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ABSTRACT Objective: Most studies have conducted human gait analysis using expensive and invasive
photogrammetric systems. The objective of this studywas to demonstrate that non-invasive and cost-effective
systems based on depth cameras may be able to retrieve relevant features of human gait patterns. We aimed
to prove this by solving the problem of gait classification by gender. Methods: 81 participants (40 female
and 41 male) walked at a self-selected speed across a 4.8-meter walkway. Gait data was recorded using
multiple depth sensors. Analysis in time domain included joint excursions by gait phases, range of movement
(ROM), central tendency and dispersion measures, spatial variables, and center of mass (COM) position. The
spectral analysis included principal frequency, magnitude, and phase shift during walking. Only features with
significant differences by gender were used to train a support vector machine (SVM) classifier. Results:
A total of 108 features presented significant differences by gender (p<0.05). On this basis, the accuracy of
the chosen model was 96.7%. Trunk rotation, trunk sway, knee abduction/adduction, and pelvic obliquity
were the most differentiated between the groups. The COMposition shown a significant difference by gender
(p=0.0065) with 51.7% and 51.0% for men and women respectively. Women proved to have significantly
shorter normalized step width than men (p=0.0472). Conclusion: The proposed method was able to retrieve
most of human gait features correctly, including differences in gait pattern by gender. Significance: Depth
cameras represent a cost-effective system that could be used for a deeper biomechanical human gait analysis.

INDEX TERMS Gender, gait analysis, joint, limb, machine learning.

I. INTRODUCTION
The kinematic variables of human gait have been widely ana-
lyzed using photogrammetric systems. Precision, conforma-
bility, usability, and transportability are factors that influence
the choice of a gait analysis system [1]. Today, highly accu-
rate photogrammetry systems are available, including Qual-
isys, STT Systems, Vicon, and Optitrack. Although these
systems are highly accurate, they use invasive methods to
determine gait pattern. Photogrammetry systems use reflec-
tive markers attached to the body. Furthermore, this kind
of system represents a very large investment. Alternatively,
a system based on depth cameras could be used, repre-
senting a cost-effective and non-invasive method. Several
options of RGB-depth (RGBD) cameras and libraries can
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perform skeletal tracking applications. Kinect (V1, V2), Intel
Realsense (D415, D435, EUCLID), Orbbec (Persee, Astra,
Astra Pro), and TVICO are among the most popular on the
market. The software included in depth cameras can capture
up to 25 joints at more than 30 frames per second. It rep-
resents a real advantage when implementing a non-invasive
gait analysis system. These cameras have a short range of
view. To solve this problem, we believe that the use of more
than one camera could be a good approach. This process is
called multiple camera calibration and has been applied by
several authors including [2]–[5]. Camera calibration allows
the signals of several sensors to be coupled together achieving
a longer recording area. The ability of such sensors to retrieve
relevant information has been widely studied. Specifically,
the Kinect sensor has been used extensively. It has been used
from in-home gait measurement [6], kinematic gait analy-
sis [7] to classification of normal and pathological gait [8].
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Some studies have validated their use while others have not.
For example, in [9], a review of 12 studies indicated good
validity of Kinect sensors for only some spatiotemporal gait
parameters. On the contrary, the same study shows poor
validity for gait kinematic variables. Mentiplay et al. [10]
concluded that Kinect V2 cannot accurately obtain the
kinematic parameters of lower extremities. In contrast,
Lamine et al. [11] concluded that with preliminary calibra-
tions gait kinematics could be accurately evaluated in several
joints. To validate the ability of RGBD sensors to obtain
human gait data, the well-known difference associated with
gender was used. A topic of interest in human gait analysis
has been finding differences by gender, which now are well
known. Kinematic features are among the most analyzed
by gender [12], including spatiotemporal variables, range of
movement (ROM), and center of mass (COM) excursions.
Most research have concluded that significant differences
are found in trunk sway, pelvic obliquity, hip abduction and
abduction, and step width. Several studies have analyzed
vertical center of mass (VCOM) excursions and horizontal
center of mass (HCOM) excursions. These studies have used
parts of the trunk segment as an estimated position of COM,
but not the real COM. It should be noted that gait spectrum
features in the frequency domain have been less analyzed by
gender. Lee and Grimson [13] used magnitudes and phases of
dominant frequency as features for identification and gender
classification. That study used the magnitude as the amount
of body movement (which could be a more accurate measure
than ROM). Interestingly, it used the time delay between
different regions in the body as the phase measure. Unfortu-
nately, the study did not clearly explain the differences found
by gender.

