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ABSTRACT With the advances in sonar imaging technology, sonar imagery has increasingly been used for
oceanographic studies in civilian and military applications. High-resolution imaging sonars can be mounted
on various survey platforms, typically autonomous underwater vehicles, which provide enhanced speed and
improved data quality with long-range support. This paper addresses the automatic detection of mine-like
objects using sonar images. The proposed Gabor-based detector is designed as a feature pyramid network
with a small number of trainable weights. Our approach combines both semantically weak and strong
features to handle mine-like objects at multiple scales effectively. For feature extraction, we introduce
a parameterized Gabor layer which improves the generalization capability and computational efficiency.
The steerable Gabor filtering modules are embedded within the cascaded layers to enhance the scale and
orientation decomposition of images. The entire deep Gabor neural network is trained in an end-to-end
manner from input sonar images with annotated mine-like objects. An extensive experimental evaluation
on a real sonar dataset shows that the proposed method achieves competitive performance compared to the

existing approaches.

INDEX TERMS Gabor neural network detector, Gabor layer, side-scan sonar, mine-like objects.

I. INTRODUCTION

Over the past two decades, autonomous underwater vehi-
cles (AUVs) have been increasingly used to survey the
seabed. AUVs provide an effective platform for mounting
high-resolution imaging sonars, e.g. side-scan or synthetic
aperture sonars. Compared to radars and lidars, sonars are
well-suited to the detection of small objects protruding from
the seabed due to their abilities to visualize the dynamic
underwater environments. Sound waves can propagate over
a longer range than those of electromagnetic waves and light
waves, due to their lower attenuation and dispersion in water.
Compared to optical sensors, sonars are a more effective
sensing modality for water-based activities in poor visibility,
e.g. low-light or turbid conditions.
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Automatic detection of mine-like objects (MLOs) in sonar
imagery, which is a critical task for a mine clearance sys-
tem, has attracted considerable research interest. As a cost-
effective method in asymmetric warfare, underwater mines
are commonly employed to block shipping lanes and restrict
naval operations. Underwater mines can also cause long-
lasting environmental damage due to the toxic explosive
compounds. Despite its high demand in mine countermea-
sures, developing an automatic system for MLO detection is
challenging for several reasons. First, a sufficient amount of
labelled data is required to train a detection model. However,
in practice, mine samples are extremely limited compared to
other object detection tasks because of the costly and time-
consuming data acquisition. Second, the acoustic features
of echoes vary significantly depending on the range and
aspect angle of sound pulses. As a result, an MLO (including
its shadow) is often imaged with various shapes that cause
difficulties for the detection process. Third, sonar imagery
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(a) ResNet-50 [11] (b) GoogleNet [12]

(c) AlexNet [13] (d) DenseNet-201 [14]

FIGURE 1. Some convolutional kernels learned by the first layer of
several well-known CNNs.

inherently includes the reverberation generated when trans-
mitted acoustic beams strike the boundaries (i.e., water sur-
face and seabed). The reverberation causes serious problems,
especially in shallow water, since the clutter can dominate the
background and completely cover the target objects.

Our Gabor-based approach is motivated by the biologi-
cal and computational evidence of the Gabor filtering. It is
widely accepted that the Gabor-like spatial functions are
closely related to the mammalian vision systems, particularly
in the perception of texture [1], [2]. Simple-cell receptive
fields in the primary visual cortex of higher mammals are
sensitive to orientations and spatial frequencies of the visual
signal. Several neurophysiological studies showed that the
simple cells found in the cat’s striate cortex respond pri-
marily to oriented edges and sinusoidal gratings, which can
be approximated by the Gabor functions [3], [4]. Further
studies conducted on macaques [5], [6] and humans [7], [8]
also interpreted the computational models of the primary
visual cortex as a bank of Gabor filters with selective orien-
tation, spatial frequency, phase and bandwidth. Interestingly,
such orientation-sensitive functions can be learned by many
machine learning algorithms when applied to natural images.
Several unsupervised methods, such as spike-and-slab sparse
coding [9] and restricted Boltzmann machines [10], discover
the features with Gabor-like weight patterns. In deep con-
volutional neural networks (CNNs) trained on large image
datasets, many adaptive filters also converge to the Gabor
functions, even from random initialization (see Fig. 1).

In this paper, we propose a Gabor-based neural network
architecture for MLO detection in sonar imagery. Inspired by
the YOLOv3 method [15], our approach adopts the detection
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framework with significant modifications in the network
architecture. First, the Gabor filtering is embedded in the
deep neural network for feature extraction and computational
efficiency. As an effective way to control overfitting, the pro-
posed Gabor layer has fewer trainable weights compared to
the standard convolutional layer. The full hierarchical Gabor-
based detector is trained in an end-to-end manner to dis-
cover the MLO features automatically. Second, our compact
architecture is designed as a feature pyramid network (FPN)
[16], where the low-resolution features are combined with
the high-resolution features to compensate the information
loss caused by the pooling effects. Compared to the original
YOLOVv3, the proposed Gabor detector enhances the seman-
tic information of the feature pyramid at more scale levels to
handle various MLO shapes (including shadows).

The main contributions of this paper can be highlighted
as follows. First, we propose a new deep Gabor neural net-
work (GNN) for MLO detection in sonar imagery. Second,
we introduce the Gabor layer as a generic feature extractor for
the design of compact neural architectures. Third, we conduct
extensive experiments to evaluate the proposed method using
a real sonar dataset provided by the Defence Science and
Technology Group, Australia.

The remainder of the paper is organized as follows.
Section Il introduces the related work on the automatic detec-
tion of MLOs. Section III describes the proposed Gabor-
based detection method. Section IV presents the experimental
results and analysis, and finally, Section V gives the conclud-
ing remarks.

