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ABSTRACT Human welder’s experiences and skills are critical for producing quality welds in manual gas
tungsten arc welding (GTAW) process. For batch welding of the same workpiece, and the welding experience
accumulated in same welding track, the welding process has a very high-degree reduplication. In this article,
an open-closed-loop iterative learning control algorithm is constructed and implemented as an intelligent
controller in automated GTAW process to reach the desired trajectory well. During the welding process,
there will encounter external interference, such as random changes in voltage, resulting in pool surface
fluctuations. Therefore, we introduce a self-adjustive factor based on ILC algorithm. The self-adjustive factor
can adjust the input of the controller according to the error and error rate of change of the system, so that
the system body has self-adaptation to improve the ability of anti-interference of the system. The simulation
shows that a new proposed ILC control is an effective method for weld penetration in GTAW.

INDEX TERMS Gas tungsten arc welding, self-adjustive factor, open-closed-loop, iterative learning control.

I. INTRODUCTION

Manual gas tungsten arc welding (GTAW) process [1]-[4],
which is a reliable efficient and practical metal filling process,
is commonly used in industry especially in the applications
requiring high weld quality (such as aerospace, automo-
bile, transportation and petroleum, etc.). During this pro-
cess human welders can appraise the state of weld joint
penetration through their observation on the weld pool and
intelligently adjust the welding parameters [S5]-[7] accord-
ingly to control the welding process in a bid to achieve
the desired penetration state. Because of their sensory capa-
bilities and experience-based behavior, they are sometimes
more preferred than automated welding machines. However,
physical limitations of the human welder including inatte-
nion, fatigue, stress and long-term health issues, etc, do not
exist in automated welding machines [8]. The mechanism of
human welder’s experience-based behavior thus should be
fully explored. The resultant welder behavior models may
also help resolve the skilled welder shortage.
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The core of the automated welding system [9]-[11] is
the control algorithm, which processes the information col-
lected by the sensor, extracts the feature information of
the weld, and obtains the deviation signal through a cer-
tain algorithm. Welding processing methods generally con-
tain quantification, information processing [12]-[14], image
recognition [15]-[17] and other steps to obtain the precise
position and track of weld position. It is a vital problem,which
needs to be solved by the control method, to figure out how to
use the information to control the actuators to track and obtain
stable and ideal welding quality during the welding process.
With the continuous progress in science and technology, espe-
cially the rapid advancement of computer technology, control
technology has also been rapidly developed. The control
methods that have been widely applied and will be applied in
modern welding production are as follows: Huang et al. [18]
proposed a neural network algorithm for weld detection
based on adaptive resonance theory. The neural network
was applied to automatically identify weld types, which was
rapid, stable and highly reliable, and was an ideal method
for automatic identification of weld types. Zhu et al. [15]
proposed a two-stage template matching method to identify
the starting point of the weld. Firstly, the global matching
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method was used to eliminate the obvious wrong data points,
and then the local dynamic search method was used to find
the starting point of the weld. However, this method only
identifies the starting point of the weld in the image space, and
does not realize the positioning control of the welding gun
moving to the starting point of the weld. By identifying this
active target, Zhang et al. [19] indirectly identified the initial
position of the weld seam. This method has good robustness,
but the final identification accuracy depends on the manual
placement position of the active target, and the additional
operation of placing the active target which also restricts its
usage in narrow or unknown space. Zhang et al. [20] used a
novel 3d vision sensing system to measure the characteristic
parameters of tungsten arc welding pool in real time.The lin-
ear welding model is improved by introducing the nonlinear
operating point, and the developed control system can effec-
tively realize the welding depth requirement of the welded
joint under various disturbance conditions. Liu et al. [21]
used a novel machine vision system to measure the sur-
face of mirror pool in real time.The full-penetration welds
with different weld widths were obtained by experiments
under different welding conditions, and the corresponding
images were obtained, which were used for the reconstruc-
tion of weld pool surface and the calculation of optimal
model characteristic parameters. Liu et al. [22] constructed
an adaptive neural fuzzy reasoning system (ANFIS) and
implemented it as an intelligent controller in the automatic
GTAW process.The robustness of the controller was verified
by closed-loop control experiments.

