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ABSTRACT Mixed integer linear programming (MILP) model was presented by Sun et al. at Asiacrypt
2014 to search for differential characteristics of block ciphers. Based on this model, it is easy to assess block
ciphers against differential attack. In this paper, theMILPmodel is improved to search for differential trails of
Midori64 which is a family of lightweight block ciphers provided by Banik et al. at Asiacrypt 2015. We find
the best 5-round differential characteristics of Midori64 with MILP-based model, and the probabilities are
2−52 and 2−58 respectively. Based on these distinguishers, we give key recovery attacks on the 11-round
reduced Midori64 with data complexities of 255.6 and 261.2, and time complexities of 2109.35 and 2100.26.

INDEX TERMS Midori, differential distinguisher, mixed integer linear programming, differential crypt-
analysis.

I. INTRODUCTION
In recent years, a great deal of lightweight block ciphers
are widely used in Internet of things and wireless com-
munication because of their uncomplicated structures and
efficient execution in low-power and constrained environ-
ment. Many lightweight block ciphers have emerged, such as
Midori [1], GIFT [3], LED [5], PRESENT [4], PRINCE [6]
and SPECK [7].

Differential cryptanalysis is one of the principal attack
methods on modern symmetric-key ciphers, which evaluates
a chosen-plaintext(ciphertext) attack and studies the effect of
a pair of plaintext(ciphertext) differences on the output dif-
ferences of the subsequent rounds. MILP is a central method,
used to solve optimal problems in business and economics
because it can diminish the workloads significantly by its
efficient optimal results. It has been found that many classical
cryptanalysis methods, including differential cryptanalysis,
impossible differential, related-key differential characteris-
tics and linear attacks can be converted into mathematical
optimal problems. Once the cryptanalytical problem is con-
verted to an MILP problem, it can be solved with MILP
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solvers such as CPLEX, SAT and SMT. Mouha et al. first
introduced the MILP model to count the number of active
S-boxes of word-oriented block ciphers in 2011 [8]. In 2013,
Sun et al. gave the minimal number of active S-boxes for full-
round PRESENT-80 and a 12-round related-key differential
characteristics [11]. Further, they presented a novel method
based the MILP model to search for the differential trails
with the maximal probability, instead of the minimal num-
ber of active S-boxes [12]. Meanwhile, they improved this
model to automatic search for differential pathes and linear
trails [9], whose chief idea is to obtain a number of linear
inequalities through the H-Representation of the convex hull
of all differential patterns of S-box at ASIACRYPT 2014.
Xiang et al. applied a MILP method to search for integral
distinguisher [16]. At EUROCRYPT 2017, Sasaki et al. gave
a new tool to automatic search for impossible differential
trails [10]. Zhu et al. showed a 12-round differential char-
acteristics and proposed a 19-round key-recovery attack for
GIFT-64 [17]. Abdelkhalek et al. presented a novel MILP
model bit-oriented for 8-bit or larger S-boxes [18]. Their
main idea is to divide the difference distribution table (DDT)
into several tables on the basis of the probability and control
the behavior of these tables through adding conditional con-
straints. In [19], Canteaut et al. presented an in-depth study
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into the differential characteristics and introduced the method
to attack the block cipher RoadRunneR. TheMILPmodel has
been used in cube attacks [25] and [28]. Later, a new MILP
model for searching better or even optimal choices of condi-
tional cubeswas proposed in [26]. Cui et al. search impossible
differentials and zero-correlation linear approximations by a
MILP model [27].

Midori [1] is a family of lightweight block ciphers which
was presented at Asiacrypt 2015. However, numerous cryp-
tographers have attacked it utilizing different cryptanalysis
methods. In 2015, Lin et al. provided a 10/11/12-round
attack onMidori64 based on aMITM distinguisher, with data
complexity of 261.5/253.5/255.5 chosen plaintexts and com-
putational complexity of 299.5/2122/2125.5 [13]. Dong et al.
introduced an 11-round related-key differential distinguisher
and attacked a 14-round on Midori64 with data complexity
of 259 and computational complexity of 2116 [14]. In 2016,
Chen et al. presented a 6-round impossible differential dis-
tinguisher to attack 10-round of Midori64 [15], with data
complexity of 262.4 and computational complexity of 280.81.
Gerault et al. showed an all round related-key differen-
tial attack on Midori64 block cipher with data complex-
ity of 223.75 and computational complexity of 235.8 [22].
Guo et al. provided an invariant subspace attack on all round
Midori64 [23] with 232 weak key setting in 2016.

A. OUR CONTRIBUTIONS
In this paper, we generalize an efficient MILP-based model
inspired by Sun et al.’s model [9] and mainly concentrate
on looking for the longest differential characteristics with
the maximal probability. Utilizing this model, the attacker
only gives the MILP instance with proper objective function
and accurate description of S-box player and linear player
by some inequalities. Then the left work can be done by an
Optimizer such as CPLEX and Gurobi.

Themodel is constructed with an exact probability for each
possible point in the DDT of S-box for Midori64 to search for
the differential characteristics with the maximal differential
probability by the optimal inequalities.

