 := −bk;

c17 := −
β2 − 4kβ + 4k2

β3
; c21 := 0; c22 := dk − c;

c13 :=
4kα̌
β2
−

4k2α̌
β3
−
α̌

β
− r; c14 := −b; c23 := d;

c15 :=
2α̌
(
β2 − 4kβ + 4k2

)
β4

; c16 := −
2k (β − k)

β2
;

FIGURE 1. (a) Topological classification of (0,0) at r = 0.335.
(b) Topological classification of boundary equilibrium. (c) Topological
classification of unique positive equilibrium.

Now, instantly we introduce the following translation:(
x
y

)
→ I

(
u

v

)
(10)

where a nonsingular matrix I :=

(
c12 c12

−(1+ c11) λ2 − c11

)
exists. Further, the translation (10) can be formulated under
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the translation (9) as follows:(
u

v

)
→

(
−1 0
0 λ2

)(
u
v

)
+

(
h3(u,v, α̌)
h4(u,v, α̌)

)
(11)

where

h3
(
u,v, α̌

)
:=

(
(λ2 − c11)

(
α̌c17 + c13

)
c12 (λ2 + 1)

)
x2

+

(
(λ2 − c11)c14
(λ2 + 1) c12

−
c23

λ2 + 1

)
xy

+

(
(λ2 − c11)c15
(λ2 + 1)c12

)
x3

+

(
(λ2 − c11) α̌c16
(λ2 + 1)c12

)
x

+O
((
|u| + |v| +

∣∣α̌∣∣)4) ;
h4
(
u,v, α̌

)
:=

(
(1+ c11)

(
α̌c17 + c13

)
(λ2 + 1) c12

)
x2

+

(
(1+ c11) c14
(λ2 + 1) c12

+
c23

λ2 + 1

)
xy

+

(
(1+ c11)c15
(λ2 + 1)c12

)
x3 +

(
(1+ c11) α̌c16
(λ2 + 1)c12

)
x

+O
((
|u| + |v| +

∣∣α̌∣∣)4) .
Also, x := c12 (u+v) ; y :=(λ2 − c11)v−(1+ c11)u.

Moreover, consider center manifold fc(0, 0, 0) for map (11)
evaluated at origion (0, 0) and α̌ = 0, then fc(0, 0, 0) takes
the form:

fc (0, 0, 0)

:=

{
u,v, α̌ ∈ R3

:

v = h1u
2
+ h2uα̌ + h3α̌

2
+ O

((
|u| +

∣∣α̌∣∣)3)
}
.

where

h1 :=
(1+ c11) (c11c14 − c12c13 + c12c23 + c14)

λ22 − 1
,

h2 := −
(1+ c11) c16
λ22 − 1

, h3 := 0.

Consequently, the restricted map to fc (0, 0, 0) is prescribed
by:

F : u→−u+s1u2
+ s2uα̌ + s3u

2α̌+s4uα̌
2
+s5u

3

+O
((
|u| +

∣∣α̌∣∣)4) ,
Here,

s1 :=

(
c23c12
1+ λ2

−
(λ2 − c11) c14

1+ λ2

)
(1+ c11)

+ c12

(
λ2 − c11
1+ λ2

)
c13

s2 =
λ2 − c11
λ2 + 1

c16,

s3 :=

(
(λ2 − c11)c14

1+ λ2
−
c12c23
1+ λ2

)
(λ2 − c11)h2

+

(
c23c12
1+ λ2

−
(λ2 − c11)c14

1+ λ2

)
(1+ c11)h2

+

(
λ2 − c11
λ2 + 1

)
c16h1;

λ2 − c11
1+ λ2

2c12c13h2

+

(
λ2 − c11
1+ λ2

)
c12c17,

s4 :=

(
(λ2 − c11)c14
(λ2 + 1)

−
c12c23
λ2 + 1

)
(λ2 − c11)h3

+

(
c12c23
λ2 + 1

−
(λ2 − c11)c14

(λ2 + 1)

)
(1+ c11)h3

+
λ2 − c11
λ2 + 1

2c12c13h3

+
λ2 − c11
λ2 + 1

c16h2,

s5 :=

(
(λ2 − c11)c14

1+ λ2
−
c12c23
1+ λ2

)
(λ2 − c11)h1

+
λ2 − c11
λ2 + 1

c212c15 +
λ2 − c11
λ2 + 1

2c12c13h1

+

(
c12c23
λ2 + 1

−
(λ2 − c11)c14

(λ2 + 1)

)
(1+ c11)h1.