Il. RELATED WORK

In this section, we first present a brief background on side-
scan sonar imagery, and then provide a review of MLO
detection methods.

A. SIDE-SCAN SONAR IMAGERY

A side-scan sonar provides high-resolution seabed morphol-
ogy from both sides of an AUV, see Fig. 2. Typically, the sonar
is mounted on a vehicle, which moves along a straight track
at constant speed and altitude. Transducers on either side of
the sonar periodically illuminate the seabed with fan-shaped
beams of high-frequency acoustic signals perpendicular to
the vehicle track. The backscattered intensities (as individual
scan-lines) are then concatenated to form a two-sided sonar
image. Note that such an image is represented in the time
coordinate, instead of the Cartesian coordinate, where the
echo amplitudes are displayed as image pixels. The vertical
axis corresponds to the time when the acoustic pulse is emit-
ted from the transducer, and the horizontal axis corresponds
to the time of flight (i.e., slant range) in the across-track
direction.

The seabed is commonly modeled as a Lambertian surface
[17], which scatters incident energy uniformly in all direc-
tions. In other words, the echo amplitude depends only on
the local angle of incidence 6 formed by the incident pulse
and the normal 7 to the surface. Let p = (F, @) be a point
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FIGURE 2. Principle of a side-scan sonar mounted on an autonomous
underwater vehicle.

on the seabed ensonified by an anisotropic acoustic signal
of intensity ¢(p). The backscattered intensity at p can be
computed as

- -

Fen

I(p) =« ¢(p) u(p) ——=——=-> ey
riinl

where « is a normalization constant, and (p) is the reflectiv-

ity coefficient of the seabed at p dependent on the sediment

type. An example of sonar image formation is shown in

Fig. 3.

FIGURE 3. Sonar image formation from an object lying on the seabed.

B. TRADITIONAL MINE-LIKE OBJECT
DETECTION METHODS
Over the past two decades, there have been several studies
on automatic detection of MLOs using sonar imagery. This
subsection presents a review of the traditional MLO detection
methods.

Most existing MLO detection methods have employed
feature-based algorithms to identify suspicious pixel regions.
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In [19], Sawas and Petillot applied the Haar-like features and
a cascade of boosted classifiers, which were first introduced
by Viola and Jones [31]. In [21], Barngrover et al. also
utilized the Haar-like feature classifier to generate image
patches (around regions of interest), which are then pro-
cessed by subjects using the rapid serial visual presentation
paradigm. Other feature-based methods used the geometric
visual descriptors, such as scale-invariant feature transform
(SIFT) [18], [32], [33] and local binary pattern (LBP) [20],
[34]. In [18], Hollensen et al. adopted the dense SIFT fea-
ture extraction with various window sizes for computing
orientation histograms. In [20], Barngrover et al. combined
the LBP features and the AdaBoost algorithm to create an
optimized cascade of features for classifying image windows.
The existing feature-based methods have a limitation in that
the feature extractors are manually designed to generate a fea-
ture vector from the input image window. However, finding
an appropriate feature extractor to capture salient features of
MLOs requires significant domain expertise.

In recent years, MLO detection methods have used deep
neural networks to process sonar images in their raw
form without manual feature engineering [22]-[24]. In [22],
Gebhardt et al. proposed various CNNs, where a global aver-
age pooling (GAP) layer is employed before each fully-
connected layer to produce a class activation map. In [24],
Denos et al. introduced a four-step pipeline of MLO detec-
tion including synthetic data generation, one-class classi-
fication, background extraction, and binary classification.
The second and fourth steps are performed using an auto-
encoder and a pre-trained network VGG-19, respectively.
In [23], McKay et al. utilized transfer learning with several
pre-trained CNNs for mine feature extraction. The feature
vectors are then used to train a support vector machine (SVM)
on a small sonar dataset. The main limitation of the exist-
ing CNN-based methods is their computational cost. This
is mainly due to the use of sliding windows for locating
MLOs, where separate predictions are computed at every
potential position. Furthermore, the existing methods do not
handle MLOs with various shapes effectively, since the slid-
ing windows (with a fixed aspect ratio) can lead to inaccurate
bounding box detection.

C. GENERIC OBJECT DETECTION METHODS
MLO detection using sonar imagery can be considered as a
subset of object detection. This subsection provides a brief
survey of the generic object detectors in computer vision,
which can be applied for the MLO detection.

With recent advances in deep learning, several techniques
for generic object detection have been proposed, with state-
of-the-art results. Such models can be categorized into two
main types: i) two-stage detectors, and ii) one-stage detectors.
Two-stage detectors, notably the R-CNN and its variations
[25], [26], [30], perform object detection in two stages. In the
first stage, a region proposal generation technique is used
to remove most of the backgrounds. In the second stage,
the remaining regions are categorized into different class

VOLUME 8, 2020



H.T. Le et al.: Deep Gabor Neural Network for Automatic Detection of Mine-Like Objects in Sonar Imagery IEEEACC@SS

TABLE 1. Representative methods for MLO detection and generic object detection.