We present a 5-round differential characteristics with
just two differential cells at the beginning and the max-
imal probability is no less than 2−52. Based on the dif-
ference path, we provide an 11-round difference attack on
Midori64 with data complexity of 255.6 and computational
complexity of 2109.35. Another 5-round differential charac-
teristics is also shown with just one differential cell at the
beginning and the maximal probability is no less than 2−58.
Based on the difference path, an 11-round difference attack
is provided with data complexity of 261.2 and computational
complexity of 2100.26.

The model focuses on the differential characteristics
mainly caused by plaintext differences. Since Midori has the
little arrangement of the round key, it is effortless to obtain
the related-key differential model through increasing 128 key
variables into the model above.

TABLE 1. Summary of key-recovery attacks on Midori64.

A summary of the comparisons of our results with the
preceding conclusion on Midori64 is presented in Table 1,
where MITM, ID, RKD, IS and NLI represent meet-in-the
middle, impossible difference, related-key difference, invari-
ant subspace and non-linear invariant, respectively. We give
the feasible and effective single key attack. However the pre-
vious invariant subspace attack and nonlinear invariant attack
on Midori64 only verify whether the key is one of the weak
keys. When the right key is not the weak key, these methods
have little advantage. Moreover, the related-key attack is also
weak because it supposes that some key bits can be adapted,
which might not be easy to operate in the practical attack.

B. ORGANIZATION
This paper is organized as follows. The related work and our
contribution are in Section I. The particular description of
MILP model and Midori are listed in Section II. Applications
to the block cipher Midori64 and the differential characteris-
tics are showed in Section III. An 11-round differential attack
on Midori64 is showed in Section IV. Finally, we draw our
conclusions and summarize this paper.

II. PRELIMINARIES
A. NOTATIONS
P, 4P: plaintext, the difference in the plaintext.
C , 4C : ciphertext, the difference in the ciphertext.
M , 4M : the intermediate state, the difference in the inter-

mediate state.
mi: the i-th cell of the intermediate stateM .
S, Si: the S-box layer, the i-th S-box.
r : the round number.
Xr , Yr , Zr ,Wr : the r-th round state of the intermediate state

M .
4Xr {i, j}: the i-th and j-th cells of the difference in Xr .
RKr : the r-th round key.
?: any difference in one cell.
∗, 1: any non-zero difference in one cell.
⊕: bit-wise exclusive or, that is, XOR.
‖: concatenation.

B. DESCRIPTION OF MIDORI
Midori is a lightweight substitution-permutation net-
work (SPN) block cipher. The major frame is shown
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FIGURE 1. Overview of Midori.

TABLE 2. DDT of Midori64 S-box.

in Figure 1. The intermediate stateM is as follows:

M =


m0 m4 m8 m12
m1 m5 m9 m13
m2 m6 m10 m14
m3 m7 m11 m15

 .
There are two versions namely Midori64 and Midori128

whose state sizes are 64 and 128 bits, the round number
of 16 and 20, and the sizes of mi(0 ≤ i ≤ 15) being 4 and
8 bits, correspondingly. Each version has a key of 128 bit.

1) ROUND FUNCTION
The round function of Midori includes the following four.
1) SubCell (SC): the same invertible 4-bit S-box Sb0,

the only nonlinear component of the algorithm,
is applied to each cell of Midori64, i.e., Sb0[mi]→ mi,
where 0 ≤ i ≤ 15. (seen in TABLE 2)

2) ShuffleCell (SFC): the shuffle rule is as below: (m0,m1,
m2,· · · ,m13,m14,m15 )← (m0,m10,m5,m15,m14,m4,
m11, m1, m9, m3, m12, m6, m7, m13, m2, m8 ).

3) MixColumn (MC): a 4 × 4 matrix is applied to each
column of the intermediate as below:

mi
mi+1
mi+2
mi+3

←

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

mi
mi+1
mi+2
mi+3

 ,
where i ∈ {0, 4, 8, 12}.
Each cell indicates 4-bit and 8-bit for Midori64 and
Midori128, correspondingly.

4) KeyAdd (AK): the round key RKr is XORed with the
intermediateM .

The last round function consists of two operations: SubCell
and KeyAdd.

2) KEY SCHEDULE
The size of the master key (K )is 128 bits for two versions.
For Midori64, K is composed of two 64-bit keys K0 and K1;
that is, K = K0‖K1. Then, WK = K0 ⊕ K1 and RKr =
Kr mod 2 ⊕ αr , 0 ≤ r ≤ 14. For Midori128, WK = K and

RKr = K⊕βr , 0 ≤ r ≤ 18. αr and βr are the round constants
which are discussed at length in [1].
In this paper we mainly study Midori64.

C. MILP MODEL
Mouha et al. [8] first presented the MILP model to calculate
the minimal number of active S-boxes for word-oriented
block ciphers. Sun et al. [9] constructed the MILP model for
bit-oriented block ciphers based on the work of Mouha et al.
at Asiacrypt 2014.
Definition 1: For each input and output, we consider bit

variable ui to denote whether the bit has a difference. Then,
the differential vector u = (u0, u1, · · · , un−1) is as follows:

ui =

{
1, there is a nonzero difference in this bit,
0, otherwise.

