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ABSTRACT Soil salinization as one of the major eco-environmental problems, has greatly restricted the
regional development of Yellow River Delta. In this paper, five parameters that derived from Landsat images,
including MSAVI, Albedo, SI, IFe2O3, and WI have been utilized to establish ten feature spaces, and four
categories of salinization detection model have been proposed. After analysis and comparison of inversion
accuracy, the three typical surface parameters, including SI (R2 = 0.85), IFe2O3 (R2 = 0.83), and WI
(R2 = 0.83) are better indices to retrieve the salinization information and the WI-SI point to line (soil
line) model(R2 = 0.88), the Albedo–SI point to line (wet line) model(R2 = 0.87) and the Albedo–IFe2O3
point to point model(R2 = 0.86) have better applicability to monitor the salinization condition in the Yellow
River Delta. The research results can provide technical method reference for salinization monitoring of other
regions.

INDEX TERMS Soil salinity, Albedo, Landsat 8 image, MSAVI, monitoring.
I. INTRODUCTION
YellowRiver Delta has themost integrated new-born saliniza-
tion system in China [1], [2]. It has prominent soil salinization
and fragile ecological environment because of less precipi-
tation, large evaporation, serious uneven drought and flood,
and significant seasonal dry and wet alternation [2]–[4].
Soil salinization has critically restricted the development of
regional agricultural economy in the Yellow River Delta
[5]–[7]. Thus, it is urgent to obtain the soil salinization
information, which can provide decision supports for the
prevention and governances of soil salinization [2], [8]–[11].

Traditional studies on soil salinization are mostly based
on field measurements, which are characterized by expen-
sive cost, time-consuming and small spatial scale [1], [2],
[12]–[16]. During the past decades, remote sensing and
Geographic Information System technology have provided
a fast and accurate new approach to obtain the salin-
ization information of large-scale regions [2], [17]–[22].
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Scudiero et al. [23] applied the linear modeling of remote
sensing vegetation indices to explore the potentials of assess-
ing soil salinity. Ivushkin et al. [3] produced a global soil
salinity map by combining thermal infrared images, soil
texture data and field observations with machine learning
method. Wang et al. [24] conducted the detailed comparison
in monitoring salinization between Sentinel-2MSI and Land-
sat 8 image and found that MSI image performed better than
Landsat 8 image. In recent years, the feature space models
that constructed by surface parameters have been applied to
monitor the soil salinization [25], [26]. Wang et al. [10] uti-
lized the biophysical parameters, such as vegetation coverage,
soil moisture and surface evapotranspiration, to propose a
‘‘Triangle methods’’ to analyze the process of soil saliniza-
tion. Ha et al. [4] constructed the SI-Albedo feature space
model and found that the change of soil salinity and soil
moisture content had significant relations with soil saliniza-
tion. Ding et al. [27] had proposed the MSAVI-VI feature
space model to detect the regional salinization information
and found that there existed significant relationships between
MWI index and surface soil salinity. Zhang et al. [28] had
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explored the relationship between modified soil adjusted
vegetation index (MSAVI) and salinity index (SI) based on
the Landsat OLI image and field survey data and then pro-
posed the salinization remote sensing information extraction
model. However, only the linear relations between different
feature space parameters has been considered in most pre-
vious relative studies, which has ignored the complicated
impacts of biological and abiotic factors on salinization
process [2], [29], [30].

Therefore, after fully considering the landscapes types of
Yellow River Delta, five parameters that derived from Land-
sat 8 OLI images have been applied to establish ten monitor-
ing indices based on four categories of feature space models
for Yellow River Detla. Finally, the optimization detection
model of soil salinization has been proposed.

II. MATERIALS AND METHODS
A. DATA COLLECTION AND PREPROCESSING
In this study, two kinds of data have been utilized to construct
the models:(1) Satellite images;(2) field observed data. The
Landsat 8 OLI data (Oct 26, 2016; 122/34) was used to
retrieve the salinity index with spatia-temporall resolutions
of 30m and 16 days, respectively. This above dataset can
be obtained from USGS. The FLAASH models have been
utilized to remove the influence of atmosphere and light on
the reflection of ground objects [2], [7]. Figure 1 showed that
32 surface soil samples (30m×30m) with a depth of 0–10 cm
were chosen from zones with diverse landscapes during Oct
25-26, 2016. Each sample was composed of five observed
data with plum blossom shape. The 32 soil samples were
crushed passed through a 2-mm mesh and then the suspen-
sions of soil and water with 1:5 ratio were utilized to obtain
the salt content [2], [14].