Application Authors

Year | Technique

Hollensen et al. [18]

2011 SIFT features, SVMs

Sawas and Petillot [19]

2012 | Haar-like features, boosted classifiers

MLO detection Barngrover et al. [20]

2015 LBP features, boosted classifiers

Barngrover et al. [21]

2016 | Haar-like features, RSVP paradigm

Gebhardt et al. [22]

2017 | CNNs

McKay et al. [23]

2017 Transfer learning, SVMs

Denos et al. [24]

2017 | Auto-encoder, CNN

Generic object detection | Liu e al. [27]

Girshick et al. [25] 2014 | R-CNN
Girshick [26] 2015 | Fast R-CNN
2016 | SSD

Redmond et al. [28]

2016 | YOLOvl

Redmond et al. [29]

2017 | YOLOv2

Ren et al. [30]

2017 | Faster R-CNN

Redmond et al. [15]

2018 | YOLOv3

labels. In [25], Girshick et al. first introduced a method,
called R-CNN (Regions with CNN features), where a selec-
tive search algorithm is employed to generate category-
independent region proposals. Each candidate region is then
classified using the AlexNet with the linear SVMs. In [26],
Girshick proposed an improved version, called Fast R-CNN,
where the feature maps are produced once from the entire
image instead of region proposals. Based on the feature maps
and the proposals suggested by the selective search, fixed-
length feature vectors are then extracted for classification
and regression using a region of interest (Rol) pooling layer.
In [30], Ren et al. developed the Faster R-CNN with a
separate fully-convolutional network, called Region Proposal
Network (RPN), to predict candidate regions directly from
the convolutional feature maps.

One-stage detectors, notably YOLO (You Only Look
Once) [15], [28], [29] and SSD (Single Shot multi-box Detec-
tor) [27], predict bounding boxes directly from input images,
without region proposal generation. In [28], Redmond et al.
introduced the first version of YOLO, a real-time object
detector. The main idea is to divide the image into grid cells,
which are responsible for predicting the objects centered in
these cells. For each grid cell, a CNN regressor is employed to
predict several bounding boxes and the corresponding confi-
dence scores. In [29] and [15], Redmond et al. adopted several
powerful techniques to improve the detection performance
of YOLO. In YOLOV2 [29], the fully-connected layers are
removed from the base network Darknet-19, and multiple
anchor boxes are utilized at each grid cell for predicting
bounding boxes (similar to the Faster R-CNN). In YOLOv3
[15], the network Darknet-53 was proposed to make multiple
predictions at different scales. In [27], Liu et al. proposed
an object detector, called SSD, where six additional convo-
lutional layers are appended to the base network VGG-16.
Each additional layer produces feature maps at a scale for
the detection prediction. SSD also adopts anchor boxes at
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multiple scales and aspect-ratios to predict objects on multi-
ple feature maps. Essentially, SSD employs lower-resolution
feature maps to detect large objects, and high-resolution
feature maps to detect smaller objects. Table 1 presents a
summary of representative methods for MLO detection and
generic object detection.

Ill. PROPOSED DETECTION METHOD

This section presents the proposed detection method,
including the deep Gabor neural network architecture
(Section III-A), the proposed Gabor layer for feature extrac-
tion (Section III-B), the YOLOv3-based detection frame-
work (Section III-C), the loss function for network training
(Section III-D), and additional remarks on the conceptual
contributions (Section III-E).

A. NETWORK ARCHITECTURE

The GNN detector utilizes a feature pyramid to make pre-
dictions at three different scales (see Fig. 4). The network
comprises 17 Gabor layers with large kernel sizes in the early
layers (i.e., 15 x 15 and 7 x 7 pixels) and smaller kernel sizes
in the succeeding layers (i.e., 3 x 3 and 1 x 1 pixels). Each
Gabor layer is followed by a batch-normalization layer and
a LeakyReLU layer with the exception of the outputs. The
network employs four max-pooling layers of size 2 x 2 pixels
with stride of 2 for spatial dimensionality reduction.

Note that the high-resolution feature maps in the early
Gabor layers are well-suited to locating small objects, but
they contain semantically weak features. By contrast, the low-
resolution feature maps in the succeeding Gabor layers con-
tain semantically strong features, but the locations of MLOs
are not precise due to the pooling effects. To overcome
this problem, the proposed FPN architecture combines low-
level features with high-level features using a bottom-up
pathway, a top-down pathway, and two skip connections.
This strategy not only enhances the semantic information
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FIGURE 4. The proposed deep Gabor neural network for MLO detection in sonar images.

from both weak and strong features but also handles objects
at multiple scales effectively.

The bottom-up pathway, which is the feed-forward com-
putation of the backbone Gabor network, produces a feature
hierarchy by reducing the spatial dimension gradually. Given
an input sonar image of size 832 x 832 pixels, the first scale
of 16 (i.e., 52 x 52 grid cells) is obtained at the top of the fea-
ture pyramid to predict large MLOs. The top-down pathway
restores resolution from the semantically stronger (but spa-
tially coarser) features by upsampling. The upsampled feature
maps are then concatenated with those of identical spatial
size from the bottom-up pathway via the skip connections.
As a result, the second and the third scales of 8 and 4 (i.e.,
104 x 104 and 208 x 208 grid cells) are produced to handle
medium and small MLOs, respectively.

B. GABOR LAYER

A 2-D band-pass Gabor filter is an elliptical Gaussian enve-
lope modulated by a complex sinusoidal wave of specific
frequency and orientation. The harmonic component enables
the filter to be sensitive to spatial frequencies, while the Gaus-
sian component constrains the frequency sensitivity to local-
ized regions of the input image. As an edge detector, Gabor
filter responds strongly to patterns matching the orientation
of sinusoidal strips, and suppresses those perpendicular to
the orientation. This subsection introduces our Gabor-based
feature extractor, called Gabor layer, which can be trained in
an end-to-end manner.

Let oy and oy, be the standard deviations of elliptical Gaus-
sian envelope, which control the spatial scale of a Gabor filter.
Let ¢ be the phase offset, which determines how much the
sinusoidal component needs to be shifted with respect to the
origin. A complex Gabor filter plane with real and imaginary
components representing orthogonal directions is defined as

L+

7 exp (— ) exp (i 2muo (5 + 9},

G = 2y o2 o7
2)
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where 0 = oy, and y = o0,/0y is the spatial aspect
ratio which reflects the ellipticity of the envelope. Here,
X =xcosf +ysinf and y = —xsinf + ycos 6 denote the
transformed coordinates, where 6 specifies the orientation of
the normal to the parallel stripes. In Eq. (2), ug = vu? + v is
the center frequency, where u and v are the spatial frequencies
of the sinusoidal factors.