Now, here we establish nonzero real numbers L1&L2:

L1 :=
(
∂2f
∂u∂α̌

+
1
2
∂F
∂α̌

∂2F
∂u2

)
(0,0)
=
(λ2 − c11) c16

λ2 + 1
6= 0.

L2 :=

(
1
6
∂3F
∂u3 +

(
1
2
∂2F
∂u2

)2)
(0,0)

= s5 + s
2
1 6= 0.

Consequently, we deduce the following result:
Theorem 4:For non-zero L1,L2, the system (3) go through

period-doubling bifurcation by boundary equilibrium EB
whereas parameter α differs in small neighborhood of the
point α1. Likewise, for positive values of L2, the period-two
orbits that bifurcate from EB are stable, and for negative
values of L2, these orbits are non-stable.

C. PERIOD-DOUBLING BIFURCATION AT EQUILIBRIUM EU
Now, we study period-doubling and Neimark-Sacker bifu-
cation of system (3) at interior equilibrium EU . At first,
we study the period-doubling bifurcation at EU . Then, equa-
tion (4) with interior equilibrium EU := (x?, y?) =(
1+c
d , 1b

(
d(a−1)+(d−c−1)r

d −
(1+c)α
1+c+dβ

))
is given by

F (λ) := λ2 − p
(
x?, y?

)
λ+ q

(
x?, y?

)
, (12)

where

p
(
x?, y?

)
:= 2−

(1+ c) r
d

+
(1+ c)2 α

(1+ c+ dβ)2
−

(1+ c) α
1+ c+ dβ

,

q
(
x?, y?

)
:= (1+ c)

(
a+

(d − c− 2) r
d

+
(1+ c) α

(1+ c+ dβ)2

−
(2+ c) α
1+ c+ dβ

)
.
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Assume that

p2(x?, y?) > 4q
(
x?, y?

)
, (13)

and F (−1) = 0, implies that

r :=
d
(
c− 3− a (1+ c)− 2(1+c)2α

(1+c+dβ)2
+

(1+c)(3+c)α
1+c+dβ

)
(1+ c) (d − c− 3)

.

(14)

The roots of aforementioned equation (12), along with
F (λ) = 0 gives λ1 = −1; and

λ2 :=
1

(3+ c− d)(1+ c+ dβ)2
(6− a+ 16c−3ac+14c2

− 3ac2+4c3−ac3−3d−6cd−3c2d+α+3cα+3c2α

+ c3α + 12dβ − 2adβ + 20cdβ − 4acdβ + 8c2dβ

− 2ac2dβ − 6d2β − 6cd2β + d2αβ

+ cd2αβ + 6d2β2 − ad2β2 + 4cd2β2

− acd2β2 − 3d3β2).

Moreover, the condition |λ2| 6= 1 implies that

(1+ c)
(
a+

(d − c− 2) r
d

+
(1+ c) α

(1+ c+ dβ)2

−
(2+ c) α
1+ c+ dβ

)
− c 6= ±1. (15)

Assume that

ψPB :=
{
(r, a, b, c, d, α, β) ∈ R7

+ : (13)− (15) holds
}
.

The interior equilibrium point EU of map (3) undergoes
period-doubling bifurcation whenever the parameters varies
in the small neighborhood of map ψPB. Let r1 :=

d
(
c−3−a(1+c)− 2(1+c)2α

(1+c+dβ)2
+

(1+c)(3+c)α
1+c+dβ

)
(1+c)(d−c−3) and taking the arbitrary

parameters (r1, a, b, c, d, α, β) ∈ ψPB, then in terms of
parameters (r1, a, b, c, d, α, β) map (3) can be discribed by:(

P
Q

)
→

r1P (1− P)+ aP − bPQ−
αP2

Q+ β
dPQ− cQ

, (16)

Assuming a minimal bifurcation parameter r̃ along with a
perturbation. Then (16) can be demonstrated by:(
P
Q

)
→

(r1 + r̃)P (1− P)+ aP − bPQ−
αP2

Q+ β
dPQ− cQ

,
(17)

where |r̃| � 1 is a small perturbation parameter.
Considering x = P−x? and y = Q−y?, then system (17)

can be transformed into:(
x
y

)
→

(
a11 a12
a21 a22

)
.