FIGURE 1. Spatial distribution of vegetation coverage and sample points
in Yellow River Delta.

B. PRINCIPLE OF FEATURE SPACEA(TAKING
ALBEDO-MSAVI FEATURE SPACE
AS EXAMPLE)
Previous studies showed that vegetation coverage would
became become sparse with the deterioration of soil salin-
ization [2], [10], [15], [22]. Therefore, the MSAVI is a better
indicator to reflect the salinization process, especially in the
arid and semi-arid zones [2], [4]. Surface albedo (Albedo) is
an important parameter to indicate the short wave radiation

FIGURE 2. Principle of Albedo-MSAVI feature space.

from the earth’s surface to the sun. Its value would be greatly
influenced by the soil surface conditions [2], [11], [17]. With
the aggravation of salinization, the surface albedo increased
correspondingly. As shown in Figure 2, there was a negative
correlation betweenAlbedo andMSAVI. The upper boundary
A–D can reflects the severe salinization condition, which is
the maximum Albedo corresponding [7], [19]. The lower
boundary B–C represents the low Albedo line and it can
reflects the slight salinization condition [2].

C. INDEX OF THE FEATURE SPACE MODEL
Albedo can reflect the short wave radiation from the land
surface [2], [11], [15], [23], [31]–[33]. The vegetation growth
and albedo can be indirectly affected by the soil salinization
process. Thus, both albedo and vegetation indices (such as
MSAVI) are better surface parameters to monitor the soil
salinity [2], [15]. Salt in seawater is another dominant factor
of soil salinity. Salinity index (SI) can directly reflect the
salinization condition. Wetness index (WI) has significant
negative effects on soil salinization [2], [7], [15], [27]. The
soil salinization process will not only affect the vegetation
growth, but also affect chemical substances contained in the
soil. Therefore, the iron oxide index (IFe2O3) is also a bet-
ter indicator for the soil salinization process [2], [9]. The
five indices that derived from Landsat 8 OLI image, includ-
ing Albedo, WI, MSAVI, SI, and IFe2O3 are calculated as
follows [2], [9], [11], [15]

Albedo = 0.356× Blue+ 0.130× Red+ 0.373× Nir

+ 0.085× SW1+ 0.072× SW2− 0.0018 (1)

WI = 0.1446×Blue+0.1761×Green+0.3322×Red

+ 0.3396×Nir−0.6210×SW1−0.4186×SW2

(2)

MSAVI = (2Nir+1−
√
(2Nir+1)2−8(Nir−Red))/2 (3)

SI =
√
Blue× Red (4)

IFe2O3 =
Red
Nir

(5)
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FIGURE 3. Four typical feature spaces models (a) IFe2O3–Albedo; (b)Albedo–SI; (c) IFe2O3–MSAVI; (d) WI–SI.

FIGURE 4. Salinization process in Albedo–IFe2O3 feature space (a) non; (b) mild; (c) moderate; (d) severe.

where Blue, Green, Red, Nir, SW1, and SW2 are the
reflectance of blue band, green band, red band, mid-infrared
band, and near-infrared band, respectively.

D. INDEX STANDARDIZATION
There existed great difference among parameters, and the
data standardization should be conducted to eliminate these
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FIGURE 5. Salinization process in Albedo–SI feature space (a) non;
(b) mild; (c) moderate; (d) severe.

differences [7], [11], [15], [34], [35]:

A =
Al− Almin

Almax−Almin
(6)

where A refers to the standardized surface albedo index; Al
refers to the surface albedo index; Almin and Almax refer to
the minimum and maximum value of surface albedo index,
respectively.

W =
WI−WImin

WImax−WImin
(7)

where W refers to the standardized wetness index; WI refers
to the wetness index; WImin andWImax refer to the minimum

FIGURE 6. Salinization process in IFe2O3–MSAVI feature space (a) non;
(b) mild; (c) moderate; (d) severe.

and maximum value of wetness index, respectively.

M =
VI− VImin

VImax−VImin
(8)

where M refers to the standardized vegetation index; VI is
the vegetation index; VImin andVImax refer to the minimum
and maximum value, respectively.