In practice, instead of specifying the value of o directly,
the receptive field is determined by the half-response spatial
frequency bandwidth g, which is given by

o In2
TV
B = log, = 3)
o n
PT TN

Here, A denotes the wavelength associated with the spa-
tial frequency of the sinusoidal component. From Eq. (3),
the standard deviation o is related to the wavelength by

o 1 [In2 28 +1
AT 2

26 —1°
Note that the spatial frequency bandwidth determines the cut-
off of the filter frequency response as frequency moves away
from the center frequency uq (i.e., 1/A). The ratio o /A deter-
mines the number of parallel excitatory and inhibitory lobes
observed in the receptive field. In summary, a single filter
plane is controlled by five parameters X, 6, ¢, y and B, which
are treated as the learnable parameters to be determined by the
training algorithm.

In this paper, we adopt the terminology commonly used in
deep learning literature when describing the network archi-
tecture [13], [28], [35]. Hereafter, a Gabor kernel is a 3D
tensor that comprises several Gabor planes organized as a
filter bank (see Fig. 5) so that the salient MLO features can
be extracted at various orientations, scales and translations.
In a deep hierarchical network, a Gabor layer employs several
parameterized Gabor kernels as steerable feature extractors.
These spatial kernels are then convolved with the input chan-
nels, yielding a Gabor space. We utilize the real impulse
response of the complex-valued kernels for the convolutional

“
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FIGURE 5. Visualization of three example Gabor kernels with four input
channels used in a single Gabor layer. Here, the real components of the
kernels are used.

computation since they resemble the receptive field found in
the cat’s striate cortex [36]. Mathematically, let 01 be the i-th
feature map in the /-th Gabor layer, and Gl be the i-th filter
plane of the j-th Gabor kernel. The j-th output feature map
can be computed as

01+1 f(z 01 X Gl (5)
i=1

where * denotes the two-dimensional convolution operator,

and f represents a non-linear activation function for the

extraction of non-linear features.

C. DETECTION FRAMEWORK

Each grid cell in a certain scale level employs three anchor
boxes (i.e., prior boxes) to predict bounding boxes. During
the training phase, each object is assigned to a grid cell
containing the object’s center and an anchor box associ-
ated with the highest intersection over union (IoU). The
network makes prediction as a logistic regression with six
components: (i) four scores (x,y, w, h) reflecting the off-
set of predicted bounding box; (ii) an objectness score s
representing the IoU between the predicted bounding box
and the ground-truth; and (iii) a conditional class probability
p(class = MLOJobject). Here, the coordinates (x, y) are the
object’s center relative to the grid cell, and (w, &) are the width
and height relative to the entire sonar image. Collectively,
the prediction at each scale is encoded as a tensor of size
n x n x 3 x 6, where n is the number grid cells used in the
scale level.

Note that our model predicts the relative offsets instead
of the absolute coordinates. Inspired by the YOLOv3 detec-
tion technique [15], [29], we process the relative offsets
to generate the absolute coordinates for the final output.
Briefly, the predicted center coordinates (x, y) and the output
objectness score s are squashed between 0 and 1 using a
sigmoid function. Given the predicted sizes (w, k), the abso-
lute outputs are obtained by computing the exponential then
multiplying by the corresponding sizes of the anchor.

During the test phase, the predicted conditional class prob-
abilities are multiplied by the corresponding objectness score
to produce a class-specific score for each bounding box [29].
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In other words, the class-specific score implicitly encodes:
(i) the probability of an MLO occurring in the predicted box,
and (ii) how well the box fits the object. Our method then
removes detections with scores lower than a predefined con-
fidence threshold, and sorts the remaining bounding boxes in
the descending order of the class-specific score. An analysis
of the confidence threshold selection is given in Section IV-D
Since multiple proposal boxes can be predicted for the same
object, the non-maximum suppression (NMS) algorithm [28]
with a pre-defined IoU threshold is adopted to remove dupli-
cate detections.

D. LOSS FUNCTION

During training, we minimize the YOLOv3-based loss func-
tion which is defined as

nxn 3

2 =33 IOl £) + 1, F)]

i=1 j=1

nxn 3

+ 33 IO = Vi) + (Vi — Jii?

i=1 j=I

nxn 3

> 1O )

i=1 j=1
nxn 3
+0.5 > > 1M (s, )
i=1 j=1
nxn
+> 1M1y, o). (6)

i=1
Equation 6 can be explained as follows:

o The loss function .Z consists of three components:
(i) localization loss, (ii) confidence loss, and (iii) clas-
sification loss.

o The first and second terms denote the localization loss,
which measures the errors in the offsets of the predicted
bounding box. To consider the regression errors with
respect to the bounding box sizes, we apply the square
root operator, which reduces the significance of high
regression errors for large boxes.

o The third and fourth terms denote the confidence loss,
which measures the errors in the objectness score of the
bounding box in both cases, with and without an MLO
detected in the box.

o The fifth term denotes the classification loss measuring
the difference between the actual and predicted class
probabilities if an MLO is present in the grid cell.

o 1}MO = 1if the j-th bounding box in the i-th grid cell
is responsible for detecting an MLO, otherwise 0, and
17°MLO s the complement of ]lg-/ILO. The function / is a
binary cross-entropy loss given by

l(a, &) = —aloga — (1 — a)log(l — &). (7
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E. REMARKS AND DISCUSSION

Before presenting the experimental results and analysis,
we provide brief remarks on the proposed Gabor layer and
GNN detector to highlight the contributions.

