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ABSTRACT With the growing amount of chronic patients, consistent monitoring for health care profes-
sionals has been a major concern and a direct incentive to develop mobile health systems that are adaptive
and energy-efficient. The data collected from these devices is extremely important and may be affected by
wireless communication environments encouraging a preliminary stage that adapts transmission of data to
network dynamics. The paper provides compression and classification schemes for data based on a Hybrid
Deep LearningModel (HDLM) that represents data characteristics, acquired data, and energy efficiency data
delivery dynamics. Further, the EEG and EMG signals are compressed and classified based on Hybrid Deep
Learning Model (HDLM) has been mathematically analyzed. Hence, The system is specifically based on the
Stacked Auto-Encoder (SAE) architecture which extracts discrimination in the multimodal representation of
data; it reconstructs data from the latent description with the help of encoder-decoder layers for data analysis.
Furthermore, Multi-Modality Adaptive Compression shows its performance, computational complexity and
response to different network states has been experimentally analyzed at lab scale numerical analysis. This
method is therefore appropriate for mHealth applications, which can improve energy efficiency, minimize
capacity, and minimize transmission latency in the mHealth cloud with intelligent preprocessing.

INDEX TERMS Deep learning model, wireless network, auto-encoder, data compression, and classification.

I. INTRODUCTION
In the present area of research, the global effort and growth
for comprehensive healthcare is rapidly growing and demon-
strates the need for efficient and precise systems to meet
the increasing demand for better medical infrastructure for
researchers and businesses [1]. Even if health surveillance
systems are increasingly being introduced, they tend to be
challenging in medical settings. Following this contentious
accomplishment, the concept of how clinicians will respond
inmedical emergencies has changed in technology [2]. Trans-
port incidents are becoming a major worldwide cause of
death, requiring improved emergency care [3], [4]. TheWorld
health organization (WHO) estimated in 2012 that road acci-
dents were the leading causes of death rates among people
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between the ages of 15 to 29. The WHO has estimated by
2030, where road accidents will become the world’s seventh-
largest cause of death [5].

Besides, people with chronic and congenital diseases,
especially as the elderly, need for better healthcare [6], [7].
The examples of chronic disease and congenital disorders
that limit people from their daily exterior activity are dia-
betes, high blood pressure, and cardiovascular diseases. The
development of better emergency and health care facilities is,
therefore, the technical opportunity for people to live safely
and economically [8], [9].

Monitoring of health care is one way of improving emer-
gency services and health care. Health monitoring allows
early disease diagnosis and prompt medical attention in emer-
gencies, which can result in a reduction in injury and medical
costs [11]. For recognizing patients at risk it is important
to use sensors to track and transmit important symptoms of
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FIGURE 1. mHealth framework design [10].

the patient [12]. The medical staff can recognize measures
to ensure the health of the patient utilizing sensor data. The
availability of appropriate medical care could be the differ-
ence from life to death [13], [14].

Advances in mHealth systems incorporate wireless body
sensor network (WBSN) (Figure 1) based technologies to
provide a centralized resource for remote data transmission
to medical facilities in emergencies [15]. The WBSN gathers
data via a user-friendly interface from biomedical cameras
and sensors. The WBSN enables images, physiological sig-
nals, and video transmission.

Data supply is generally prevented due to limitations on
mobile devices and network resources. However, due to var-
ious wireless network impairments, congestion of a network,
patient mobility, etc., network condition continually varies.
Therefore, it must be adjusted to network dynamics for data
compression to be effective [16]. Due to the availability of
consumer wearable devices and variants coming from sev-
eral methods, biomedical data has now become extensive.
For commercial equipment, even the most complex medical
monitoring systems that involve in bedding procedures are
now feasible. For example, portable, noninvasive, accessible
commercial devices such as Emotive headsets can record
EEG [17], [18].

To overcome the above issues, and efficient data compres-
sion system using the Hybrid Deep LearningModel (HDLM)
has been proposed for single and multiple data methods,
following the edge computing paradigm that takes knowledge
closer to patients to maximize performance [19], [20]. This
system is dynamically customized to the differences in wire-
less networks to maximize overall energy consumption and
to sustain application constraints. The main contributions of
the paper are discussed as follows,

1. Provide an energy-efficient system to accommodate
mHealth Cloud (mHC) multi-user data compression

2. The hybrid deep learning method (HDLM) has
been suggested for PDA single and multiple data

compression modalities, it uses the interrelationship
between multiple modalities to improve compression
effectiveness.