In this context, the present paper hypothesizes that non-
invasive, cost-effective systems based on depth cameras may
be able to retrieve relevant features of human gait patterns.
We aimed to prove this by solving the problem of gait clas-
sification by gender. For this purpose, a large number of
features of interest were analyzed, both in time and frequency
domains. Analysis in the time domain included joint excur-
sions by gait phases, ROM, central tendency and dispersion
measures, normalized spatial variables, and COM position.
The spectral analysis included principal frequency, magni-
tude, and phase shift during walking.

II. METHODS
A. PARTICIPANTS
Eighty-one healthy participants aged in their twenties
(40 female and 41 male, Table 1) were recruited from Uni-
versidad Politecnica de Madrid. All participants were free of
current injury that resulted in limitation of physical activity
level. The inclusion criteria was based on young and simi-
larly aged participants. We required the use of comfortable
walking shoes, light colors, and loose-fitting clothes. We pre-
ferred the use of shorts and T-shirts (no dresses or skirts).
Demographic details of age, height, weight, and body mass

TABLE 1. Demographics.

FIGURE 1. The Multi-Camera Git Analysis System configuration. The
figure shows the range of view of each sensor and the total length of the
effective recording area (4.8 meters). The overlaped field of view
represents the area for transition between the segments.

index (BMI) were recorded for each participant. Signifi-
cant differences were found between the male and female
groups in height and weight (p<0.05 in both cases). There
were no significant differences in age or BMI (p = 0.3156,
0.6725 respectively). Similarity in BMI indicates a similar
body structure (in height–weight ratio) among the partici-
pants. On arrival at the laboratory, participants were famil-
iarized with the experimental setup. After a static pose, each
participant was asked to walk at a self-selected speed across
a 4.8-meter walkway as in Fig. 1. This study was conducted
according to the common standard guidelines of the Declara-
tion of Helsinki.

B. DATA COLLECTION
1) OVERVIEW
Gait data based on 25 joint trajectories were recorded at
30 fps using two Kinect V2 depth sensors. When using
a single-camera system, the captured data is not adequate
to process information. It is because some samples at the
beginning and end are unusable and disturbed (approximately
6 samples on each side). Therefore, we note that some studies
keep the participant standing within the field of view of
the camera and others prefer the use of treadmills. On the
contrary we wanted to extend the range of view of the camera
using a dual camera system.

There were other relevant details that led to the use of a
dual-sensor system:
• The use of a single kinect sensor allows only one gait
cycle to be retrieved with each foot. On the other hand,
the use of two kinect sensors will detect between two
and three gait cycles with each foot (Fig. 2).
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FIGURE 2. Matching process. The dotted lines represent the raw
measurement from each sensor whereas the solid line is the result of the
alignment of the data from sensor 2 with the data from sensor 1.

• By detecting at least two continuous gait cycles other
gait pattern variables based on signal periodicity can be
analyzed. It may include variables from the frequency
spectrum.

• Two sensors are adequate to detect continuous gait
cycles. The use of more sensors may result in repeated
data, redundant information, as well as the use of large
workspaces.

As is shown in Fig. 1, the general process involved placing
the sensors one behind the other on each side of the walking
path.

We ensure a common area where both cameras record the
skeleton at the same time to smooth the transition between
the signals. For the same reason that we mentioned earlier
this common area had 12 unusable samples (6 at the end of
sensor 1 and 6 at the beginning of sensor 2). It represents
50 centimeters of walkway at 30fps and 1.25 m/s (the average
of pedestrian speed reported for both genders [14]). There-
fore, we set a common area of 60 centimeters that was slightly
higher than the minimum length. With this consideration,
the total length of the effective recording area was 4.8 meters.

We synchronized the time base of both Kinect sensors by
using a body gesture performed by support staff during data
collection. A staff member stands inside the common area
and raises their right hand. This gesture is recognized by
both sensors as the starting signal for the timers. The data
collection takes place after 10 seconds, once the support staff
has has leaving the place and the participant is ready to start
the test.