(
x
y

)
+

(
f1(x, y, r̃)
g1(x, y, r̃)

)
, (18)

f1 (x, y, r̃) := a13x2 + a14xy+ a15x3 + a16xr̃ + a17x2r̃

+O
(
(|x| + |y| + |r̃|)4

)
,

g1 (x, y, r̃) := a23xy+ a24xr̃ + O
(
(|x| + |y| + |r̃|)4

)
,

a11 := 1−
(1+ c) r

d
+

(1+ c)2 α

(1+ c+ dβ)2
−
(1+c) α
1+c+dβ

,

a21 :=
d (a+ r − 1)−r (1+ c)

b
−

(1+ c) αd
b (1+ c+ dβ)

,

a15 :=
αβ2d4

(1+ c+ βd)4
, a12 := −

b (1+ c)
d

,

a16 := −
1+ c
d

,

a24 :=
d − c− 1

b
, a17 := −1, a14 := −b,

a23 := d; a22 := 1,

a13 := −
3β2d2r̃ + 3c2βdr̃+6βcdr̃ + c3r̃+3βdr̃

(1+ c+βd)3

−
3c2r̃ + 3cr̃ + r̃

(1+ c+ βd)3

−
β3d3r̃ + αβ2d3 + 3β2d2cr̃

(1+ c+ βd)3
,

Moreover, we introduced the following translation:(
x
y

)
→ T

(
u
v

)
, (19)

here T :=

(
a12 a12

−1− a11 λ2 − a11

)
is an invertible matrix,

the map (19) under the translation (18), is formulated as(
u
v

)
→

(
−1 0
0 λ2

)
.

(
u
v

)
+

(
f2(u, v, r̃)
g2(u, v, r̃)

)
. (20)

where

f2 (u, v, r̃) :=
(
(λ2 − a11) a14
a12 (λ2 + 1)

−
a23
λ2 + 1

)
xy+

(
(λ2 − a11) a15
(λ2 + 1) a12

)
x3

+

(
(λ2 − a11) (r̃a17 + a13)

a12 (λ2 + 1)

)
x2

+

(
(λ2 − a11) r̃a16
a12 (λ2 + 1)

−
r̃a24
λ2 + 1

)
x + O

(
(|u| + |v| + |r̃|)4

)
,

g2 (u, v, r̃) :=
(
(1+ a11) a14
(λ2 + 1) a12

+
a23
λ2 + 1

)
xy

+

(
(1+ a11) a15
a12 (λ2 + 1)

)
x3

+

(
(1+ a11) (r̃a17 + a13)

a12 (λ2 + 1)

)
x2

+

(
(1+ a11) r̃a16
(λ2 + 1) a12

+
r̃a24
λ2 + 1

)
x + O

(
(|u| + |v| + |r̃|)4

)
,

and x := a12 (u+ v) ; y := (λ2 − a11) v− (1+ a11) u.
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Now, considering the center manifold Wc(0, 0, 0) of (20)
in a small neighborhood of r̃ = 0, then Wc(0, 0, 0) can be
embellished by:

Wc (0, 0, 0) :=
{
u, v, r̃ ∈ R3

: v = h1u2 + h2ur̃ + h3r̃2

+O
(
(|u| + |r̃|)3

)}
.

Here,
h1 :=

(1+ a11) (a11a14 − a12a13 + a12a23 + a14)

λ22 − 1
,

h2 := −
a11a16 + a12a24 + a16

1− λ22
,

h3 := 0.

Hence, the map restricted toW c (0, 0, 0) is demonstrated by:

F : u→−u+ s1u2 + s2ur̃ + s3u2r̃ + s4ur̃2 + s5u3

+O
(
(|u| + |r̃|)4

)
,

where

s1 :=
(
a12a23
λ2 + 1

−
(λ2 − a11) a14

λ2 + 1

)
(1+ a11)

+
λ2 − a11
λ2 + 1

a12a13,

s2 :=
λ2a16 − a11a16 − a12a24

λ2 + 1
,

s3 :=
(
(λ2 − a11)a14
λ2 + 1

−
a12a23
λ2 + 1

)
(λ2 − a11)h2

+
λ2 − a11
λ2 + 1

2a12a13h2 +
(
a12a23
λ2 + 1

−
(λ2 − a11)a14

(λ2 + 1)

)
× (1+ a11) h2 +

(
(λ2 − a11)a16
λ2 + 1

−
a12a24
λ2 + 1

)
h1,

s4 :=
(
(λ2 − a11)a14
λ2 + 1

−
a12a23
λ2 + 1

)
(λ2 − a11)h3

+
λ2 − a11
λ2 + 1

2a12a13h3 +
(
a12a23
λ2 + 1

−
(λ2 − a11)a14
λ2 + 1

)
× (1+ a11) h3+

(
(λ2 − a11)a16
λ2 + 1

−
a12a24
λ2 + 1

)
h2,

s5 :=
(
a12a23
λ2 + 1

−
(λ2 − a11)a14
λ2 + 1

)
(1+ a11) h1

+
λ2 − a11
λ2 + 1

2a212a15 +
(λ2 − a11)2a12a13h1

λ2 + 1

+

(
(λ2 − a11)a14
λ2 + 1

−
a12a23
λ2 + 1

)
(λ2 − a11)h1.