3. Design amulti-user resourcemanagement system struc-
ture that determines the optimum compression ratio
depends on network complexity while reducing overall
energy consumption.

4. The suggested optimization system demonstrates that
efficiency in reducing total energy consumption when
optimizing the allocation to multiple users of network
resources.

II. RELATED WORK
The use of wireless devices in all aspects of human life around
the world is growing every day. The majority of these devices
are based on small sensors that automatically collect infor-
mation from the environment without human intervention
when deployed in the environment and create networks for
wireless sensors. Due to their low battery capacity, storage,
processing capacity, and communication, these small sensors
are highly energy controlling. The constraint makes ‘‘Energy
Efficiency’’ one of the issues most studied by wireless sensor
networks researchers. In [21] the author presented a quantita-
tive evaluation of the recent developments achieved in WSN
information collection methods (ICM). The analysis catego-
rizes each of the techniques based on the topology behind
it. The energy savings strategy is used for a second level
grouping of these techniques. For a qualitative assessment of
these methods, a comparison is made.

In recent years, wireless sensor networks had developed
a significant interest and represent several applications. The
reliability of data collection is paramount as sensors are
severe energy-controlled tools and current inequities of the
protocol lead to substantial packet loss. In [22], the author
reduced the information sensors required through the use of
condensed detecting values. However, the principle of matrix
completion effectively restores lack of information due to
the loss of packets. The performance analysis shows that the
reconstruction error for high compression and fairly large
packet losses when such advanced signal processing methods
are used simultaneously. At that same time, the network’s
total energy consumption decreases significantly.

In [23], the author suggested energy-aware allocation
heuristics that provide customer applications with data cen-
ter resources to improve the data center’s energy effective-
ness while providing established Quality of Service (QoS).
Here, they define an architecture and design and energy-
efficient cloud services mechanism. Based on this architec-
ture, they present the vision, opening research challenges
and resource algorithms to handle cloud systems energy effi-
ciency. In particular, they are performing a research survey
into energy-efficient technology in this paper, which pro-
poses: (a) structural theory for energy-efficient cloud man-
agement; (b) energy-efficient allocation policy and system
algorithms that take account of the efficiency and energy
consumption requirements of facilities.
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The Wireless Body Sensor Networks (WBSN) is the main
enabler of patient-oriented or mobile cardiology information
and information and communication to the next generation.
The advanced WBSN-enabled ECG monitoring systems are
nevertheless still less than necessary functionality, miniatur-
ization and electricity performance. Energy efficiency can
be increased, among other things, via integral ECG com-
pression, to reduce the time slots through mobile connec-
tions [24], [25]. The paper estimates the potential on the
state-of-art SHIMMER WBSN mote for low-complexity,
energy efficiency ECG compression for the emerging com-
pressed signal acquisition/compression design. The results
indicate that CS needs to stand for a highly competitive
approach to state-of-the-art DWT (digital wavelet transfor-
mation) WBSN-based ECG monitoring systems.

Based on the above survey, this paper proposed that the
Hybrid Deep Learning Model (HDLM) has been proposed to
improve the performance of Data compression and classifi-
cation of EEG and EMG signals with efficient data delivery
and better energy consumption.

III. MOBILE HEALTHCARE APPLICATION AND ITS
IMPORTANCE IN THE HEALTHCARE SECTOR
This section describes the main components of our
health framework, explains individual or collective rules
and addresses their needs in order to build a whole
energy-efficient system for the requirement of critical signs.
Figure 2, which contains three major systems, gives a
high-level system overview:
A. Network Edge: Most consumers of PDAs receive

vital signals from wearable devices. The PDA uses
the wearable device communication, collects, prepares
and transfers data via the network infrastructure to
the mHC subsystem. Preprocessing consists of a com-
pression algorithm that converts original data into
another image. It proposes a numerous method of
hybrid deep learning compression that takes advan-
tage of the accessibility of multiple modes of data
and captures inter-modals in a compression strategy.
In particular, it suggests compression schemes based
on the Stacked AE (SAE), which are intended to com-
press medical records before they are sent to the mHC,
taking the Quality of Service (QoS) condition and
application-level into consideration.