(1)

1) CONSTRAINTS DESCRIBING THE XOR OPERATION
Assume that the input difference for XOR is (u1, u2) and the
output difference is v, where u1, u2 and v be a byte. The XOR
operation is shown below:{

u1 + u2 + v ≥ 2d
⊕

u1 ≤ d
⊕
, u2 ≤ d

⊕
, v ≤ d

⊕
,

(2)

where d
⊕

is a dummy variable.
For bit-Oriented Block Ciphers, let the input difference be

(u1, u2) and the corresponding output difference be v. The
XOR operation can be described with the following linear
constraints: 

u1 + u2−v ≥ 0
u1 − u2 + v ≥ 0
−u1 + u2 + v ≥ 0
u1 + u2 + v ≤ 2

(3)

2) CONSTRAINTS DESCRIBING THE S-BOX OPERATION
Let (x0, x1, · · · , xu−1) and (y0, y1, · · · , yv−1) denote the input
and output differences of a u × v S-box. S denotes whether
the S-box is active or not. S = 0 holds if and only if all xi are
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TABLE 3. DDT of Midori64 S-box.

all zero, where S ∈ {0, 1}, a dummy variable.
S − xi ≥ 0, i ∈ {0, · · · , u− 1}
u−1∑
i=0

xi−S ≥ 0
(4)

3) THE MINIMAL NUMBER OF ACTIVE S-BOXES
The objective function f of the earlier model is

∑
min Si,

i.e., the minimal number of active S-boxes. For Midori64,
the DDT of S-box is seen in TABLE 3, and the numbers of
zero points and non-zero points are 159 and 97. The next step
is to distinguish these 97 points from the others. With the
help of SageMath software, we can obtain 239 inequalities
to distinguish these points, whose forms are as below.

α0,0x0 + α0,1x1 + α0,2x2 + α0,3x3 + α0,4y0
+α0,5y1 + α0,6y2 + α0,7y3 + γ0 ≥ 0
α1,0x0 + α1,1x1 + α1,2x2 + α1,3x3 + α1,4y0
+α1,5y1 + α1,6y2 + α1,7y3 + γ1 ≥ 0
· · ·

αn−1,0x0 + αn−1,1x1 + αn−1,2x2 + αn−1,3x3
+αn−1,4y0 + αn−1,5y1 + αn−1,6y2 + αn−1,7y3
+γn−1 ≥ 0

(5)

The number of inequalities can be reduced remarkably
through a greedy algorithm [9]. Finally, 23 linear inequalities
remain.

III. APPLICATIONS TO THE BLOCK CIPHER Midori64
A. DESCRIPTION OF SubCell OPERATION
The nonzero number in the DDT of Midori64 is
2,4 and 16. We need to add two extra bit-level vari-
ables (p0, p1) to represent the new differential pattern:
(x0, x1, x2, x3, y0, y1, y2, y3, p0, p1) ∈ F8+2

2 . Since the

TABLE 4. Differential probability of S-box for Midori64.

probability of the input difference 0001 with the match-
ing output difference 0001 is 2−3, we indicate it
with vector (0,0,0,1,0,0,0,1,0, 1). Analogously, the vector
(0,0,0,1,0,0,1,0,1, 0) represents the probability of 2−2.
Thanks to the SageMath software and the greedy algo-

rithm, there are 26 inequalities left (Equation (6)), as shown
at the bottom of the next page.

B. DESCRIPTION OF ShuffleCell OPERATION
According to the rules of ShuffleCell operation: (z0, z1,
z2,· · · , z13, z14, z15 )← ( y0, y10, y5, y15, y14, y4, y11, y1, y9,
y3, y12, y6, y7, y13, y2, y8 ), this step can be described by these
64 equalities as below:

y0 − z0 = 0
y1 − z1 = 0
...

y62 − z14 = 0
y63 − z15 = 0

(7)

C. DESCRIPTION OF MixColumn OPERATION
For Midori64, the matrix of MixColumn operation is

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
VOLUME 8, 2020 95891
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It is can be converted into a bit matrix with ease as below:

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0



.

Let the input and output of MC operation be (z0, z1, z2,
· · · , z63) and (w0,w1,w2, · · · ,w63). In order to describe
completely the MC operation, we introduced 40 inter-
mediate variables and 448 inequalities. For example,

w0 = z4+z8+z12. We add intermediate variable t1 = z4+z8,
then w0 = t1 + z12. So the expression of w0 is as below:

z4 + z8 − t1 ≥ 0
z4 − z8 + t1 ≥ 0
−z4 + z8 + t1 ≥ 0
z4 + z8 + t1 ≤ 2
z12 + t1 − w0 ≥ 0
z12 − t1 + w0 ≥ 0
−z12 + t1 + w0 ≥ 0
z12 + t1 + w0 ≤ 2

(8)

D. THE OBJECTIVE FUNCTION
The objective function is the minimum

∑
min(2 ·p0+3 ·p1+

· · ·+2·p30+3·p31+· · · ). Now, theMILPmodel is constructed
by the above operations. We can obtain the optimal solution
by utilizing Algorithm 1.