Consequently, we establish nonzero real numbers:

l1 :=
(
∂2f
∂u∂ r̃

+
1
2
∂F
∂ r̃
∂2F
∂u2

)
(0,0)

:=
λ2a16 − a12a24 − a11a16

λ2 + 1
6= 0.

l2 :=

(
1
6
∂3F
∂u3
+

(
1
2
∂2F
∂u2

)2)
(0,0)

:= s21 + s5 6= 0.

As a consequence of aforementioned analysis, the follow-
ing result associated to period-doubling bifurcation has been
obtained.
Theorem 5: For non zero values of l1 and l2, the system (3)

go through the period-doubling bifurcation at EU whereas the
parameter r differs in a small neighborhood of the point r1.
Furthermore, for positive values of l2, the period-two orbits
that bifurcate from EU are stable, and for negative values of
l2, these orbits are non-stable.

D. NEIMARK-SACKER BIFURCATION AT EQUILIBRIUM EU
In the present section, we investigate that by assuming the
bifurcation parameter r, the system (3) undergoes NSB at
EU . Taking into account the similar investigation analogous
to the bifurcation theory of dynamical systems, we refer
to [33]–[36]. On the other hand, due to the aforemen-
tioned study in the literature, it is obviously clear that the
NSB is a fascinating transition for iterated maps which
produced dynamically invariant closed curves whenever the
varied parameter passes through the bifurcation parameter,
the attracting equilibrium loses its stability. In retort, we can
arrive at a few insulated orbits having periodic nature along
with trajectories that densely cover these invariant closed
curves [37]. We have explored the conditions for system
(3) for the case of non-hyperbolic equilibria, and a pair of
eigenvalues with complex conjugate. From (12), assume that
F (λ) = 0 has two roots with complex conjugate nature
whenever the following conditions hold:

r :=
d
(
1− a+

α
(
(1+c)2+(2+c)dβ

)
(1+c+dβ)2

)
d − c− 2

,

and∣∣∣∣∣2− (1+ c) rd
+

(1+ c)2 α

(1+ c+ dβ)2
−

(1+ c) α
1+ c+ dβ

∣∣∣∣∣ < 2. (21)

Assume that

ψNB :=


(r, a, b, c, d, α, β) : (21) holds with

r :=

d

(
1− a+

α((1+ c)2 + (2+ c)dβ)

(1+ c+ dβ)2

)
d − c− 2


Then interior equilibriumEU of (3) undergoes NSBwhenever
a variation of parameters in a small neighborhood of the

map ψNB developed. Let r2 :=
d
(
1−a+ α((1+c)

2
+(2+c)dβ)

(1+c+dβ)2

)
d−c−2 and

choosing the arbitrary parameters (r2, a, b, c, d, α, β) from
ψNB, then we have the following modified map:

(
P
Q

)
→

 r2P (1− P)+ aP − bPQ−
αP2

Q+ β
dPQ− cQ

, (22)
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Taking a small perturbation r̄ as a bifurcation parameter of
map (22), then:(
P
Q

)
→

(r2 + r̃)P (1− P)+ aP − bPQ−
αP2

Q+ β
dPQ− cQ

,
(23)

where |r̄| � 1.
Now, here we elaborate the following transformations

x = P − x? and y = Q − y?, where (x?, y?) be the interior
equilibrium of system (3), then modified form of map (22) is
prescribed by:(

x
y

)
→

(
a11 a12
a21 a22

)(
x
y

)
+

(
f3(x, y)
g3(x, y)

)
, (24)

where

f3 (x, y) := a13x2 + a14xy+ a15x3

+O
(
(|x| + |y| + |r̃|)4

)
,

g3 (x, y) := a23xy+ O
(
(|x| + |y| + |r̃|)4

)
,

all other parameters a11, a12, a21, a22, a13, a14, a15 and a23
are given in (18) by replacing r1 by r2+r̄ .Moreover, the char-
acteristic equation for linearized system (24) evaluated at the
trivial equilibrium can be formulated by:

λ2 − p (r̄) λ+ q (r̄) = 0, (25)

where

p (r̄) :=
(1+ c)2 α

(1+ c+ dβ)2
−
(1+ c) (r2 + r̄)

d

−
(1+ c) α
1+ c+ dβ

+ 2,

q (r̄) :=
(
(d − c− 2) (r2 + r̄)

d
+

(1+ c) α

(1+ c+ dβ)2

−
(2+ c) α
1+ c+ dβ

+ a
)
(1+ c)− c.