B. Infrastructure for the network: PDA communica-
tion with the mHC subsystem is enabled. The PDA is
battery-operated; therefore it is important to maximize
its transmission of energy. It reduces the cost to a mini-
mum, by modeling the energy generated by the various
systems entities and each allocated resources as per the
wireless state of each user. In addition, with regard to
the existing network structure, the feature model allows
you to choose the compression configuration.

C. mHealth Cloud (mHC): The medical system that col-
lects, disconnects and stores patient data for review by
medical personnel.

FIGURE 2. Structure of proposed model.

IV. HYBRID DEEP LEARNING MODEL FOR DATA
COMPRESSION
The design specifications and methods of the suggested com-
pressor system are carried out in this section. In particular,
it suggests the use of Stacked Auto-Encoders (SAE), and
unique data compression technique. Instead, it expands the
methodology suggested for a multi-modal case to address
the changes in system performance achieved. Eventually,
it discusses the efficiency of the proposed methodology in
order to evaluate its performance for low system complexity.

A. DESIGN SPECIFICATIONS
The following criteria facilitate the development of a com-
pression method, used in accordance with network and appli-
cation requirements before transferring vital signs into the
mHealth Network
• Compression: The dimensionality of the input data must
be reduced to the level that the Network Identity and
Capacities require.
• Reversibility: the reversal of the compression pro-
cess (uncompressed) on the recipient’s side should be
possible in compliance with the application’s efficiency
requirements.
• Effectiveness: the necessary computational burden is to
be divided into an edge node and the mHC.

1) STACKED AUTO ENCODER (SAE)
For supervised learning applications, it is a specific type of
neural network. This consists of an input layer, a hidden layer,
and an output layer, as shown in Figure 3. Until the output
layer is reached, the output of every layer is supplied with a
next input layer. Within hidden layers, the level with both the
minimal neuron number is defined as a bottleneck. The 1st

layer obtained the 1st order functions, the 2nd layer received
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FIGURE 3. Stacked autoencoder.

the 2nd order attribute from the 1st order and more. SAE is
designed to capture hierarchical knowledge abstractions.

SAE can be implemented in the mHealth model for com-
pression because it meets the design specifications. Data can
be compressed at different ratios by changing the bottleneck
layer number of neurons (complying to S1), by reverting
the compression process by optimal decoding (complying
to S2), and specifically encoding that for the technical and
expense burden between all the border network and the
mHC during the training and decoding (complying with
S3). Let’s consider an Encoding SAE with a P layer and
P layer with a decoding input a with m samples such as
a = [a (1) , a (2) . . . . . . a (m)]T . SAE aims to restore one
through two operations: decoder and encoder, while mHC is
capable of the first operation within an edge network, and
mHC (S3 compliance). First of all, the encoder increasingly
transforms the a of a bottleneck layer to the compressed
representation, c = [c (1) , c (2) . . . . . . c (n)]T , in which n <
m. At each layer q, the intermediate compressed signal cp is
generated with the following terms of the encoding method:

cp = f
(
Zpcp−1 + xp

)
(1)

When the active function is f , p = [1, 2, · · ·,P], c0 =
a, cp has np, samples have the following samples: n = np <
· · · < n1 < n0 = m, cP = c, Zp = np − np−1 vectors, and xp
is a np−1 × 1, bias vector.

The decoder then alters c slowly to generate a value of â.
Based on the decoding process, the following expression
provides an intermediate approximation of âp at every layer p:

ap = f
(
Z ′pap−1 + x ′p

)
(2)

When the active function is f , p = [1, 2, · · ·,P], c0 =
a, cphasmp, samples have the following samples: m = mp <
· · · < m1 < m0 = n, cP = c, Zp = mp − mp−1 vectors, and
xp is a mp−1 × 1.

The previous processes are simplified with greedy layer
training for the SAE. Each layer is trained to minimize recon-
struction of L∅(a, â)(compatibility to S2) by means of an
optimal set of parameters ∅ = [∅1,∅2, . . . ..,∅p] modified by
Eq(4) and descent algorithm can be reduced at the minimum,
with each layer weight and bias. Usually, this problem is

FIGURE 4. Data compression over single modality.

modeled using cross-entropy Eq(3) or Eq(4).