It is worth noting that the number of trainable parame-
ters of a single Gabor kernel is independent of the kernel
size. In designing deep networks, the receptive field (the
kernel size) needs to cover the entire relevant image region.
A sufficiently large receptive field is required to capture the
local context around every single pixel when making the
prediction. Existing attempts to extend the receptive field
have used large convolutional kernels in the early layers
[13], or stacking several layers with small kernels [11], [37],
[38]. However, increasing the receptive field size leads to
a rapid growth in the number of trainable parameters and
computational cost. Given a standard convolutional layer, let
k be the number of kernels of size m x n pixels, and ¢ be
the number of input feature maps. The number of trainable
weights in this convolutional layer is (m x n x ¢ + 1) x k.
By contrast, the proposed Gabor-based approach represents
each filter plane with only five parameters, regardless of the
kernel size. Thus, the number of trainable weights is reduced
to (5 x ¢+ 1) x k. As a generic feature extractor, the Gabor
kernel enables us to design compact networks with fewer free
parameters compared to the convolutional counterparts.

The GNN detector has several conceptual merits compared
to the relevant approaches of MLO detection. In terms of
network architecture, the proposed method extracts MLO
features at multiple scales, while maintaining a compact
architecture with fewer trainable parameters. Compared to
the tiny YOLOv3 method which decomposes the input image
at two scales of 32 and 16, our network performs the detection
at three scales of 16, 8§, and 4. In other words, the proposed
detector employs smaller grid cells at various sizes to han-
dle MLOs effectively. Compared to the full YOLOv3 with
the feature extractor Darknet-53 [15], the proposed GNN
achieves roughly 30 times reduction in the total number of
trainable weights. A small network size enables the entire
GNN model to be deployed on various survey platforms (e.g.,
AUV5s) as an efficient on-chip architecture.

In terms of detection framework, our approach processes
the entire input sonar image with a single feed-forward prop-
agation through the Gabor network, instead of using the slid-
ing window and region proposal techniques. This improves
the detection speed and the contextual information of the
extracted features. The proposed one-stage method performs
MLO detection as a regression problem, where bounding box
offsets and class probability are obtained directly from image
pixels. In other words, this enables us to maintain a sim-
ple detection pipeline without the softmax and classification
layers.

In terms of feature extraction, the Gabor filtering enhances
not only the scale and orientation decomposition of images
but also the invariant properties of the extracted fea-
tures [39]. Compared to the standard convolutional kernels
with randomly-initialized weights, the Gabor kernels follow
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TABLE 2. Summary of sonar data acquisition and experimental setup.

Description Specification
Sonar equipment MST side-scan sonar
Transmitted frequency 900 kHz
Maximum resolution 0.2m
Operation range (port and starboard sides) 30 m
AUV REMUS 100 AUV
Image size 1000 x 1024
Number of MLOs 216
Number of sonar images 190
Number of CV folds 5
Training/test images in each CV fold 153/37
Augmented training images in each CV fold 1683

patterns that are steerable to specific frequencies. A bank of
several Gabor filters can effectively extract the directional
texture features (e.g., shadows and strong edges) representing
structural properties of MLOs.

IV. RESULTS AND ANALYSIS

In this section, we first describe the data acquisi-
tion (Section IV-A) and the detection evaluation metrics
(Section IV-B), then investigate the anchor box selec-
tion (Section IV-C) and confidence threshold selection
(Section IV-D). Finally, we compare the proposed method
with six state-of-the-art generic object detectors in computer
vision (Section IV-E) and four relevant representative MLO
detection methods (Section IV-F).

A. SONAR DATA ACQUISITION AND ANNOTATION
The sonar data were provided by the Defence Science and
Technology (DST) Group in a naval mine-shape recov-
ery operation in Australia [40]. A Marine Sonic Tech-
nology (MST) side-scan sonar with dual frequencies was
employed for data acquisition. This sonar equipment has:
(1) a900 kHz channel with a resolution of 0.2 m and a practi-
cal maximum range of 30 to 40 m; and (ii) a 1800 kHz channel
with a resolution of 0.05 to 0.1 m and a maximum range
of 10 to 15 m. In the surveys conducted by the DST Group,
the first channel of 900 kHz was used, and the maximum
range of sonar operation for both port and starboard sides was
set to 30 m. The REMUS 100 AUV by Kongsberg Maritime
was utilized as an unmanned platform for rapidly detecting
MLOs on the seabed. The REMUS 100 AUV is a compact,
lightweight vehicle designed for operation in coastal environ-
ments. It has a maximum depth of 100 m, and an endurance
of up to 12 hours at the standard cruising speed of 1.5 m/s
(i.e., 3 knots) dependent on the sensor configuration. The
MLOs in the acquired sonar images were annotated by the
DST experts. There are 216 MLOs in 190 sonar images of
size 1000 x 1024 pixels.

The original images were resized to 832 x 832 pixels
to satisfy the designed input shape (i.e., multiple of 32)
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(a) Ground-truth 1

(d) Synthesized image from (a)

(b) Ground-truth 2

(e) Synthesized image from (b)

(c) Ground-truth 3

(f) Synthesized image from (c)

FIGURE 6. Data augmentation for training the MLO detectors. Top row: original sonar images with the MLO ground-truth. Bottom row: synthesized sonar

images with the MLO ground-truth. See electronic color images.

before being partitioned randomly into five cross-validation
folds. Thus, each case of cross-validation contains 153 sonar
images for training and 37 images for testing. For each fold,
we applied data augmentation to the training set to synthesize
additional training images as follows. The annotated MLOs
were extracted from the original images and then overlaid on
seabed backgrounds (without MLOs) at random locations.
The overlaying was performed such that the shadow direc-
tion of the MLO matched to the shadow direction in the
background image (i.e., across-track direction). Finally, each
augmented case of cross-validation contains 1683 images
for training and 37 images for testing. A summary of sonar
data acquisition and experimental setup is shown in Table 2.
Figure 6 presents three examples of original sonar images
with MLOs and the corresponding synthesized images for
data augmentation in our dataset.