Since (r2, a, b, c, d, α, β) ∈ ψNB, then solution of (25) are
conjugate complex numbers λ1&λ2. Consequently:

λ1, λ2 :=
p (r̄)
2
±

i
2

√
4q (r̄)− p2 (r̄).

Thus, we have |λ1| = |λ2| =
√
q (r̄), and

(
d |λ1|
dr̄

)
(r̄=0)

, as

shown at the bottom of this page. Furthermore, we assume
that p (0) :=

(
2− (1+c)r2

d +
(1+c)2α
(1+c+dβ)2

−
(1+c)α
1+c+dβ

)
6= 0, 1.

Moreover, (r2, a, b, c, d, α, β) ∈ �NB implies − 2 <

p (0) < 2. Therefore, p (0) 6= ±2, 0,−1 implies that
λm1 , λ

m
2 6= 1, for all m = 1, 2, 3, 4 at r̄ = 0. Consequently,

roots of (25) do not occurs in the intersection of the unit
circle with the coordinate axes when r̄ = 0 and the following
conditions hold:(
2−

(1+ c) r2
d

+
(1+ c)2 α

(1+ c+ dβ)2
−

(1+ c) α
1+ c+ dβ

)
6= 0,−1

or

3+
(1+ c)2 α

(1+ c+ dβ)2
6=

(1+ c) α
1+ c+ dβ

+
(1+ c) r2

d

2+
(1+ c)2 α

(1+ c+ dβ)2
6=

(1+ c) α
1+ c+ dβ

+
(1+ c) r2

d

 (26)

In order to acquire normal form of (24) at r̄ = 0, we
choose γ := p(0)

2 , δ :=
1
2

√
4q (0)− p2 (0), and establish the

following elaborations:(
x
y

)
:=

(
a12 0

−a11 + γ −δ

)(
u
v

)
. (27)

Therefore, the normal form of (24) under transformation (27),
can be written as:(

u
v

)
→

(
γ −δ

δ γ

)(
u
v

)
+

(
f̃(u, v)
g̃(u, v)

)
. (28)

where

f̃ (u, v) :=
a15
a12

x3 +
a13
a12

x2 +
a14
a12

xy+ O
(
(|u| + |v|)4

)
,

g̃ (u, v) :=
[
(γ − a11) a14−a23a12

] xy
δa12
+
(γ−a11) a13

δa12
x2

+
(γ − a11) a15

δa12
x3 + O

(
(|u| + |v|)4

)
.

Also, x = a12u and y =
(
γ − a11

)
u − δv. Now, we define

L 6= 0 belongs to the set of real numbers as follows:

L :=
([
−Re

(
(1− 2λ1)λ22

1− λ1
η20η11

)

−
1
2
|η11|

2
+ |η02|

2
+ Re (λ2η21)

])
r̄=0

,

where

η21 :=
1
16

[
f̃uuu + f̃uvv + g̃uuv + g̃vvv

+i
(
g̃uuu + g̃uvv − f̃uuv − f̃vvv

)]
,

η20 :=
1
8

[
f̃uu − f̃vv + 2g̃uv + i

(
g̃uu − g̃vv − 2f̃uv

)]
,

(
d |λ1|
dr̄

)
(r̄=0)

:=

(
d |λ2|
dr̄

)
(r̄=0)

=
(1+ c)(d − c− 2)

2d

√
(1+ c)

(
a+ (d−c−2)r2

d +
(1+c)α

(1+c+dβ)2
−

(2+c)α
1+c+dβ

)
− c

.
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η02 :=
1
8

[
f̃uu − f̃vv − 2g̃uv + i

(
g̃uu − g̃vv + 2f̃uv

)]
,

η11 :=
1
4

[
f̃uu + f̃vv + i

(
g̃uu + g̃vv

)]
.

Thus, in light of aforementioned analytical approach, we can
state the following result [38]–[40].
Theorem 6: Assume that (26) holds and L 6= 0,

then system (3) undergoes NSB at EU when the param-
eter r varies in a small neighborhood of r2 :=

d
d−c−2

(
1− a+

α
(
(1+c)2+(2+c)dβ

)
(1+c+dβ)2

)
. Furthermore, if L<0,

then an attracting invariant closed curve bifurcates from the
equilibrium point for r2 < r, and if L > 0, then a repelling
invariant closed curve bifurcates from the equilibrium point
for r2 > r .