The recording process was well monitored and controlled
by using a human–machine interface (HMI) developed in
Visual Studio. The joints data were saved in real-time in a
CSV file, which provided future analysis.

2) STEREO CALIBRATION
After setting up the sensors, we performed a stereo calibra-
tion which was required for transition between recorded seg-
ments. Camera calibration generally solves a set of unknown

parameters (intrinsic and extrinsic) based on the sensor pro-
jection process [15]. The intrinsic parameters are the focal
length and the projection center of the camera. The extrinsic
parameters are the rotation and translation matrix of the
camera with respect to the reference. A widely used method
is the checkerboard calibration algorithm proposed by Zhang
in 1999 [16]. This method needs only a printed checkerboard,
which provides simple operation and strong practicability.
It has been widely used as a packaged toolbox function in
multiple vision systems. We used the extrinsic parameters of
the RGB camera as an approximation of depth camera. It is
practical and effective.

The extrinsic parameters retrieved with the stereo calibra-
tion are as follows:

om = [−0.028 0.002 0.005]± [0.007 0.015 0.001] (1)

T = [−1200.15 − 28.17 − 2062.8]± [7.86 6.17 16.4]

(2)

where om is the rotation vector measured in radians and T is
the translation vector measured in milimeters. In the second
part of each vector we can notice the numerical errors in the
estimation of these vectors. These are the errors due to the
calibration process.

All points sensed by the sensor 2 are transformed to
the coordinate system of sensor 1 through the rigid motion
transformation:

Sensor1 = R ∗ Sensor2 + T (3)

where R is the 3 × 3 rotation matrix corresponding to the
rotation vector om. The relation between om and R is given
by the Rodrigues formula [17].

In addition, we must compensate the offset that remains
after applying the transformation matrix to the raw data
from sensor 2. This process was implemented to smooth the
transition between the signals. The offset is determined by
calculating the root-mean-square error (RMSE) within the
overlapped field of view. Asmentioned above, the overlapped
field of view is a common area where both sensors record
the skeleton at the same time and using the same time base.
We assert that since the time base of both Kinect sensors
was synchronized as mentioned in the previous subsection.
Therefore, the overlapped data can be retrieved based on
timestamps. Once the overlapped data is found, the RMSE
is calculated and it is added to all the transformed data from
sensor 2.

Finally, we look for the point of greatest coincidence
between these common frames to perform the transition
between the signals. It is necessary to mention that this pro-
cess is repeated for each axis in every joint trajectory. The
matched signal in world coordinates had two or three gait
cycles depending on the step length (Fig. 2).

3) SYSTEM ACCURACY
The final step was to measure the accuracy of the sys-
tem with respect to the ground truth from a Vicon system.
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FIGURE 3. Workspace for comparison between Vicon and multiple depth
sensors.

TABLE 2. NMAE error rate from the multiple kinect system w.r.t the Vicon
system. Values are averaged for all iterations.

For this purpose, six Vicon M2 MCAM cameras with an
opto-electric motion analysis system was used as the ref-
erence measure. Using the Vicon system, 3D locations of
markers were recorded with a sampling rate of 120 Hz. With
the collaboration of a test participant, six iterations were
performed with both systems. The Fig. 3 shows the data
collection environment in a real view.

Due to the difference in sampling frequencies the Vicon
time series were linearly interpolated using the timestamps
of Kinect data. This process ensures the same query points.
Evidently, prior to this process, the signals from both systems
needed to be synchronized in time. We did this using the
starting point of the first gait cycle.

The error rates per joint and plane of joint kinematics
angles are presented in Table 2. Pearson correlation demon-
strates the similarity of both signals.

The metrics applied to measure the error rates were the
Mean Absolute Error (MAE) and more specifically the
Normalized Mean Absolute Error (NMAE). Given any gait
measurement at timestamp ti, the MAE error measures the
average absolute deviation of Kinect signal ki from the Vicon

signal vi through the following formulae:

MAE =
1
N

N∑
i=1

|ki − vi| (4)

NMAE =
MAE

vmax − vmin
(5)

where vmax − vmin represents the angular range of move-
ment (ROM) detected by the Vicon system in a specific joint.

In Fig. 4, the signals from all iterations were averaged to a
single gait cycle to improve their presentation. Through Fig. 4
we can compare gait cycles retrieved from Vicon system and
the multi-camera gait analysis system.