E. EXPERIMENTAL RESULTS FOR Midori64
The differential trails and probabilities are shown in
TABLE 5, FIGURE 2 and FIGURE 3. The MILP



−p0− p1 > −1
−x1− x3− y1− y3+ 4p0+ 3p1 > 0
−2× 0− x1− x3+ 2y1+ 6y2+ 2y3− 2p0+ 3p1 > 0
3× 0+ 3× 1− x2+ 3× 3+ y1− 2y2+ y3− 2p1 > 0
+2× 1+ 6× 2+ 2× 3− 2y0− y1− y3− 2p0+ 3p1 > 0
+x1− 2× 2+ x3+ 3y0+ 3y1− y2+ 3y3− 2p1 > 0
−5× 0− 4× 1− 7× 2− x3+ 8y0− y1− 2y2+ 2y3+ 11p0+ 20p1 > 0
8× 0+ 2× 1− 2× 2− x3− 5y0− y1− 7y2− 4y3+ 11p0+ 20p1 > 0
+x1+ 2× 2+ x3− 3y1− 2y2− 3y3+ 6p0+ 5p1 > 0
−3× 1− 2× 2− 3× 3+ y1+ 2y2+ y3+ 6p0+ 5p1 > 0
2× 0+ x1+ 4× 2+ x3− 3y0− 2y1+ y2− 2y3+ p0+ 3p1 > 0
−2× 0− x1− 2× 2+ 3× 3− 2y0+ 3y1− y2− 3y3+ 7p0+ 8p1 > 0
−4× 0− 2× 1+ x2− 2× 3+ 2y0+ y1+ 5y2+ y3+ p0+ 4p1 > 0
−x0+ 3× 1− 2× 2− x3− 2y0− 2y1− y2+ 3y3+ 6p0+ 6p1 > 0
2× 0+ 2× 2− 2× 3+ y1− 2y2− y3+ 4p0+ 3p1 > 0
−x1− 2× 2+ x3+ 2y0− 2y1+ 2y2+ 4p0+ 3p1 > 0
+x1− 3× 2− 2× 3+ 3y0+ y1+ 2y2− 2y3+ 5p0+ 4p1 > 0
2× 0− 2× 1+ 2× 2− y1− 2y2+ y3+ 4p0+ 3p1 > 0
+y1− y2+ y3+ p0 > 0
+x1− 2× 2+ x3+ y1− 2y2+ y3+ 4p0+ p1 > 0
x0+ 2× 1− x2+ 2× 3+ y0− y1+ y2− y3+ 2p0 > 0
−2× 0+ x1− x3− 2y1− y2+ y3+ 4p0+ 5p1 > 0
−2× 1− x2+ x3− 2y0+ y1− y3+ 4p0+ 5p1 > 0
−2× 0− 2× 1+ x2+ 2× 3− y0+ y1− 2y2− 3y3+ 6p0+ 8p1 > 0
−3× 1− x2− x3+ 2y0− y1+ y2+ 4y3+ 2p0+ 5p1 > 0
+x1+ 2× 2+ x3− y0+ y1+ y2+ y3− 2p0 > 0

(6)
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Algorithm 1 The Accurate Difference Probabilities Search
Algorithm Based on MILP for Midori64
Require: the round number r, intermediate state variables

xi, yi, zi,wi, S-box’s distribution probability pj and the
non-zero difference of the beginning in only one S-box.

Ensure: the maximal probability of the differential trail
1: Establish an empty MILP modelMM .
2: Set x, y, z as the input of the SC, SFC and MC layer, and
y, z,w as the output of the SC, SFC and MC layer.

3: p denotes the probability of the DDT.
4: UpdateMM according to the differential propagation rule

of the round function.
5: Set the objective function:

∑
min(2 · p0 + 3 · p1).

6: According to the conditional inequality obtained in
step 4, solve modelMM using the MILP optimizer.

7: A feasible solution is found inMM , and save it to a file.

TABLE 5. 5-round differential path of Midori64 with probabilities 2−52

and 2−58.

instances are run by the Cplex12.6 optimizer on a
Lenovo Server(X3850 X6) with 64 GB RAM. A 5-round
Midori64 model includes 1424 bit variables and 4640 con-
ditional inequalities.

The model focuses on the differential characteristics main-
ly brought by plaintext differences. Since Midori has the
little arrangement of the round key, it is effortless to obtain
the related-key differential model through increasing 128 key
variables into the model above.

IV. DIFFERENTIAL ATTACK ON 11-ROUND Midori64
A. THE PROPERTY OF PROBABILITY FOR ROUND
FUNCTION
Property 1: Consider four cells of the intermediate state

of SC with any input difference and any output difference.
However we want one cell of these four with zero difference
after MC operation. For example, let X{3, 6, 9, 12} denote
the position(3,6,9,12) before SC operation and Y {3, 6, 9, 12},
Z {8, 9, 10, 11}, W {8, 9, 10, 11} denote the corresponding
position after SC, SFC, MC operation, respectively. Let
1w11 = 0, then 1z8 = 1z9

⊕
1z10 with the prob-

ability of 1
16 = 2−4. Let P((?, ?, ?, ?) → (?, ?, ?, 0))

denote P( SC(?, ?, ?, ?) → (MC(?, ?, ?, ?) = (?, ?, ?, 0)) ).
So, P((?, ?, ?, ?) → (?, ?, ?, 0)) = 2−4. Since ? ∈
{0, 1, 2, 3, 4, 5 · · · 15} and ∗ ∈ {1, 2, 3, 4, 5 · · · 15}, we can
obtain P((?, ?, ?, ?) → (?, ?, ∗, 0)) = 15

16 ×
1
16 ≈ 2−4.09.

FIGURE 2. A 5-round differential path with probability of 2−58.