L∅
(
a, â

)
=
∥∥a− â∥∥2 (3)

L∅
(
a, â

)
= −

∑m

j
ajlog(âj +

(
1− aj

)
log

(
1− âj

)
) (4)

2) DATA COMPRESSION OVER SINGLE MODALITY
It is called the SAE-S method. In this sense, each signal of
every device with a stacked autoencoder is compressed auto-
matically. Let us take into consideration a scenario without
loss of generality where two modality a and b signal with
the number of samples ma and mb are present. Two different
SAEs can be implemented to compress a and b, see Figure 4.
It is called the SAE-S method. In this sense, each signal
of every device with a stacked autoencoder is compressed
automatically. Moreover, the drawbacks are mentioned as
follows:
• For eachmodality, it is appropriate to store separate SAE
models for each PDA.
• The SAE-S uses only the intra-correlation of the modal-
ity.

3) DATA COMPRESSION OVER MULTIPLE MODALITIES
This technique will be called SAE-M. In this regard, It uses
one StackedAuto-Encoder to compress acquired signals from
several modes. SAE-M enables multiple modalities to be
combined into a single definition, resulting in better com-
pression by intermodality correlations. Two modes A and B
are available. This vector is subjected to an SAE as shown
in Figure 5 below. Multiple modal compressions are an easy
solution that ensures ideal local conditions of health.
• For all modes for a specific application, only one
SAE-M configuration needs to be saved on the PDA of
the user.
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FIGURE 5. Data compression over multiple modalities.

• SAE-M operates together to optimize the use of both
intra- and intermodal differences.

4) EVALUATION OF COMPLEXITY
The SAE training is expensive which can be performed
off-line on an mHC server-side to achieve maximum weight
and preferences which can be displayed in real-time on the
PDA of the patient. This evaluates the complexity of the
device of the SAE-S and the SAE-M during evaluation:

If linear function activation f is taken as follows, write
Eqs (1) and (2):

c =
(∏P

p=1
ZP−p+1

)
a+

∑P

r=1

(∏P−r

p=1
ZP−p+1

)
xr (5)

c =
(∏P

p=1
Z ′P−p+1

)
a+

∑P

r=1

(∏P−r

p=1
Z ′P−p+1

)
x ′r

(6)

δ = PnP +
∑P

p=1
(pnp−1np (7)

where n0 to nP decay number of encoding samples or increase
number of decoding samples.

5) OPTIMIZATION OF ENERGY CONSUMPTION
It suggests a multi-user mHealth device design framework
in this section that takes into account the requirements of
the network and applications. In particular, it adapts the
SAE-M methodology to the dynamic grid and the specifi-
cations of the application, to achieve optimum compression
ratios, by choosing the DL configuration to ensure that the
DL ratio is retained. First, the network/application limits
are summarized and the necessary total energy consumption
formalized. Formulate the problem of optimization then and
use convex optimization techniques.

a: CONSTRAINTS ON NETWORK AND APPLICATION
The proposed scheme only aims to provide a methodology
of compression with low complexity, hence it adapts to net-

work conditions and application requirements. The mHealth
framework is designed to reduce total energy usage and to
maximize the transfer rates and bandwidth of all PDAs. The
following specific requirements should be satisfied for the
given assignment: distortion threshold PRDth.

b: CALCULATION OF ENERGY CONSUMPTION
Take mHealth multi-user with M users in which each of
the samples (samples) A = [a1, a2 . . . . . . .aM ]T and M is
collected in such a way that m = [m1,m2 . . . . . . .mM ] and
n = [n1, n2 . . . . . . .nM ] and the number of bits transmitted by
this device is L = γ n, where L = [l1, l2 . . . . . . .lM ] contains
the number of bits transmitted by whole customers, and
γ = [γ 1, γ2 . . . . . . .γM ]. Note that all vectors in this section
use the same indexing form.

The total energy consumed by consumer I referred to
as X (j), is as follows:

X (j) = X (j)
t + X

(j)
z + X

(j)
p (8)

where X (j)
t ,X

(j)
z andX

(j)
p are energy consumed in module j for

the transmission, compression, and encoding of data. The
following equations can be computed for X (j)

t :

X (j)
t =

ϑjlj
kjhj

(2
kj
hj − 1) (9)

where kj is the transmitted PDA j data rate over band-width
ϑj and hj is the gain in the channel. In addition, X (j)

t can be
computed with its proportionality to the complexity of the
compression algorithm is expressed as follows:

X (j)
z = δjXq (10)

where δj is the complexity of compression algorithm, j
encoder and Xr is the consumed energy per system. For
r an SAE-M Q-layered module Eq(7) modifies Eq(10)
to:

Where the compression algorithm j encoder is complex, Xr
is the energy consumed by a system. Eq(7) changes Eq(10) to
an SAE-M Q layered module:

X (j)
z =

(
Pn(P)j +

∑P

p=1

[
pn(p−1)j n(p)j

])
Xr (11)

Finally, the number of converting steps proportional to nj is
required and the energy consumed by Xs depends on X (j)

p .
Therefore X (j)

p can be defined as follows:

X (j)
p = njXs (12)

c: PROBLEM DEFINITION
Compression efficiency is quantified by the compression
ratio (CR) and distortion by the Root Medium Square Dif-
ference (PRD) for the following reasons:

CRj = 100× (1−
nj
mj

) (13)

PRDj = 100×

∥∥aj − âj∥∥∥∥aj∥∥ (14)
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FIGURE 6. Hybrid deep learning for intermodal correlation.

The exponential operator d will estimate PRD from CR using
regression analysis, such that:

PRDj = d
{
CRj

}
= xeyCR

j
(15)

where x and y are the parameters of regression.
Considering the application specifications and network

constraints i.e. maximum permissible distortions PRDjth, time
period Djth and total bandwidth βt , It is expressed as follows,

min
CRj,kjhj

(
ϑjlj
kjhj

(
2
kj
hj − 1

)
+ Pn(P)j +

∑P

p=1

[
pn(p−1)j n(p)j

]
Xr

+ njXs (16)

where,

xeyCR
j
≤ PRDjth (17)

lj
hj
≤ Djth (18)∑M

J=1
βt ≤ βt (19)

V. APPLICATION OF THE EEG AND EMG DATA
COMPRESSION AND CLASSIFICATION BASED ON HYBRID
DEEP LEARNING MODEL
Multimodal auto-encoder architecture is shown in Figure 5.
It consists of two processes of EEG and EMG. Each route
indicates a unimodal auto encoder associated with the corre-
lation between data and intra-modality while the joint level
merges the functions at a higher level.

A. PRE-TRAINING OF UNIMODAL DATA
The SAE is applied separately for each model; the sigmoid
activation function and Euclidean square distance are used as

a loss feature that is controlled by the term for weight loss.

c1 = sigmoid (N1a1 + x1) j = 1 (20)

c1 = sigmoid (N1a1 + x1) j = 2...M (21)

The SAE is formed with a training technique in soft layers
which feeds the latent representation of the auto-encoder to
the layer below. This deep architecture makes the system
scalable and efficient while the data are extracting higher
functionality progressively.

B. HYBRID DEEP LEARNING
Intermodal correlation (Figure 6), which can relate to proper
representation of the high-level features, is not involved
throughout the single modal pre-training. This allows, in par-
ticular, the encoding of the various modalities by a single
joint layer common representation. The consequence of this
layer involves the input in the code representing the com-
pressed data for each modality. The common representation
is achieved as follows:

c =
∑

j∈{e,n}
sigmoid(N j

M + c
j
M+1 + x

j
M+1) (22)

where e and n relate individually to EEG and EMG. In
addition, the multi-modal autoencoder is trained in increased
noise, in which additional examples lead to individual sample
modes. In practice, it adds zero in value to one model, while
maintaining the original in the other model and vice versa.
Consequently, only a third of the training data is EEG, a third
is EMG, and the remaining data are EEG and EMG. The
framework that denotes the autoencoder is justified in two
ways:
• It is very likely that the association between multiple
modes is nonlinear.

• This non-linearity contributes to the activation of hidden
units by a single-mode.

Subsequently, the initial and corrupted input is distributed
separately to high levels, which are then slowly reconstructed
on both inputs to regenerate the clean image.

C. FINE-TUNING
The compressed data can be used for classification by attach-
ing the bottleneck layer to a softmax classification, according
to a monitoring criterion.

Q̂ =
exp(Xb+ y)∑T

t=0 exp(X tb+ yl)
(23)

where Q̂ is the predicted label for the object, y describes the
compressed information and T is the number of labels for
classification. The performance of the Hybrid Deep Learning
Model (HLDM) is evaluated using different metrics as men-
tioned below.

VI. RESULTS AND DISCUSSIONS
A. DATA COMPRESSION OVER SINGLE MODALITY
Figures 7 (a&b) demonstrate ICM, DWT, WBSN, and SAE
with HDLM compression distortions at various EEG and
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FIGURE 7. (a). EEG compression performance (b). EMG compression
performance.