C. DATA ANALYSIS
From this point on, the proposed system was applied to the
detection of differences in gait pattern by gender. We have
chosen this application because we believe there is enough
literature to compare the results we achieve.

In order to analyze gait, neighboring limbs were associated
by the common joint, and the corresponding angles calcu-
lated. There were significant limitations in evaluating the
ankle angle because it involved the toe coordinate, which had
low accuracy with our depth sensor. Similar limitations have
occurred in other studies, such as [11] or [18]. For this reason,
we solely excluded the ankle angle from the analysis. The
joint kinematics angles from the knee, hip, shoulder, trunk,
and pelvis were performed for the sagittal and frontal planes.
In addition, examination of the trunk and pelvis took place in
the transverse plane. Using these angular signals, gait cycle,
spectrum, and central tendency and dispersion features were
performed for each plane. Normalized spatial variables and
COM position and excursion were included in the analysis.
Each gait sequence contains between two and three gait
cycles depending on the step length. To analyze gait cycle
phases, we averaged these cycles across the corresponding
phases. On the contrary, to analyze spectrum features, central
tendency and dispersion, spatial variables and the center of
mass we used the entire signal. The sets of variables for
analysis are described below.

1) GAIT CYCLE
Gait cycle analysis requires detecting the onset and the
end of each cycle within the angular signal. For this pur-
pose, we first defined the normalized cycles as described
by Ceccato et al. [19]. We used the inter-ankle distance in
the Z direction as the reference signal. The walking cycle
was then defined by two successive peaks of the inter-ankle
distance. These signal peaks were taken in the same direc-
tion (we used the up direction) and normalized from 0 to
100% of the gait cycle. Eight gait cycle phases were found
during the stance and swing stages. Initial contact (IC-2%),
loading response (LR-10%), mid stance (MSt-30%), termi-
nal stance (TSt-50%), pre-swing (PSw-60%), initial swing
(ISw-73%), mid swing (MSw-87%), and terminal swing
(TSw-100%). The corresponding phases were averaged

VOLUME 8, 2020 95737



D. Guffanti et al.: Non-Invasive Multi-Camera Gait Analysis System and Its Application to Gender Classification

FIGURE 4. Comparison of gait cycles retrieved from Vicon system (black line) and the multi-camera gait analysis system (gray line) in sagittal,
frontal, and transverse planes. Eight gait cycle phases are shown in each plot: initial contact (IC-2%), loading response (LR-10%), mid stance
(MSt-30%), terminal stance (TSt-50%), pre-swing (PSw-60%), initial swing (ISw-73%), mid swing (MSw-87%), and terminal swing
(TSw-100%).

within all gait cycles found for the same participant. It is
between two and three gait cycles per participant depending
on the step length. In addition, the ROM was performed to
evaluate the amount of movement around each specific joint.

2) SPECTRUM
Spectrum features were retrieved using the Signal Processing
Toolbox fromMatlab R2018b (MathWorks Inc, Natick,MA).
The spectral analysis was performed to include features that
allow us to analyze gait as a periodic signal. Principal fre-
quency (Pfrec ) represented the frequency with the highest
magnitude in the spectrum. The magnitude of principal fre-
quency (Pmag) can be understood as the amount of motion
that occurs periodically at the principal frequency. Phase
shift at principal frequency (Pphase) was a special feature to
measure the harmony of walking. Harmony of walking repre-
sented the quality of coordination between joints excursions.
Phase cannot be directly used because each gait sequence is
not predetermined to start at a particular point of a walking
cycle. For this reason, the phase shift of the joints was com-
puted in relation to one particular signal. This signal was the
‘‘most stable’’; in our case, the standard phase was that of the
inter-ankle distance.

3) CENTRAL TENDENCY AND DISPERSION
Central tendency and dispersion measures were retrieved
from angular signals in the time domain. These features are
useful to understand the tendencies of people to carry their
joints in different ways. For this reason, the mean position,
Q25 quartile, Q75 quartile, and interquartile range (IQR)
were used as statistical descriptors of structural differences.

In addition, signal entropy was included in the analysis
because it has been widely used for abnormal gait detection
and analysis [20]–[22]. Entropy has been used as an index to
quantify the complexity, disorder, and irregularities of time
series. Therefore, entropy was included in the analysis.