S =
Si− Simin

Simax−Simin
(9)

where S refers to the standardized salinity index of i; Si refers
to the salinity index; Simin and Simax refer to theminimum and
maximum value of salinity index, respectively.

I =
IFe2O3 − IFe2O3 min

IFe2O3 max − IFe2O3 min
(10)
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FIGURE 7. Salinization process in WI–SI feature space (a) non; (b) mild;
(c) moderate; (d) severe.

where I is the standardized iron oxide index; IFe2O3 is the
iron oxide index; IFe2O3min and IFe2O3max are the minimum
and maximum value, respectively.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. CONSTRUCTION OF FEATURE SPACES
The zones with water and artificial impervious surface were
extracted firstly with ENVI 5.3 [2]. Then, five indexes

FIGURE 8. Salinization detection index model (SDI1) based on
Albedo–IFe2O3 feature space (a) Principle of SDI1 (b) Levels of soil
salinization in feature space.

including Albedo, MSAVI, SI, WI, and IFe2O3 were applied
to establish ten feature spaces. According to the spa-
tial change patterns of soil salinization process in feature
space, ten feature spaces could be divided into four cate-
gories: (1) point to point feature space, includes Albedo–
IFe2O3, Albedo–MSAVI, Albedo-WI, IFe2O3–SI, IFe2O3–WI,
MSAVI-SI, MSAVI-WI;(2) point to line (wet line) fea-
ture space, includes Albedo–SI; (3) linear feature space,
includes IFe2O3–MSAVI;(4) point to line (soil line) fea-
ture space, includes WI–SI. In this study, Albedo–SI,
IFe2O3–MSAVI, Albedo–IFe2O3 and WI–SI feature spaces
were applied to explore each category of feature space,
respectively(Figure 3).
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FIGURE 9. Salinization detection index model (SDI2) based on Albedo–SI
feature space (a) Principle of SDI2 (b) Levels of soil salinization in feature
space.

B. SPATIAL DISTRIBUTION SALINIZATION MODELS
As was shown in Figure 4, we chose four point clusters
to indicate different levels of soil salinization according
to the distance to the point (0.8, 0) in Albedo–IFe2O3 fea-
ture space. The results showed that the spatial distributions
of different categories of soil salinization (non saliniza-
tion, mild salinization, moderate salinization, and severe
salinization) differed greatly in the Albedo–IFe2O3 feature
space.

Figure 5 showed that the distance to the L line that is
parallel to the ‘‘wet line’’ could be utilized to reflect the
soil salinization process in Albedo–SI feature space. The soil
salinization condition would become more severe with the
increasing distance that from the L-line [2].

As was shown in Figure 6, this fit curve could better reflect
the change process of soil salinization in IFe2O3–MSAVI
feature space. These spatial distribution laws could help to
distinguish levels of soil salinization.

FIGURE 10. Salinization detection index model (SDI3) based on
IFe2O3–MSAVI feature space (a) Principle of SDI3 (b) Levels of soil
salinization in feature space.

Similar to Figure 7, the distance from any point to L line
that was parallel to the soil line could better reflect the degrees
of salinization condition in Albedo–SI feature space. The
salinization would be more severe when the distance from
the L-line became larger [2].

As was shown in Figure 8, the distance to D (0.8, 0) could
better explain the soil salinization process in Albedo–IFe2O3
feature space. The further away any point from point D,
the more severe soil salinization. The salinization detection
function (SDI1) was developed as follows:

SDI1 = L1 =
√
(Albedo− 0.8)2 + IFe2O32 (11)

As shown in Figure 9, the distance to L line could indicate
the soil salinization process in Albedo–SI feature space. The
further away from the L line, themore severe soil salinization.
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FIGURE 11. Salinization detection index model (SDI4) based on WI–SI
feature space (a) Principle of SDI4 (b) Levels of soil salinization in feature
space.

The salinization monitoring function (SDI2) was proposed
and M referred to the slope of ‘‘wet line’’:

SDI2 = L2 =
|1+M × Albedo− SI |

√
1+M2

(12)

Figure 10 showed that the IFe2O3-MSAVI feature space
was divided into different parts in the vertical direction of
the curve, which could reflect the salinization process. And
then different levels of soil salinization could be better dis-
tinguished. The region perpendicular to the IFe2O3-MSAVI
feature space can be determined by a binary linear function
considering the linear relationship between the above factors.