B. DETECTION EVALUATION METRICS

To measure the detection performance, we adopted the eval-
uation metric of the PASCAL Visual Object Classes (VOC)
Challenge [41], which has been widely accepted as the bench-
mark for detection tasks. The principal quantitative metric
is the average precision (AP) using all-point interpolation,
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which can be closely estimated as the area under the
precision-recall curve (AUC). Note that, to compute the pre-
cisions and recalls, the detections are converted to classifica-
tions based on a pre-defined threshold of IoU. The predicted
bounding boxes having IoU scores (with the ground-truths)
above the threshold are considered as true positives, and those
with IoU scores below the threshold are considered to be
false positives. If multiple bounding boxes detect the same
MLO, the box with the highest IoU is counted as a correct
detection, and the remaining boxes are interpreted as false
detections.

Let r; € [0, 1] be the i-th recall value, and p(r;) be the
measured precision at r;. A version of the precision-recall
curve with precision monotonically decreasing is obtained by
setting p(r;) to the maximum precision for any recall 7 > r;.
The AP (i.e., AUC) interpolated over n unique recall values
can be computed as

n—1

AP = "(ri = ric1) pin(ri), ®)

i=2

where 0 (r;) = max p(7).
r=rg
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C. ANCHOR BOX SELECTION

Anchor boxes (i.e., prior boxes) affect significantly the effi-
ciency and accuracy of an object detector. Such pre-defined
boxes are commonly used to capture the aspect ratio of
specific object classes and handle multiple objects associ-
ated with the same grid cell. Inspired by YOLOv2 [29], our
approach present the anchor boxes by running k-means clus-
tering on the training MLO bounding boxes. Instead of using
Euclidean distance as in the standard k-means algorithm,
we use the IoU distance metric in clustering, which aims to
avoid the errors caused by the scale of boxes. The IoU metric
is computed as

d(box, centroid) = 1 — IoU(box, centroid). )

To investigate the effects of the number of anchor boxes
used for each grid cell, we varied its value from 1 to 15 with
a step of 1. Figure 7 shows the average IoU as a function of
the number of anchors. In practice, the average IoU should
be greater than 0.5, so that anchor boxes overlap well with
bounding boxes in the training data. Increasing the number of
anchors improves the average IoU measure, but using more
anchor boxes may cause overfitting and increase the compu-
tational cost [29]. Note that the number of anchors used in
our case must be a multiple of 3, since the proposed Gabor
detector produces three output scales. Among the evaluated
values, we selected nine candidate anchor boxes with an
average [oU of 0.813 for all subsequent experiments.

FIGURE 7. Relationship between the number of anchors and the average
loU.

D. CONFIDENCE THRESHOLD SELECTION

During the test phase, the proposed method employs a pre-
defined confidence threshold to discard weak detections. The
higher is the threshold value, the more candidate bounding
boxes are removed from the final detections. To investi-
gate the effects of the confidence threshold on the detection
performance, we varied its value from 0.05 to 0.85 with a
step of 0.05. The AP was measured at IoU = 0.5 as in the
PASCAL VOC metric. Figure 8 shows the AP as a function
of the confidence threshold. The experimental validation indi-
cates that the suitable range for the threshold is [0.05, 0.15],
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FIGURE 8. Relationship between the confidence threshold and the
detection accuracy.

where the AP measure remains stable. Based on these results,
we employ the threshold value of 0.15 for the subsequent
experiments.

E. COMPARISON WITH THE STATE-OF-THE-ART

OBJECT DETECTORS

The proposed Gabor detector is compared to six state-of-
the-art generic object detectors: 1) R-CNN [25], 2) Fast
R-CNN [26], 3) Faster R-CNN [30], 4) SSD300 [27],
5) tiny YOLOV3, and 6) full YOLOV3 [15]. All experiments
were conducted on a computer with Intel Xeon Gold 5115
2.40 GHz processor and NVIDIA TITAN Xp GP102 graphics
card.

o For the R-CNN detector and its variants (i.e., Fast
R-CNN, Faster R-CNN), the ResNet-50 [11] was
employed as a backbone network for feature extraction.
A new classification layer, a regression layer, and a
ROI max-pooling layer (applied to the Fast R-CNN and
Faster R-CNN) were then added to the backbone to sup-
port object detection. To generate the region proposals
for the R-CNN and the Fast R-CNN, we employed the
Edge Boxes algorithm [42], which has been shown to be
more computationally efficient than the Selective Search
algorithm. The maximum number of strongest region
proposals used for generating training samples was set to
2,000. The negative and positive ranges, which are used
to determine the negative and positive training samples
if the region proposals overlap with the ground-truths,
were set to [0, 0.3] and [0.3, 1], respectively.

« For the SSD300 detector, we utilized the standard input
shape of 300 x 300 pixels. The confidence threshold for
removing the weak detections was set to 0.4.

« For the tiny and full YOLOV3 detectors, we employed
the pre-trained tiny weights and Darknet-53 weights
[15], respectively. The confidence threshold and the IoU
threshold of the NMS algorithm [28] were set to 0.3 and
0.15, respectively.

Table 3 presents the detection performance of the evaluated
methods. In terms of accuracy, it is clear that the proposed
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TABLE 3. Detection performance of the proposed GNN and other object detectors.