4) SPATIAL VARIABLES
Spatial variables were calculated and non-dimensionalized.
Step and stride length were normalized by leg length accord-
ing to [23]. Step width was normalized to hip width according
to [24]–[26].

5) CENTER OF MASS
The analysis of COM was implemented based on the Win-
ter method [27]. The body segment parameters described
in Table 3 were used for COM calculation.

The coordinates of the proximal and distal ends of nine
body segments were found (trunk, head, neck, thighs, feet,
legs, upper arms, forearms, and hands). The COM of each
body segment was defined using the following formulae:

xCM = xpIp + xd Id (6)

yCM = ypIp + yd Id (7)

where the xCM and yCM are the coordinates of COM in one
segment. The xp and yp are the coordinates of the proximal
end. The xd and yd are the coordinates of the distal end.
In addition, Ip and Id are the percentages of segmental length
from the proximal and distal ends, respectively. Total COM
is the weighted average of the calculated COM of the nine
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TABLE 3. The body segment parameters adapted from Winter [27] for COM calculation.

segments, calculated using the formulae:

xCOM =

∑9
n=1 mixi
M

(8)

yCOM =

∑9
n=1 miyi
M

(9)

where the xCOM and yCOM are the coordinates of total COM.
The xi and yi are the coordinates of the i-th segment. The mi
is the mass of the i-th segment, and M is the body mass of
the n segments. Based on these results, VCOM and HCOM
excursions were performed during all gait cycles. In addition,
the body position of COM normalized with respect to the
height of each participant.

D. MACHINE LEARNING CLASSIFIER
Five groups of features were built, with a total of 222 features
for each participant. We used an 81×222 matrix, where rows
represent the number of participants and columns the number
of features. From the original 81 observations, 61 were found
to be valid (30 female and 31male observations). The remain-
der was discarded due to the presence of signal discontinuities
that caused unusable information. A two-sample t-test was
used to detect the significance level of each feature. Statistical
significance was defined as a p-value of less than 0.05. Only
features with statistically significant differences were chosen
to train the classification model. For this purpose, we used
the Classification Learner app, a Machine Learning Toolbox
from Matlab R2018b (MathWorks Inc, Natick, MA).

III. RESULTS
The proposed systemwas employed to test the ability of depth
cameras to retrieve human gait features. We addressed this by
solving the problem of classification of gait by gender. Some
differences found in gait pattern by gender support earlier
theories where certified devices were used.

A. GAIT CYCLE, SPECTRUM AND CENTRAL
TENDENCY AND DISPERSION
Results of this set of variables are shown in Table 4.

Knee. In the sagittal plane, during IC, the limb was posi-
tioned to start stance phase using the heel as a rocker. The
curve described in Fig. 5 shows that in this phase the knee
is slightly flexed. In LR, knee flexion is increased for shock
absorption because the body weight is transferred onto the
limb. Then, during the rest of MSt, the knee is gradually
extended. No significant differenceswere found in these latter
phases.Women continued knee extension until the end of TSt.

In contrast, men started a slight knee flexion, a significant
difference (p= 0.0046). During PSw, where the floor contact
by the opposite limb has started, the knee responds with
increased flexion. The knee reached maximum flexion at the
end of ISw (without differences by gender), when the foot is
lifted. Finally, in MSw, the knee was extended in response
to gravity and continued extending until the end of TSw
(without differences by gender in both cases).

An interesting difference was found in the frequency
domain for the phase shift of knee flexion (p = 0.015).
Women delay knee flexion and therefore foot lift. Women
tried to reach a more extended position before starting the
swing phase. This is associated with anatomical differences;
these differences showed women have shorter legs than men.
For this reason, women tried to increase their knee extension
to reach a higher advance with the forward limb. In the
frontal plane, significant differences were found during LR
(p = 0.0316) and more pronounced in MSt (p = 0.0003)
where women had a higher knee abduction (Fig. 5). It is the
response to limb loading that moves the whole body nearer to
the supporting foot. Conversely, men carried their knees in a
slight adduction. During TSt and PSw, the knee is adducted
because the load on the limb is removed as the floor contact
by the other limb has started. No significant differences were
found in these phases. Finally, during the swing, the knee
returned to a more neutral posture with significant differences
in ISw, MSw, and TSw (p<0.05 in all cases). During these
phases, men continued with a higher knee adduction than
women. Accordingly, in the frontal plane, women demon-
strated a higher ROM and IQR value than men (p = 0.0002,
0.0168, respectively). In addition, women demonstrated a
smaller mean position and Q25 quartile value (p = 0.0194,
0.0009, respectively). This suggests a more abducted knee
angle for women during the gait cycle. Another significant
difference was found in the signal entropy of knee excursion
in the frontal plane (p = 0.00004), with a higher value for
women than men.