In real automated welding system, there are many con-
straints, such as the external disturbances, model uncertain-
ties and a large amount of calculation, which are not in
accordance with the assumption of control algorithm and
bring difficulties to its application. Thus, the author aims to
design a new control algorithm to perfect exact tip tracking
in this article. The introduction of ILC [23]-[25], which has
the characteristics of strong anti-interference, low cost and
high speed, meets these requirements. ILC does not depend
on the precise model of the controlled system instead of
using the previous control information to build the current
control signal. Liu ef al. [26] proposed a data-driven arti-
ficial intelligence modeling method and used it to control
the automatic tungsten gas arc welding process. In order to
further improve the calculation accuracy, the iterative control
method is adopted, and the iterative local ANFIS model has
a better modeling performance, revealing the more detailed
intelligence of welders. However, due to the data dropout
and external disturbance, the direct application of traditional
open-closed-loop ILC [27], [28] to GTAW may lead to a poor
performance. In iterative learning control, open-closed-loop
learning law is actually a kind of feed-forward and feed-
back control. It is likely to have a large control error even
when it meets the convergence condition. So we introduce
a self-adjustive factor, which can reduce the system error,
improve the system’s stability, and speeds up the learn-
ing speed. In this work, Open-closed-loop iterative learning
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control with a self-adjustive factor law is chosen as the con-
troller for GTAW process.

This article is organized as follows, In Section 2, dynamics
model of the GTAW system is presented. Section 3 describes
the control strategy. The convergence analysis of the proposed
algorithm is presented in Section 4. Section 5 describes the
numerical simulation analysis, and finally Section 6 is the
conclusion.

Il. DYNAMIC MODEL OF GTAW SYSTEM

The process of GTAW(gas tungsten arc welding) is shown
in Figure 1: clamping the tungsten electrode to electrode
holder, stretching it out through the tip of the welding torch
and then using the arc produced between tungsten electrode
and base material to weld materials. When the procedure
begins, arc conducts heat to the base material and temperature
rises rapidly. Then, partial weld area will be melted into a
weld pool. If you need to add metals to the weld pool, please
add from the front tip of the arc at a certain speed.

Welding direction

Cap cover

Electrode leads

| ]
Welding machine gun body _

Tungsten clip

Nozzle Tungsten electrode

Filled metal >

/////7 I
AR RRNRY

NN

Molten pool

FIGURE 1. Schematic diagram of GTAW welding process.

During the procedure of GTAW, the most important stan-
dard of high-quality welding is to make sure that the material
is fully melted. The most direct and effective measure of
melting level is back-bead width of molten pool. Therefore,
the control of molten degree can be boiled down to the
control of back-bead width. During the formation of welding
seam, the welding current is a critical parameter. From the
perspective of system control, back-bead width of molten
pool can be controlled as uniform as possible by adjusting
the welding current. In this research of the welding process
of GTAW, we set welding current as control input and the
back-bead width as output of the system.
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The dynamic characteristic model of GTAW welding sys-
tem is as follows:

J k
x() =) axt =)+ Y byult —h) 1)
I=1 h=1
where x (¢) is the back weld width, u() is the welding current,
[ and h are the system time delay, j = 5, k = 6.
Formula (1) can be written as:
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The equation of state of model (1) is expressed as:

{X (t) = AX (t — 1) + BU (1) 3

Y (1) = CX (t)

al a2 a3 a4 a5 bl b2 b3 b4 b5 b6

00O0O0O0OO
00O0O0O0O0],
00O0O0O0OO
00O0O0O0OO

1Il. DESIGNED CONTROLLER AND SELF-ADJUSTIVE
FACTOR

To do this, we use following open-closed-loop P-type ILC
scheme:

uip1 (1) = T (@D uo (1) + (1 =71 @ 1) u; (1)
o @) e () + V() e (1) “

where i indicates the iteration number; ¢ () is the open-loop
proportional learning gain matrix; W (¢) is the closed-loop
proportional learning gain matrix; u; (f) is the control
variable; ug () is the initial value of the input; and
ei (t) = ya (t) — yi (D).

This multivariable self-adjustive factor Y (i, ) can vary
automatically according to changing system deviation and
derivative of error. The factor Y (i, ) is used to balance
perfect learning and robustness, which can increase the
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robustness of ILC against uncertainty, disturbance, initializa-
tion error, and fluctuation of system dynamics:

TG0 = (1— ) [30mldoetsdo) )

where x coordinates gain changes and « is used to control the
rate at which p approaches 1.