Method AP +SD (%) | Frames/second # Totva;:!it;ﬁ:;lable Mo(tli(e]lgize Mo‘tl:lﬂslielfg;ﬁtive

GNN 79.93 + 7.66 3.01 2,084,880 8,305 1 x

R-CNN [25] 37.62 + 11.85 0.30 25,502,912 100,632 12.11x
Fast R-CNN [26] 18.26 + 3.90 1.29 25,436,865 100,371 12.01x
Faster R-CNN [30] 9.41 +£3.16 2.89 25,703,510 101,423 12.21x
Tiny YOLOV3 [15] | 70.54 +8.91 28.41 8,609,876 33,990 4.10x
Full YOLOV3 [15] 72.76 + 9.53 15.07 61,523,734 241,082 29.01x
SSD300 [27] 27.08 £+ 6.90 7.17 23,371,782 91,427 11.01x

AP was measured at IoU = 0.5 (as in PASCAL VOC metric). SD stands for the standard deviation. Model size was

calculated for the HDFS5 file storage.

FIGURE 9. Precision-recall curves of the GNN and other object detectors
over the five cross-validation folds.

GNN detector outperforms the existing object detectors.
Among the evaluated methods, the proposed method achieves
the highest AP of 79.93%, while the AP yielded by the
existing methods varies from 9.41% to 72.76%. Compared to
the full YOLOV3 and tiny YOLOV3, the best and second-best
existing detectors, the GNN detector produces an improve-
ment of 7.17% and 9.39%, respectively. In terms of model
size, the proposed compact GNN achieves a significant reduc-
tion compared to other methods. The model size of the
GNN detector is 4.1 times smaller than that of the tiny
YOLOV3 detector.

In terms of detection speed, Table 3 shows that the pro-
posed method is faster than the two-stage detectors (R-CNN,
Fast R-CNN, and Faster R-CNN), and slower than the exist-
ing one-stage detectors (YOLOV3 and SSD300). It can oper-
ate at a speed of 3.01 frames/s, which is 10 times faster than
the R-CNN, and 5 times slower than the full YOLOv3. Note
that this paper focuses on improving the detection accuracy
due to the user demand of a reliable MLO detection algo-
rithm. Although the current detection speed is acceptable to
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the users, it would be useful to improve the inference time
by investigating more compact networks and optimizing the
Python implementation of the Gabor layer. Both directions
are feasible, and we leave their detailed explorations for
future studies.

Figure 9 presents the precision-recall curves over the five
cross-validation folds for further insights into the detec-
tion capability of the evaluated object detectors. Clearly,
the precision-recall curve produced by the proposed GNN is
better than the others because it produces a higher precision
at each level of recall. The detection performance of the
GNN is also more stable than those of the existing methods.
Several outputs of the GNN detector are presented in Fig. 10.
The experimental results show that the proposed method can
detect MLOs with various shapes, in different seabed terrains.

On our sonar image dataset, YOLOv3 is found to have
better detection accuracy than Faster R-CNN. On benchmark
datasets such as MS COCO, Faster R-CNN is shown to
have similar detection accuracy as YOLOvV3 [15], [26], [30].
A possible explanation for the different findings is the small
number of sonar images available for training. Our sonar
dataset contains 190 sonar images (before data augmenta-
tion) with 216 MLOs, as it costs several thousand dollar to
deploy an underwater mine, record sonar images, and retrieve
the mine. In comparison, the MS COCO dataset for object
detection task contains more than 200,000 images with over
500,000 object instances categorized into 80 classes [43].
Furthermore, Faster R-CNN is a two-stage detector that uses
an additional fully-convolutional network (i.e. the RPN) for
predicting candidate regions, whereas YOLOV3 is a one-stage
detector. It is possible that Faster R-CNN needs more training
images to reach a similar detection performance as YOLOV3.

F. COMPARISON WITH THE RELEVANT MLO

DETECTION METHODS

The proposed GNN detector is compared to four represen-
tative existing methods that were specifically designed for
MLO detection: (1) Haar-like cascade detector [19], (2) LBP
cascade detector [20], (3) the pre-trained VGG-19 with an
SVM classifier [23], and (4) CNNs with GAP layer [22].
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(a) Ground-truth 1

(d) GNN output of (a)

(b) Ground-truth 2

(e) GNN output of (b)

(c) Ground-truth 3

(f) GNN output of (c)

FIGURE 10. Representative visual results produced by the proposed GNN detector. Top row: test sonar images with the MLO ground-truth. Bottom row:

detection results by the GNN. See electronic color images.

e For Method (1) and (2), we found that the number
of cascade stages giving the best performance is from
5 to 7, which agrees with [19]. Note that the more
cascade stages we use, the more image data are required
to train the detector. For the subsequent experiments,
we employed the value of 5 which is well-suited to
our available sonar data. A scaling factor of 1.1, which
determines the amount of scaling applied to the input
image after each increment, was employed to enable
multi-scale detection.

o For Method (3) and (4), we implemented the network
architecture as suggested in [22], [23]. A sliding win-
dow of fixed size 101 x 101 pixels and a sliding step
of 20 pixels was utilized to locate the MLOs. For Method
(4), the network consists of 9 convolutional layers and a
GAP layer added after the last convolutional layer. The
input image size of 832 x 832 pixels for these methods
was the same as those of the GNN detector.

Note that the cascade detectors do not produce the con-
fidence scores, which are employed to sort the detections
before calculating the precisions and recalls. The CNN-
based methods merely classify the sliding window without
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returning the offsets of bounding boxes. Hence, instead of
using the AP metric to evaluate the detection performance,
we recorded three performance measures: 1) the number of
correct detections (i.e., true positives), 2) the number of incor-
rect detections (i.e., false positives), and 3) the number of
ground-truths not detected (i.e., false negatives). A predicted
sliding window containing an MLO is considered as a correct
detection. When multiple windows cover the same MLO,
the first predicted window is counted as a correct detec-
tion, and the remaining windows are interpreted as incorrect
detections. The scores were accumulated over the five cross-
validation folds.