FIGURE 3. Another 5-round differential path with probability of 2−52.

Similarly, P((?, ?, ?, ?) → (?, ∗, ∗, 0)) ≈ 2−4.19, and
P((?, ?, ?, ?)→ (∗, ∗, ∗, 0)) ≈ 2−4.28.
Property 2: Consider four cells of the intermediate state of

SCwith any input difference and any output difference. How-
ever we want no less than one cell of these four with non-zero
difference after MC operation.We can obtain P((?, ?, ?, ?)→
(?, ?, ?, ∗)) = 15

16 ≈ 2−0.09. Similarly, P((?, ?, ?, ?) →
(?, ?, ∗, ∗)) ≈ 2−0.19, and P((?, ?, ?, ?) → (?, ∗, ∗, ∗)) ≈
2−0.28.
Property 3: Consider four cells of SC with two any input

differences and two non-zero differences, then we want to
get two zero difference after MC operation. We can obtain
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FIGURE 4. An 11-round differential attack on Midori64.

P((?, ?, ∗, ∗) → (∗, ∗, 0, 0)) = 1
16 ×

1
16 = 2−8 and

P((?, ?, ∗, ∗)→ (?, ?, 0, 0)) ≈ 2−7.81.
Property 4: If there are three cells with any or any non-zero

input differences of SC, and the same non-zero out differ-
ences of SC, we can obtain P((?, ?, ?, 0)→ (11, 0, 0, 0)) =
15
16 ×

1
16 ×

1
16 ≈ 2−8.09 and P((∗, ∗, ∗, 0)→ (12, 0, 0, 0)) ≈

2−7.81.

B. ATTACK ON 11-ROUND Midori64
Using the 5-round differential characteristic (δ, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→(A, A, 0, 0, 0, 0, 0, 0, F, F, 5,
A, 0, 5, 5, 5) with the probability of 2−58 in Table 5 and
Figure 2, we could launch a key-recovery attack against
11-round Midori64. We choose the differential-2 rather than
the differential-1 because the former is more effective.

Then add 3 rounds in its beginning and at the end
respectively to attack 11-round reduced Midori64, shown in
Figure 3. The attack procedures are as below.

1) DATA COLLECTION
Since the differences of plaintexts are all uncertain bits,
plaintexts can not be classified by inactive bits. Choose
any 2n plaintexts and form approximately 22n−1 plaintext
pairs. Encrypt these plaintext pairs to state W1 and use
the difference 4W1{0, 1, 2, 3} = {0, ∗, ∗, ∗} to filter pairs.

By Property 1, this provides a filtering probability of 2−4.28

and there are approximately 22n−5.28 pairs left.
Similarly, keep only the pairs such that 4W1{4, 5, 6, 7} =
{0, 0, ∗, ∗}, 4W1{8, 9, 10, 11} = {0, ∗, 0, ∗} and
4W1{12, 13, 14, 15} = {0, ∗, ∗, 0}. By Property 3, the prob-
ability of these three cases is 2−8 and there are 22n−29.28

pairs left. Therefore, in the data collection phase, the remain-
ing number of the plaintext/cipertext pairs is approximately
22n−29.28 only by the path choosing without guessing the key.

2) KEY RECOVERY
(1) Guess 12 bits K0{1, 11, 14}

⊕
α0{1, 11, 14}, then par-

tially encrypt these plaintext pairs. As the middle values
of right pairs should obey 4X2{1, 4, 11, 14} = {∗, 0, ∗, ∗}
and 4Y2{1, 4, 11, 14} = {11, 0,11,11}, the pairs can
be filtered with a probability of 2−7.81 (Property 4), and
the number of expected remaining pairs is 22n−37.09. Simi-
larly, guess K0{2, 7, 13}

⊕
α0{2, 7, 13}, and the right pairs

should obey 4Y2{2, 7, 8, 13} = {12,12, 0,12}. Then,
guess K0{3, 6, 9}

⊕
α0{3, 6, 9}, and the right pairs should

obey 4Y2{3, 6, 9, 12} = {13,13,13, 0}. Totally there are
22n−52.71 pairs left.

(2) For every remaining pair, guess 12 bitsK1{5, 10, 15}
⊕

α1{5, 10, 15} one by one, then encrypt these pairs. The
right pairs should obey 4Y3{5, 10, 15} = {δ, δ, δ} where
δ ∈{5,A,D,F}, and this round provides a filtering probability
of 2−7.81 × 4

15 ≈ 2−9.72 (Property 4), and there are 22n−62.43

pairs left.
(3) Guess MC−1(K0

⊕
α10){0, 4, 5, 8, 10, 12, 15} and

the rest bits can be obtained by K0
⊕
α0. Then decrypt

the left pairs to state W10 and use the difference
4W10{0, 1, 2, 3} = {?, ∗, ?, ∗}, 4W10{4, 5, 6, 7} =

{?, ?, ∗, ?}, 4W10{8, 9, 10, 11} = {∗, ?, ?, ?} and
4W10{12, 13, 14, 15} = {?, ∗, ?, 0} to filter pairs with the
probability of 2−0.19, 2−0.09, 2−0.09 (Property 2) and 2−4.09