IV. CHAOS CONTROL
The study of chaos control and bifurcation theory is con-
sidered as an important and vital area of the present
research. It has substantial applications especially in engi-
neering and biological sciences. Particularly, its characteris-
tics have developed in population models, the models related
to ecology and biological breeding of species. As compared to
continuous-time population model, the behaviour of discrete-
time models are most chaotic and complex. Therefore, it is
essential to implement the suitable techniques for chaos
control to avoid the unpredictable situations. In the present
section, we implement three different feedback control strate-
gies, that is, OGY method [41], Hybrid control method and
an exponential type control method [37], in order to con-
trol the chaos which produced under the influence of vari-
ous types of bifurcations and move the unstable trajectory
towards stable one. Now,we execute a hybrid control method-
ology [42], and this technique was initially formulated to
control the chaos under the appearance of period-doubling
bifurcation, but in 2015, the same techniquewas implemented
for controlling the chaos under the development of NSB [45].
In order to apply the hybrid control method, assuming that,
system (3) undergoes bifurcation at interior equilibrium point
EU := (x?, y?) , then the modified controlled system can be
expressed as:

xn+1 := ξ
[
rxn (1− xn)+ axn − bxnyn −

αx2n
xn + β

]
+ (1− ξ) xn

yn+1 := ξ [dxnyn − cyn]+ (1− ξ) yn, (29)

where controlled parameter ξ ∈ (0, 1). Note that, the con-
trolled strategy in (29) consists of both perturbation param-
eter and feedback control. Furthermore, by appropriate
choice of ξ , the bifurcation for EU of system (29) can be
advanced or delayed or even entirely obliterated, for detail
see also [10], [40]–[44]. The Jacobian H (ξ ) of system (29)
estimated at EU is given by:

H(ξ ) =
(
η11 η12
η21 η22

)
(30)

The characteristic equation of (30) is given by:

λ2 − (η11 + η22) λ+D = 0,

where

D :=

(
a−

r
d
−

dαβ

(1+ dβ)2

+ c (ξ − 2)− ξ − acξ) ξ

+
αξ2

1+ dβ

(
cdβ

1+ dβ
− 1

)
+

(
c2 + r −

r
d
(1− c)

)
ξ2 + 1,

η11 := 1+
(
a− c−

r
d
−

dαβ

(1+ dβ)2

)
ξ, η12 := −

bξ
d
,

η21 :=

(
c+ r − 1−

r
d
−

α

1+ dβ

)
dξ
b
, η22 := 1− cξ.

The aforementioned calculations give condition for local
asymptotic stability of positive equilibrium EU of the control
system (29).
Lemma 2: The interior equilibrium EU of the controlled

system (29) is locally asymptotically stable, whenever the
following condition holds:

|η11 + η22| < 1+D < 2.

Furthermore, an application of OGY method gives the fol-
lowing control system [43]:
xn+1 = xn (1− xn)

[
r0 − k1 (xn − x∗)− k2 (yn − y∗)

]
+ axn − bxnxn −

αx2n
xn + β

yn+1 = dxnyn − cyn.


(31)

where k1 and k2 are control parameter for OGY method and
(x?, y?) is unique positive equilibrium for system (3). The
characteristic equation for the controlled system (31) can be
written as; λ2 − (σ11 + σ22) λ+ D = 0, where

σ11 =
(1+ c)2 − (1+ c) d (α − 2) β + d2β2

(1+ c+ dβ)2

+

(
(1+ c) k1

d
− (r0 + k1)

)
(1+ c)
d

,

σ21 =
d
(
a− 1+ (d−1−c)r0

d −
(1+c)α
1+c+dβ

)
b

, σ22 = 1,

σ12 =
(1+ c) ((1+ c) k2 − d (b+ k2))

d2
,

D = σ11σ22 − σ12σ21.

Lemma 3: The interior equilibrium (x?, y?) of the controlled
system (31) is locally asymptotically stable, whenever the
following condition holds:

|σ11 + σ22| < 1+ D < 2.

Moreover, an Exponential type control method takes the
form [37]:

xn+1 = e−s1(xn−x
?)
[
rxn (1− xn)+ axn − bxnyn −

αx2n
xn + β

]
yn+1 = e−s2(yn−y

?) [dxnyn − cyn] . (32)
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Here, s1 and s2 are control parameters for (32). The charac-
teristic equation for (32) takes the form

λ2 − (θ11 + θ22) λ+ θ11θ22 − θ12θ21 = 0,

where

θ11 :=
(1+ c)2 d (−1+ 2rβ)+ (1+ c) (1+ c+ dβ)2 s1

d (1+ c+ dβ)2

−
(1+ c)3 r − d3β2 + (1+ c) d2β (−2+ α + rβ)

d (1+ c+ dβ)2
,

θ22 :=
s2

bd (1+ c+ dβ)

×

[
(1+ c)2 r − d2 (−1+ a+ r) β
− (1+ c) d (−1+ a+ r − α − rβ)

]
+1; θ12 := −

b (1+ c)
d

;

θ21 :=

d
(
−1+ a+

(−1− c+ d) r
d

−
(1+ c) α
1+ c+ dβ

)
b

.