IV. CONVERGENCE ANALYSIS

Due to repeatability, interference and uncertainty in the weld-
ing process, the welding process is repeated at [0, T']. For-
mula (3) can be written as:

Xi(1) =AX;(t — 1) + BU; (1) + w; (1)

(©)

Yi (1) = CXi (1) +vi ()
where i is the number of iterations, t € {0, 1, .-, T}. w; (¢)
and v; () are the uncertainty item and interferential term,

respectively.

To get a convergence condition, we assume the following
restrictions on the GTAW system:

Assumption 1: The initial state of the system is the same
every time;

Assumption 2: The expected output is the same, when the
system runs every time;

Assumption 3: There exist ug (t) that makes system state
become x4 () and system output become y, () for all
te[0,T].

Xq (1) = Ax; (t = 1) + Bug (t) + wq (1)

7
ya (1) = Cxq (1) @

where x4 (t) is the expected state. In the actual weld-
ing process, the welding control system performing the
repeated welding process meets the above three assumptions.
For batch welding of the same workpiece, the starting point of
each welding process is the same, thus meeting Assumption
1. The expected output in the welding process is constant
value, so it also meets Assumption 2. Assumption 3 is the
condition of controllability for a given control task.

When the initial state of the system is x; (0), the solution
of equation (6) can be written as:

t
xi (1) = A'x; (0) + Y A Bui(s).1 € (0.T}  (8)
s=0
Lemma: For the system described by equation (6), the given

reachable expected trajectory is yg (¢), If the condition (1)
and (2),

1—7Y)— ¢CB

0 (1 )—¢
+WCB

(2) x(0) =x4(0),

Then, the learning rate (4) makes the output trajectory
uniformly converge to the expected trajectory. When i — oo,
Yi(t) = ya @) (1 € [0, T + 1]).

<p<1,te{0,T}

i=0,1,2,.--
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The control error of the i + 1 iteration is investigated,

Auiyy (1)

= ug (t) — ujr1 (t) = ug (t) — Yug (1)
= (1 ="T)u (1) — pe; (t) — Vet ()

= TAup () + (1 —7) Au; (1)
—@a @) —yi @] —VYya @) —yit1 ()]

= YAup () + (1 — Y) Au; (t) — 9CAx; (1)
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From (9) can be obtained

(I + WCB) Auiy (1)
= ((1—=7) — ¢CB) Au; (1)
— @CAAX; (t — 1) — WCAAXi4 (t — 1)
+¢C (vi (1) — Aw; (1)) + T Aug (1)
+WC (vig1 (1) — Awit (1)) (10)

Take the norm at both ends of formula (10):

Il + WCB| || Auiy1 (1)
= [[(1 =7) — CB| | Au; (1)l
+ llpCA|l [|Ax; (t = D]l 4+ 1T Auo (1) |
+ [IWCA[[ [ Axit1 (r = D
+ lleCll i (1) — Aw; @]
+ [WC Vi1 (1) — Awip1 (0] (11)

According to formula (11), we obtain

(1-7)—¢CB
Au; t < | Au; (t
lAuis1 O = | =g | 14w ©l
— | [|AXx; (t — 1
+ I—i—\IJCBH” xi (t — D
| A Avi = D
VG
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+ | Tweg | & )
— | IA t
+ zwch” uo ()
< p lAw; Ol + m1 |Ax; (2 = D]
+03 [ Axip1 (¢ = DI+ © (12)
where 1 = [|722551. 13 = ezl to = max (sup
lA@iO]. sup | A1 (D]}, © = [|E5EL1@) — o) ++
lweg Il Au®I. & = max (sup [vi(D)ll, sup i1 (]}
p= 1"l
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Using formula (8), formula (11) can be written as:

t—1
lAuigr O < pllAw O+ Y [|AB| [ Aui (9)]
s=0
t—1
+m3 Y |ATB| lAuig ()] + ©
s=0
t—1
< plAw Ol +mm Y 1 Au; (5)]|
s=0
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+m3m Y Auip ()l + © (13)
s=0

where 1 <t <T,m = sup ||At_SB||.
0<s<t—1

Multiply both sides of formula (13) by A'(0 < A < 1), we
obtain

t—1
M Auip1 O < pA 1Aw; (O +m1m2 Y X752 [ Awi ()]
s=0
t—1
+mam Y AT | Auigy (s)]| + ©
s=0
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According to formula (11) and the definition of norm,
we get

[ Auiyilly < ol Auill; + © 15)

p=n)+mmr(1-2")

where p = o (15T)
When p < 1, we can get 11m lAu;|l;, < 17 . According
to formula (6) and (8), when O < A < 1, we get
—1
Mllei I < ICIDY " A B =2 [ Au; ()|
s=0
-1
<em Y M7 [Aul;
s=0
L Aa(1=aT)
= CWZﬁ | Al (16)

wherel <t <T+1,¢=|C].