(Property 1), respectively. After this round, there are 22n−66.89

pairs left.
(4) Similarly, guess MC−1(K1

⊕
α9){0, 1, 2, 3, 4, 6,

7, 8, 9, 11, 12, 13, 14}, and the corresponding conditions
in 4W9{0, 1, 2, 3} = {∗, ∗, 0, ∗}, 4W9{4, 5, 6, 7} =
{∗, 0, ∗, ∗}, 4W9{8, 9, 10, 11} = {∗, 0, 0, 0} and
4W9{12, 13, 14, 15} = {0, ∗, 0, ∗} to filter pairs with the
probability of 2−4.28, 2−4.28 (Property 1), 2−7.81 (Property
4) and 2−8 (Property 3), respectively. After this round, there
are 22n−91.26 pairs left.
(5) Finally, decrypt the left pairs to state X9 and

use the difference 4X9{0, 1, 8, 9, 10, 11, 13, 14, 15} =
{A,A,F,F,5,A,5,5,5} one by one to filter pairs with the total
probability of 2−35.19. There are 22n−126.45 pairs left.

C. COMPLEXITY ANALYSIS
1) DATA COMPLEXITY
In order to distinguish the correct key from the wrong key,
choose n = 61.2. For a random key, there are 22×61.2−126.45

≈ 2−4.05 pairs left. However, for the right key, there are
22×61.2−62.43−58 ≈ 4 pairs left as the probability of the
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5-round differential Path is 2−58. So, the data complexity is
261.2 chosen plaintexts.

2) TIME COMPLEXITY
(1) There are 22n−29.28 = 293.12 pairs left after the phase of
data collection. Guess 12 bits K0{1, 11, 14}

⊕
α0{1, 11, 14},

then partially encrypt these plaintext pairs for one round. The
time complexity is 293.12 × 2 × 212 × 3

16 ×
1
11 ≈ 2100.25

11-round encryptions, and the number of remaining pairs
is 285.31.

Similarly, guess K0{2, 7, 13}
⊕
α0{2, 7, 13}, and the time

complexity is 285.31 × 2 × 212 × 3
16 ×

1
11 ≈ 292.44 11-round

encryptions, and the number of remaining pairs is 277.5.
Then, guess K0{3, 6, 9}

⊕
α0{3, 6, 9}, and the time com-

plexity is 284.63 11-round encryptions, and the number of
remaining pairs is 269.69.

(2) For every remaining pair, guess 12 bitsK1{5, 10, 15}
⊕

α1{5, 10, 15}, and the time complexity are 269.69×2 ×212×
3
16 ×

1
11 ≈ 276.82 11-round encryptions, and the number of

remaining pairs is 259.97.
(3) Guess MC−1(K0

⊕
α10){1, 2, 3, 6, 7, 9, 11, 13, 14}

and, for the whole round, the time complexity is 259.97×2 ×
228 × 1

11 ≈ 285.51 11-round encryptions, and the number of
remaining pairs is 255.51.
(4) Similarly, guessMC−1(K1

⊕
α9){1, 6, 8}, and the time

complexity is 255.51 × 2 × 212 × 3
16 ×

1
11 ≈ 262.64 11-round

encryptions, and the number of remaining pairs is 247.7.
GuessMC−1(K1

⊕
α9){3, 4, 13}, and the time complexity

is 247.7 × 2 × 212 × 4
16 ×

1
11 ≈ 255.24 11-round encryptions,

and the number of remaining pairs is 239.7.
Guess MC−1(K1

⊕
α9){0, 7, 9, 14}, and the time com-

plexity is 239.7 × 2 × 216 × 4
16 ×

1
11 ≈ 251.24 11-round

encryptions, and the number of remaining pairs is 235.42.
Guess MC−1(K1

⊕
α9){2, 11, 12}, and the time complex-

ity is 235.42×2×212× 3
16×

1
11 ≈ 242.55 11-round encryptions,

and the number of remaining pairs is 231.14.
(5) Finally, the time complexity is 231.14× 2 × 9

16 ×
1
11 ≈

227.85 11-round encryptions.
Thus, the total time complexity is 2100.26 11-round

encryptions.

D. COMPLEXITY ANALYSIS OF ANOTHER DIFFERENTIAL
PATH WITH PROBABILITY OF 2−52

Similarly, add 3 rounds in its beginning and at the end of the
differential path with probability of 2−52 to attack 11-round
reduced Midori64. It is easy to get the probability of 2−56.18

for the top 3 rounds. So we choose n = 55.6. For a random
key, there are 22×55.6−1−56.18−64 ≈ 2−10 pairs left. However,
for the right key, there are 22×55.6−1−56.18−52 ≈ 4 pairs left
as the probability of the 5-round differential Path is 2−52. So,
the data complexity is 255.6 chosen plaintexts, and the time
complexity is 2109.35 11-round encryptions, Correspondingly.

V. CONCLUSION
In this paper, the MILP method model is improved to search
for differential characteristics by considering the probability

of differential propagation. Our results are more pre-
cise than that of counting the minimal number of active
S-boxes.

(1) The model is constructed with an exact probability for
each possible point in the DDT of S-box for Midori64 to
search for the differential characteristics with the maximal
differential probability by the optimal inequalities.