Lemma 4: The equilibrium (x?, y?) of the controlled
system (32) is locally asymptotically stable, if

|θ11 + θ22| < 1+ θ11θ22 − θ12θ21 < 2.

V. NUMERICAL SIMULATION
In this section, some numerical simulations are provided
to confirm our analytical and mathematical investigations.
These simulations are further indicating the interesting com-
plex behavior of system (3). Here, Figure 2(a) and (b) is
the verification of period-doubling bifurcation in prey and
predator population respectively, whereas Figure 2(e) iden-
tifies maximum Lyapunov exponents (MLE) which confirm
bifurcating behavior. Moreover, Figure 2(c,d,f,g) represents
controllable region by applying three different approaches
that is; hybrid control, OGY control method and exponential
type control method. From Figure 2(c,d,f,g), it is clear that
all control strategies successfully controls the bifurcation.
In Figure 3(a-g), all above cases have discussed for NSB.
Moreover, some phase portraits in Figure 4(a-f) specify the
complex nature of system (3).
Example 1: First we choosing parameters β = 2.2,

a = 2.2, b = 1.5, c = 0.01, d = 0.5, α =

0.1r ∈ [0.2, 1.8] and with initial conditions (x0, y0) =
(2.02, 0.08) , then system (3) undergoes period-doubling
bifurcation as r ≈ 1.00858841796. Moreover, the system (3)
has interior equilibrium (2.02, 0.0822483434014). The char-
acteristic equation for system (3) evaluated at equilibrium
(2.02, 0.0822483434014) is expressed by:

λ2 + 0.0623031201265λ− 0.937696879873 = 0, (33)

Furthermore, the roots of (33) are λ1 = −1&λ2 =
0.937696879873422 H⇒ |λ2| 6= 1. Thus the parameters
(r, a, b, c, d, α, β) = (1.008588417960457, 2.2, 1.5, 0.01,
0.5, 0.1, 2.2) ∈ ψPB.
The bifurcation diagrams and Maximum Lyapunov expo-

nents (MLE) of the corresponding system are shown in

FIGURE 2. Bifurcation diagrams and MLE for system (3) with
β = 2.2,a = 2.2,b = 1.5, c = 0.01,d = 0.5, α = 0.1, r ∈ [0.2,1.8] and
with initial conditions

(
x0, y0

)
=

(
2.02,0.08

)
; (a) Bifurcation diagram for

xn (b) Bifurcation diagram for yn (c) Bifurcation diagram of xn for
controlled system (34) (d) Bifurcation diagram of yn for controlled system
(34) (e) MLE (f) Controllable region for system (31) (g) Controllable region
for system (32).

Figure 2(a,b& e). If we again choose above parameters along
with initial conditions (x0, y0) = (2.02, 0.08) , then for these
numerical values, the system (3) undergoes period-doubling
bifurcation. To control bifurcation, we apply hybrid control
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FIGURE 3. Bifurcation diagrams and MLE for system (3) with
β = 2.2,a = 2.2,b = 1.5, c = 0.01,d = 0.5, α = 0.1, r ∈ [0.2,0.5] and
with initial conditions

(
x0, y0

)
=

(
2.02,0.08

)
(a) Bifurcation diagram for

xn (b) Bifurcation diagram for yn (c) Bifurcation of prey for system (36)
when ξ = 0.55 (d) Bifurcation of predator for (36) when ξ = 0.55 (e) MLE
(f) Controllable region for system (31) (g) Controllable region for
system (32).

method. The parallel controlled system is stated as:
xn+1 :=ξ

[
1.0085xn (1−xn)+2.2xn−1.5xnyn−

0.1x2n
xn+2.2

]
+ (1− ξ) xn

yn+1 := ξ [0.5xnyn − 0.01yn]+ (1− ξ) yn.
(34)

The stability interval of the controlled system (34) for vari-
ous parametric values of bifurcation parameter from chaotic
region can be observed in the following table:

TABLE 1. Controllable interval for system (34) with various values of r in
chaotic region.