192285



IEEE Access

N. Yin et al.: Open-Closed-Loop Iterative Learning Control With a Self-Adjustive Factor of the GTAW Process

A
4
>

A

v 4
e U1 (£)
\ i LC k+1
3Ry ¥ GATW ——
=Y
‘ i+

A

Self-adjustive Factor

YVvvy

FIGURE 2. A block diagram of the designed ILC law.

According to the definition of A-norm:

T
sup {A'llei DI} < em—r—— lAul,  (17)
1<t<T+1 —A

So lim sup {A"[le; (1)]|} < 1. We find that the track-
i— 00 0<t<T p
ing error bound converges to a small neighborhood of the

origin, we can reach the conclusion y; (#) — yg (¢) (i — ©0).

V. SIMULATION AND ANALYZE

In this section, the proposed algorithm is applied to the auto-
matic welding system. Let set the input initial value u;(t) = 0
at each iteration. The expected width of the back of the pool is
v4(t) = Smm. The data used in the simulation are ¢(¢) = 0.2,
Y(t) =0.15, k =4, wi(t) = 0.001sin(0.17¢) and p = 0.65.

Open—Closed-Loop ILC with a Self-adjustive Factor desired

back bead width (mm)
o — 8w s ;o N ®
T

)
0 50 100
time (s)

FIGURE 3. Back melt width tracking curve of the designed ILC law.

During the welding process, the tracking process of the
iterative learning control algorithm are shown in Figure 3 and
Figure 4. Figure 5 and Figure 6 show the maximum tracking
errors from iteration to iteration controlled by ILC. The open-
closed-loop ILC with a self-adjustive factor obtained very
good tracking performance with very small tracking errors
in the direction even under the non-repetitive disturbance
conditions. It is shown that the traditional open-closed-loop
ILC obtain acceptable tracking performance, while the ILC
with a self-adjustive factor still performs much better than
the open-closed-loop ILC. The proposed ILC algorithm con-
verges to approximate small zero errors at the 8rd iteration
while open-closed-loop ILC still has small bounded tracking
errors. And it has a faster rate of convergence. These results
fully illustrate the importance of the self-adjustive factor.
It demonstrates again that the proposed ILC algorithm can
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Open—Closed-Loop ILC without a Self-adjustive Factor desired
value
01 i=5
9o /T~ i=10
/'E\ 3 i=15
e8 /S~ ~
E 7L =20
S ol
B
g oar)
2 3F
< 2
<1
0 : ‘
0 50 100
time (s)

FIGURE 4. Back melt width tracking curve of the traditional ILC law.

Open-Closed-Loop TLC with a Self-adjustive Factor
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FIGURE 5. Maximum tracking error in iteration times with self-adjustive
factor.

Open-Closed-Loop ILC without a Self-adjustive Factor

Max error

@
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FIGURE 6. Maximum tracking error in iteration times without
self-adjustive factor.

obtain much better tracking performances even under the
existence of disturbances and uncertainties.

Also, the iterative learning controller shows better conver-
gence results through iteration control. The algorithm is sim-
ple, and it can realize the actual motion track in the given time
horizon. Simulation results show that the proposed algorithm
is effective in controlling both the welding precision and in
achieving full best effect even under the condition of external
interference.

VI. CONCLUSION

In this article, an innovative ILC approach to control the
welding process is proposed. The proposed algorithm can
realize the complete automation of welding process through
intelligent control, guarantee welding quality and improve
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welding production efficiency. Automated control simula-
tions are conducted and results verified the effectiveness of
the proposed controller under welding speed disturbance.
With the continuous development of computer control tech-
nology, the advancement of automatic welding control tech-
nology and the intelligent welding which can accurately track
and adjust the welding track in real time have become an
important development trend in the field of welding.
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