(2) We present a 5-round differential characteristics with
just two differential cells at the beginning and the the max-
imum probability is no less than 2−52. Based on the dif-
ference path, we provide an 11-round difference attack on
Midori64 with data complexity of 255.6 and computational
complexity of 2109.35. Another 5-round differential charac-
teristics is also shown with just one differential cell at the
beginning and the maximum probability is no less than 2−58.
Based on the difference path, an 11-round difference attack
is provided with data complexity of 261.2 and computational
complexity of 2100.26.

(3) The model considers only the differential characteris-
tics caused by plaintext differences. However, the schedule of
the round key is little arrangement, and it is easy to obtain the
related-key differential model by adding 128 key variables
into the above model.

REFERENCES

[1] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita,
and F. Regazzoni, ‘‘Midori: A block cipher for low energy,’’ in Proc.
21st Int. Conf. Appl. Cryptol. Inf. Secur. (ASIACRYPT) (Lecture Notes in
Computer Science), vol. 9453. Springer, 2015, pp. 411–436.

[2] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, and T. Peyrin,
‘‘The SKINNY family of block ciphers and its low-latency variant MAN-
TIS,’’ in Proc. CRYPTO, vol. 9815. New York, NY, USA: Springer-Verlag,
2016, pp. 123–153.

[3] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
‘‘GIFT: A small present towards reaching the limit of lightweight encryp-
tion,’’ in Proc. Cryptograph. Hardw. Embedded Syst. (CHES), 2017,
pp. 321–345, doi: 10.1007/978-3-319-66787-4_16.

[4] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, ‘‘PRESENT: An ultra-
lightweight block cipher,’’ in Cryptographic Hardware and Embed-
ded Systems—CHES. 2007, pp. 450–466, doi: 10.1007/978-3-540-74735-
2_31.

[5] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, ‘‘The LED block
cipher,’’ in Proc. 13th Int. Workshop, Cryptograph. Hardw. Embedded
Syst. (CHES), Nara, Japan, Sep./Oct. 2011, pp. 326–341, doi: 10.1007/978-
3-642-23951-9_22.

[6] J. Borghoff, A. Canteaut, T. Güuneysu, E. B. Kavun, M. Knezevic,
L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçcin, ‘‘PRINCE—A low-latency block cipher
for pervasive computing applications,’’ in Advances in Cryptology—
ASIACRYPT (Lecture Notes in Computer Science), vol. 7658, X. Wang
and K. Sako, Eds. Springer, 2012, pp. 208–225.

[7] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, ‘‘The SIMON and SPECK families of lightweight block
ciphers,’’ Cryptol. ePrint Arch., Tech. Rep. 2013/404, 2013. [Online].
Available: https://eprint.iacr.org/2013/404

[8] N. Mouha, Q. Wang, D. Gu, and B. Preneel, ‘‘Differential and linear
cryptanalysis using mixed-integer linear programming,’’ in Proc. Int. Conf.
Inf. Secur. Cryptol., 2011, pp. 57–76.

[9] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song, ‘‘Automatic
security evaluation and (related-key) differential characteristic search:
Application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented
block ciphers,’’ in Proc. Int. Conf. Appl. Cryptol. Inf. Secur., 2014,
pp. 158–178.

VOLUME 8, 2020 95895

http://dx.doi.org/10.1007/978-3-319-66787-4_16
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-642-23951-9_22


H. Zhao et al.: MILP-Based Differential Cryptanalysis on Round-Reduced Midori64

[10] Y. Sasaki and Y. Todo, ‘‘New impossible differential search tool from
design and cryptanalysis aspects: Revealing structural properties of several
ciphers,’’ in Proc. Adv. Cryptol., 36th Annu. Int. Conf. Appl. Cryptograph.
Techn. (EUROCRYPT), Paris, France, Apr./May 2017, pp. 185–215, doi:
10.1007/978-3-319-56617-7_7.

[11] S. Sun, L. Hu, L. Song, Y. Xie, and P. Wang, ‘‘Automatic security evalu-
ation of block ciphers with S-bP structures against related-key differen-
tial attacks,’’ in Information Security and Cryptology, vol. 8567. 2013,
pp. 39–51.

[12] S. Sun, L. Hu, M. Wang, P. Wang, K. Qiao, X. Ma, D. Shi, L. Song,
and K. Fu, ‘‘Towards finding the best characteristics of some bit-
oriented block ciphers and automatic enumeration of (related-key) dif-
ferential and linear characteristics 16with predefined properties,’’ Cryp-
tol. ePrint Arch., Tech. Rep. 2014/747, 2014. [Online]. Available:
http://eprint.iacr.org/2014/747

[13] L. Lin and W. Wu, ‘‘Meet-in-the-middle attacks on reduced-round
Midori64,’’ Cryptol. ePrint Arch., Tech. Rep. 2015/1165, 2015. [Online].
Available: http://eprint.iacr.org/2015/1165

[14] X. Dong and Y. Shen, ‘‘Cryptanalysis of reduced-round Midori64 block
cipher,’’ Cryptol. ePrint Arch., Tech. Rep. 2016/676, 2016. [Online]. Avail-
able: http://eprint.iacr.org/2016/676

[15] Z. Chen and X. Wang, ‘‘Impossible differential cryptanalysis of Midori,’’
Cryptol. ePrint Arch., Tech. Rep. 2016/535, 2016. [Online]. Available:
http://eprint.iacr.org/2016/535

[16] Z. Xiang, W. Zhang, Z. Bao, and D. Lin, ‘‘Applying MILP method
to searching integral distinguishers based on division property for 6
lightweight block ciphers,’’ in Proc. 22nd Int. Conf. Appl. Cryptol. Inf.
Secur. (ASIACRYPT), Hanoi, Vietnam, Dec. 2016, pp. 648–678, doi:
10.1007/978-3-662-53887-6_24.