Furthermore, Figure 2(c, d) represents the bifurcation dia-
grams for controlled system (34). Now, if we choose β = 2.2,
a = 2.2, b = 1.5, c = 0.01, d = 0.5, α = 0.1 and
r = 1.12952. For these parameters, controllable region of
map (31) with OGY method is shown in Figure 2(f). On the
other hand, the controllable region for system (32), when
above parameters remain same is depicted in Figure 2(g).
Example 2: Suppose β = 2.2, a = 2.2, b = 1.5, c = 0.01,

d = 0.5, α = 0.1r ∈ [0.2, 0.5] and with initial conditions
(x0, y0) = (2.02, 0.08) , then system (3) undergoes NSB
where r ≈ 0.3733196225131351 is the bifurcation parame-
ter. Moreover, the characteristic equation along with interior
equilibrium EU := (2.02, 0.514231) of the Jacobian matrix
of system (3) evaluated at EU is expressed by:

λ2 − 1.2209398466770125λ+ 1 = 0. (35)

Moreover, λ1,2 = 0.6104699233385062 ± 0.7920394
388533177i, are the roots of (35) along with condition∣∣λ1,2∣∣ = 1. Thus (r, a, b, c, d, α, β) = (0.3733196, 2.2, 1.5,
0.01, 0.5, 0.1, 2.2) ∈ ψNB.
On the other hand, bifurcation diagrams and MLE are

shown in Figure 3(a,b&e). Furthermore, we again take
β = 2.2, a = 2.2, b = 1.5, c = 0.01, d = 0.5,
α = 0.1r ∈ [0.2, 0.5] and with initial conditions (x0, y0) =
(2.02, 0.08) . For these values of parameters, there exists NSB
in system (3). In order to controlling the chaos which is due
to appearance of bifurcation, we use hybrid control strategy.
Therefore, the modified controlled system takes the form:

xn+1 := ξ
[
0.3733xn (1− xn)+ 2.2xn

− 1.5xnyn −
0.1x2n
xn + 2.2

]
+ (1− ξ) xn

yn+1 := ξ [0.5xnyn − 0.01yn]+ (1− ξ) yn.

(36)
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FIGURE 4. Phase portraits for system (3) when r ∈ [0.2,0.5].

The stability interval of the controlled system (36) for vari-
ous parametric values of bifurcation parameter from chaotic
region can be observed in the following table:

TABLE 2. Controllable interval for system (36) with various values of r in
chaotic region.

Moreover, Figure 3(c, d) represents the bifurcation dia-
grams for controlled systems (36). Next, we choose β = 2.2,
a = 2.2, b = 1.5, c = 0.01, d = 0.5, α = 0.1 and
r = 0.24. For these parametric values, the controlled region
of system (31) is plotted in Figure 3(f). Additionally, the con-

trollable region obtained from exponential type controlled
map (32) is depicted in Figure 3(g), whenever the above
parameter values remain fixed.

Furthermore, the following Figure 4(a-g), elaborates
phase portraits for system (3). By taking different val-
ues of bifurcation parameter r from chaotic region while
other parameters remain same in each case, that is,
(a, b, c, d, α, β) = (2.2, 1.5, 0.01, 0.5, 0.1, 2.2) and initial
conditions (x0, y0) = (2.02, 0.08).

VI. CONCLUSION
The innovation of our work is to analyze the dynamical
behaviour of a novel predator-prey model incorporating
cannibalistic prey of Holling type II functional response
with cannibalism rate α. Cannibalism is an important and
significant natural phenomenon that affects the population
dynamics. There exists numerous biological species in which
cannibalism has been observed. Cannibalism has enormous
and complex effects on population dynamics. On the other
hand, cannibalism is a remedy for equilibration and regu-
lation of population size as well. Consequently, population
oscillations are observed due to emergence of cannibalism.

In this work, existence criteria of biologically meaningful
equilibrium points have been investigated and their stability
analysis has also been carried out. By implementation of
center manifold theorem and bifurcation theory of normal
forms, it is investigated that system undergoes transcritical,
period-doubling and Neimark-Sacker bifurcations whenever
intrinsic growth rate r of prey population is taken as bifur-
cation parameter. Moreover, it seems that cannibalism is an
effective mechanism for emergence of periodic oscillations
in populations. Numerical simulations show that periodic
outbreaks may result due to incorporation of cannibalism
in prey population and this periodic outbreak is limited to
prey population only without leaving an effect on predation.
In order to control these periodic oscillations in prey popu-
lation density, and other bifurcating and fluctuating behavior
of the system, three different chaos control methodologies are
implemented.

At the end, it is worthwhile to mention that system (3) is a
novel discrete-time model and it is not a discrete counterpart
of any continuous system.
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