FIGURE 8. 50% compression ratio of EEG using SAE.

EMG compression ratios, respectively. Figure 7(a) reveals,
on the one hand, that the findings of DWT and WBSN are
similar together without a huge difference and that SAE
with HDLM increases output at a high compression rate

FIGURE 9. (a). EEG compression performance (b). EMG compression
performance.

with a 20.04% average distortion, demonstrating that it can
compress non-stationary signaling. In Figure 7(b), however,
DWT and ICM show a contrasting performance of up to 80%
compression, with lower distortions than 80% compression.
The latter shows a better performance than compression. SAE
with HDLM both show higher performance than the former
with DWT distortion and WBSN compression capacities for
stationary signals.

Ultimately, figures 8 display the compressed versus the
initial EEG signals by 50% SAE, respectively, hence a per-
ceptual evaluation for the low distortions can be obtained by
SAE

B. DATA COMPRESSION OVER MULTIPLE MODALITIES
Figures 9(a) and 9(b) show multiple DWT, ICM, and SAE
with HDLM modality distortions at different compression
ratios. Averaging results of the individual modalities by linear
interpolation are determined for multiple modal results of
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FIGURE 10. (a). EEG compression computational complexity (b). EMG
compression computational complexity.

the DWT and ICM. When you analyze the data, SAE with
HDLM shows improved overall performance with an average
distortion of 15.05% at all compression ratios. It shows the
effectiveness of SAE with HDLM for multimodality com-
pression, showing relative performance improvements com-
pared to DWT and ICM.

C. OPTIMIZED COMPRESSION COMPUTATIONAL
COMPLEXITY
The processing times required for each modality algorithm
are shown in figures 10(a) and 10(b) at different EEG and
EMG compression rates, respectively. Firstly, all compres-
sion scenarios (EEG and EMG compression) need less time
to work. Further, the compression rate depends on theWBSN
and DWT curves, while the compression rate decreases and
increases with ICM and SAE in HDLM compression com-
pliance. Therefore, with HDLM Data form time (EEG and
EMG) ICM and SAE do not change significantly, Therfore

FIGURE 11. Total energy consumption validation.

in each modality DWT changes because of the different
optimum parameters.

D. TOTAL ENERGY CONSUMPTION
It illustrates how the proposed SAE-M methodology leads to
a reduction in energy consumption in different network areas.
Energy use is assessed on the basis of the network topology
in Figure 2 using simulated conditions at different distortion
levels and usable bandwidths. Figure 11 (a) illustrates the
energy consumed at multiple distortion thresholds. SAE can
significantly decrease the overall energy consumption with
HDLM, as is shown by greater tolerance for high distortion.
SAEwith HLDMenables multiple modalities to be combined
into a single definition, resulting in better test and training
rates by intermodality correlations. Figure 11(b) shows the
test and training analysis of SAE with HLDM.

The above result analysis shows the Hybrid Deep Learning
Model (HDLM) has better performance in EEG and EMG
signals compression and classification. The system is specif-
ically based on the Stacked Auto-Encoder (SAE) architecture
which extracts discrimination in the multimodal representa-
tion of data.
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VII. CONCLUSION AND FUTURE WORK
This paper proposed the use of Stacked Auto-Encoder tech-
niques for mHealth systems. It examined the compression
of single and several modes of data for use intra and
inter-relation modalities. It suggested a medical data pro-
vision Energy and resource-sensitive system given ongo-
ing changes in network dynamics. The algorithm has been
adapted to the following network limitations: the time limit,
the available bandwidth and the application conditions for the
maximum distortion. Our methods are analyzed by standard
compression methods like ICM, DWT, and WBSN. They
proved that the proposed single-and multiple-modal com-
pression techniques are respectively adapted to network and
application constraints. Results from single SAEwith HDLM
show that it can disjoint stationary and non-stationary com-
pression signals while multiple SAE andHDLMcan combine
inter-signal correlations and make them important in real-
life applications. Single SAE with HDLM and multiple SAE
with HDLM light computer complexity allow for the instal-
lation on an edge device and optimization in real-time for
applications. The SAEM technique reduced the total energy
consumption when adapted to its compression ratio based on
different network conditions. In future, improved version of
algorithm will be implemented in mHealth Applications for
data compression and classifications.
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