SDI3 = L3 = a× IFe2O3 −MSAVI (13)

where a refers to the slope of the linear equation.
Similar to Figure 11, the distance to L line could be utilized

to distinguish different levels of soil salinization inWI-SI fea-
ture space. The soil salinization would become more severe

FIGURE 12. Average inversion accuracy of each typical factor.

with the increasing distance to the L line (parallel to the soil
line). The salinization monitoring function of soil salinization
(SDI4) was established.

SDI4 = L4 =
|SI− pWI− 1|
√
1+ p2

(14)

where p is the slope of ‘‘soil line’’.

IV. RESULTS AND DISCUSSIONS
Ten salinization detection indices were obtained utilized the
above four categories of models, then the inversion accura-
cies have been analyzed and compared based on 32 field
observation samples([2], Table 1 and Figure 1). The results
(Table 2) showed that WI-SI point to line (soil line) model
had the largest inversion accuracy with R2 = 0.88, followed
by Albedo–SI point to line (wet line) model (R2 = 0.87)
and Albedo–IFe2O3 point to point model (R2 = 0.86). On the
contrary, the Albedo–MSAVI point to point model had the
smallest inversion accuracy with R2 = 0.77. This result was
consistent with that of Wang et al. [10] and Guo et al. [34].
The reasons lied in the fact that the point to line (wet line
or soil line) models had fully considered the non-linear rela-
tions among different variables. It could better eliminate the
effects of soil background or vegetation saturation effect [2],
[35]–[38]. As shown in Figure 12, the average precision of
feature spacemodels that contained SI was the best withR2 =
0.85, followed by that of IFe2O3 (R2 = 0.83) and WI (R2 =
0.83). On the contrary, the average precision of feature space
model that contained MSAVI was the worst with R2 = 0.80.
This above conclusions were consistent with the studies of
Ivushkin et al. [3] and Guo and Wen [7]. The reason was that
the salinity would precipitate out of the surface soil, which
apparently affected the surface albedo [2], [34], [32]–[36].
Moreover, iron oxide was an important factor that affected
the spectral characteristics of the soil [9]. Many absorption
characteristics of soil in the visible band had significant
relations with iron oxides. And the reflectivity of soil would
decrease with the presence of iron oxides [2], [9], [40].
Moreover, the chemical weathering played an important role
in the soil salinization process [2], [41]. Humidity index
derives from the third component of Hat Transformation with
Landsat8 OLI images, which can better reflects the condition
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TABLE 1. Values of field observed soil salt content

TABLE 2. Precision comparisons among different detection models.

of soil humidity in the study area [2], [34], [42]. There existed
better relations between soil moisture and soil salinization
process[42]. Salt in seawater was another dominant factor of
soil salinity [2]. Soil humidity would be significantly affected
by seawater, so that the soil salinization occurred commonly
in the study area [27], [42]. Although, MSAVI could better
reflect the vegetation condition, there were many types of
salt-tolerant plants. And vegetation coverage was not the
smallest in some region with severe salinization [2], [15],
[41], [43]. Therefore, the MSAVI was not the optimal indices
to reflect the condition of soil salinization for this study area.
In conclusion, three typical surface parameters, including SI,
IFe2O3, and WI were better indices to retrieve the salinization
information. And for the Yellow River Delta, the WI-SI point
to line (soil line) model, the Albedo–SI point to line (wet line)
model and the Albedo–IFe2O3 point to point model have better
applicability to detect the salinization conditions.

V. CONCLUSION
In this paper, five inversed parameters that derived from
Landsat 8 OLI image, including MSAVI, Albedo, WI, IFe2O3,
and SI have been applied to construct ten feature spaces. And
then four categories of models have been established. After
analysis and comparison, three typical surface parameters,
including SI (R2 = 0.85), IFe2O3(R2 = 0.83), and WI (R2 =
0.83) are better indices to retrieve the salinization information
and the WI-SI point to line (soil line) model(R2 = 0.88),
the Albedo–SI point to line (wet line) model(R2 = 0.87)
and the Albedo–IFe2O3 point to point model(R2 = 0.86) have
better applicability to monitor the salinization condition in
Yellow River Delta. However, further research is needed to
clarify the comprehensive and interaction effects of different
factors (climate and human activities) on soil salinization
process.
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