Table 4 shows the performance of four existing MLO
detection methods. Clearly, the proposed GNN detector out-
performs the existing methods in terms of both the correct
detection rate and the frame rate. The GNN detector achieves
a detection rate of 80.5% (i.e., 174/216), which is 3.8 times
higher than that of the VGG-19 method. The results also
indicate that the GNN detector is more reliable than the exist-
ing methods: it produced the smallest number of incorrect
detections (46) over the five test folds. Compared to the
cascade detectors with a frame rate of roughly 0.05 frames/s,

VOLUME 8, 2020



H.T. Le et al.: Deep Gabor Neural Network for Automatic Detection of Mine-Like Objects in Sonar Imagery

IEEE Access

TABLE 4. Detection performance of the proposed GNN and relevant MLO detection methods.

Method # Correct detections | # Incorrect detections | # Ground-truths not detected | Frames/second
GNN detector 174 46 42 3.018
Haar-like cascade detector [19] 18 319 198 0.053
LBP cascade detector [20] 23 267 193 0.051
VGG-19 + SVM [23] 46 107 170 0.004
CNN + GAP [22] 9 134 207 0.007

the proposed method is 57 times faster. The CNN-based
methods using sliding window are the slowest with the frame
rates between 0.004 to 0.007 frames/s.

V. CONCLUSION

In this paper, a novel Gabor-based deep neural network
architecture is proposed for automatic detection of MLOs
in sonar imagery. The steerable Gabor filtering modules are
embedded within the cascaded layers to enhance the scale
and orientation decomposition of images. The proposed GNN
is designed as a FPN-like architecture with a small number
of trainable weights, which can be trained in an end-to-
end manner to extract the MLO features automatically. The
experimental results on a real sonar dataset, provided by the
DST Group, Australia, indicates that the proposed GNN is
an effective MLO detection method for AUVs in terms of the
accuracy and the model size. Compared to the state-of-the-
art object detectors in computer vision, the proposed GNN
demonstrates a significant improvement in the AP metric
and at least 4 times reduction in the model size. Compared
to the relevant MLO detection methods, our approach not
only achieves a higher detection rate but also improves the
detection speed significantly.

APPENDIX
DERIVATION OF GABOR ERROR GRADIENT
This section presents the derivation of Gabor error gradient,
which is used for end-to-end training of the proposed net-
work.

1) ojl. (x,y) is the output of neuron (x, y) in the j-th feature
map of the /-th Gabor layer:

o;(x, y) =f(S]l~(x7 ),

where f denotes an activation function.

(10)

2) sjl.(x, y) is the weighted sum input to neuron (x, y) in
the j-th feature map of the I-th Gabor layer produced by
convolutional computation:

S, =y > Y g y) oY)

i=1 x" y

Y

3) g? j(x, y) is a real impulse response of the i-th filter plane
in the j-th Gabor kernel. The value of gfy j(x, y) yielded from
the trainable Gabor weights is defined by Eq. (2).

VOLUME 8, 2020

4) Using the chain rule of differentiation, we can express the
partial derivative of the total error with respect to (w.r.t.) the
k-th weight for the i-th filter plane in the j-th Gabor kernel
(.e., )\f’j, 91{]., ¢£,j’ yi{j and ,Bil‘j) as

OE  QE  00(x.y) ds5(x.y) 8g;(x.)
) - 1 ) 1 1 '
3Wi’j(k) 80j(x, y) 3sj(x, y) 8g,~’j(x, ») 8W,"j(k)

12)

Assuming the rectified linear unit (ReLU) is used as the
activation function, we can rewrite Eq. (12) as

IE IE Osi(x,y) gl y)

7 =51 7 7 (13)
aw,.,j(k) aoj(x,y) Bgiyj(x’,y/) Bwiﬁj(k)

Substituting the derivative obtained from (11) into (13)
gives

o o

_ agf’j('x/v y/)
! - 1
awi’j(k) Boj(x, y)

. (4
awﬁ’j(k) (14)

Oﬁ—l(x/, )’/)

Here, the partial derivatives of the Gabor function with
respect to Gabor parameters y and ¢ can be computed
directly as

> 2452
2g(x, y) 1 F 22T
= 5355 — D expi- )
dy 2r02y? y20 20
2w .
x cos{T(x + 9)}, (15)
de(x. ) e )
gx,y) v int =" (3
96~ ayo? SPIT T lsintmrE ). (16)

For parameter 6, the partial derivative can be obtained using
the chain rule as follows:

ag(x, y)
26
- ~ 2,2
dg(x,y) 9% y 2ty
= R = e (-t )
ox 060 2nyo 20

27 . 2w . x 1 2
X[T sm{T(x +¢) + ;(ﬁ — 1)COS{T(X + 91,
(17)
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Similar to (17), the partial derivative of the Gabor function
with respect to parameter A is given by

0g(x,y)
oA
_agr.y) o
T 30 oA
~2 -
{ ii_%yz}
 yio? xp 202
~2 _
FanZ ot 2 ot Z i)
X|— Ssiny— — e — COSy— .
a oY 2 o2 P

(18)

Using (4) and applying the chain rule, we obtain the partial
derivative of the Gabor function w.r.t. parameter :

dglx,y)  oglx,y) do A 2 2°
B do 9B ymle3\ 2 26—1
w2 w2
%‘l‘)’z 2 % }72 2w
x( 7~ Dexp - 752 } cos{ . (x+9¢)}.

(19)
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