[17] B. Zhu, X. Dong, and H. Yu, ‘‘MILP-based differential attack on
round-reduced GIFT,’’ Cryptol. ePrint Arch., Tech. Rep. 2018/390, 2018.
[Online]. Available: http://eprint.iacr.org/2018/390

[18] A. Abdelkhalek, Y. Sasaki, Y. Todo, M. Tolba, and A. Youssef, ‘‘MILP
modeling for (large) S-boxes to optimize probability of differential char-
acteristics,’’ IACR Trans. Symmetric Cryptol., vol. 2017, no. 4, pp. 99–129,
2017.

[19] A. Canteaut, E. Lambooij, S. Neves, S. Rasoolzadeh, Y. Sasaki, and
M. Stevens, ‘‘Refined probability of differential characteristics including
dependency between multiple rounds,’’ IACR Trans. Symmetric Cryptol.,
pp. 203–227, Jun. 2017.

[20] CPLEX: IBM Software Group, CPLEX 12.6, 2011.
[21] (2012). Gurobi: Gurobi Optimizer Reference Manual. [Online]. Available:

http://www.gurobi.com
[22] D. Gerault and P. Lafourcade, ‘‘Related-key cryptanalysis of Midori,’’

in Progress in Cryptology—INDOCRYPT (Lecture Notes in Computer
Science), vol. 10095. 2016, pp. 287–304, doi: 10.1007/978-3-319-49890-
4_16.

[23] J. Guo, J. Jean, and I. Nikolić, ‘‘Invariant subspace attack against Midori64
and the resistance criteria for S-box designs,’’ IACR Trans. Symmetric
Cryptol., vol. 1, pp. 33–56, Dec. 2016.

[24] Y. Todo, G. Leander, and S. Yu, ‘‘Nonlinear invariant attack: Prac-
tical attack on full Scream, Iscream, and Midori64,’’ in Advances
in Cryptology—ASIACRYPT (Lecture Notes in Computer Science),
vol. 10031. Springer, 2016, pp. 3–33.

[25] Z. Li, W. Bi, X. Dong, and X. Wang, ‘‘Improved conditional cube attacks
on Keccak keyedmodes withMILPmethod,’’ inAdvances in Cryptology—
ASIACRYPT (Lecture Notes in Computer Science), vol. 10624, T. Takagi
and T. Peyrin, Eds. Springer, 2017, pp. 99–127.

[26] L. Song, J. Guo, D. Shi, and S. Ling, ‘‘New MILP modeling: Improved
conditional cube attacks on keccak-based constructions,’’ in Advances
in Cryptology—ASIACRYPT (Lecture Notes in Computer Science),
vol. 11273, T. Peyrin and S. Galbraith, Eds. Springer, 2018, pp. 65–95.

[27] T. Cui, S. Chen, K. Jia, K. Fu, and M. Wang, ‘‘New automatic search tool
for impossible differentials and zero-correlation linear approximations,’’
Cryptol. ePrint Arch., Tech. Rep. 2016/689, 2016. [Online]. Available:
http://eprint.iacr.org/2016/689

[28] Y. Todo, T. Isobe, and Y. Hao, ‘‘Cube attacks on non-blackbox polyno-
mials based on division property,’’ IEEE Trans. Comput., vol. 67, no. 12,
pp. 1720–1736, Dec. 2018.

HONGLUAN ZHAO received the Ph.D. degree
from the School of Mathematics, Shandong Uni-
versity, in 2007. She is currently a Professor with
the School of Computer Science and Technology,
Shandong Jianzhu University. Her research inter-
ests include computer networks and information
security.

GUOYONG HAN received the B.E. and M.E.
degrees from Shandong University, Jinan, China,
in 2002 and 2006, respectively, and the Ph.D.
degree from the School of Information Science
and Engineering, Shandong Normal University,
Jinan, in 2019. He is currently anAssociate Profes-
sor with the School of Management Engineering,
Shandong Jianzhu University. He has published
over ten research articles in refereed academic
journals and conferences. His research interests

include information security and analysis and design of block ciphers.

LETIAN WANG is currently a Sophomore with
the School of Computer Science and Tech-
nology, Northeast Forestry University, Harbin,
China. He is a member of the NEFU NLP Lab.
His research interests include machine learn-
ing, knowledge graph, and genetic similarity
calculation.

WEN WANG received the B.E. and M.E. degrees
from the ShandongUniversity of Finance and Eco-
nomics, Jinan, China, in 2001 and 2004, respec-
tively, and the Ph.D. degree from the School of
Information Science and Engineering, Shandong
Normal University, Jinan, in 2011. She is currently
anAssociate Professor with the School ofManage-
ment Engineering, Shandong Jianzhu University.
Her research interests include information security
and machine learning.

95896 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-56617-7_7
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-319-49890-4_16
http://dx.doi.org/10.1007/978-3-319-49890-4_16