Hip. The results showed that women had greater hip ROM
in the sagittal plane (p = 0.0035). This was associated with
greater hip extension during TSt (p = 0.0128) and greater
flexion (p = 0.0425) during MSw. Due to the anatomical
angle between femur and tibia, hips were kept in an adducted
position. This occurred mainly during the onset of stance
and ending of swing phases, with significant differences
(p<0.05). A relative hip abduction existed only during the
ending of stance phase, without significant differences. Fur-
thermore, during the full gait cycle, women carried their hips
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TABLE 4. Means, standard deviations, and p-values of three groups of variables: gait cycle, spectrum, and central tendency and dispersion of knee, hip,
shoulder, trunk, and pelvis excursion in three planes: sagittal, frontal, and transverse. Gender differences were evaluated with two-sample t-test, and
p-values less than 0.05 represent significant differences.

in greater adduction than men. This measure was confirmed
by the mean, Q25, and Q75 features (p<0.05 in all cases).
This means that women carried their legs towards the mid-
line of the body. This could have influenced the step width,
where women showed a smaller normalized value than men
(p = 0.0472). Another significant difference was found in
signal entropy in the sagittal (p = 0.0071) and frontal planes
(p = 0.0016), with a higher value for women than men.
Hip movement in the transverse plane was not analyzed, due
to sensor limitations. Finally, no significant differences were
found in frequency features for the hip joint.

Shoulder. There were no significant differences for shoul-
der ROM in either the sagittal or frontal plane. Surprisingly,
differences in shoulder mid-position in the frontal plane were
found. This is notable in the curve analysis (Fig. 5). Mean,
Q25, and Q75 (p<0.05 in all cases) showed that women kept
their arms more attached to the body.

Trunk and pelvis. The sagittal angle of the trunk and pelvis
followed a double sinusoidal path as shown in the curve
analysis (Fig. 5). Peaks of flexion occurred in the onset of
LR and during PSw, periods of double limb support. Each
extension occurred in the two single support intervals: the

95740 VOLUME 8, 2020



D. Guffanti et al.: Non-Invasive Multi-Camera Gait Analysis System and Its Application to Gender Classification

FIGURE 5. Gait cycles for men (black line) and women (gray line) in sagittal, frontal, and transverse planes with values averaged by gender in
corresponding points (phases). Eight gait cycle phases are shown in each plot: IC-2%, LR-10%, MSt-30%, TSt-50%, PSw-60%, ISw-73%,
MSw-87%, TSw-100%.

onset of TSt and MSw. During these movements, trunk and
pelvis had similar results. Both presented significant dif-
ferences by gender in whole gait phases and most central
tendency measures such as mean, Q25, and Q75 (p<0.05 in
all cases). Obviously, there is a structural difference rather
than a kinematic difference. This showed that men maintain
a greater average natural forward tilt than women. When we
analyzed ROM or IQR measures, no significant differences
were found. However, when we analyzed the magnitude of
principal frequency, a significant difference could be found.
In the sagittal plane, men exceed women by 2.5 dBs for
trunk (p = 0.0001) and 2.6 dBs for pelvis (p = 0.00003).
This means a greater movement of 33% and 35% for trunk
and pelvic tilt respectively. The differences in the frequency
spectrum can be observed in the Fig. 6 where the principal
frequency is circled for each graph.

In the frontal plane, for trunk sway and pelvic obliquity,
the path was a single sinusoid for each gait cycle (Fig. 5).
The signal had a progressive angle toward the side of the
supporting limb. In trunk sway, significant differences were
found in the onset of stance phases and the last swing phase
(p<0.05 in all cases). Additionally, the results showed that
men had higher side-to-side trunk sway frequency (p =
0.0139). Men also had greater ROM and IQR measures
(p = 0.036, 0.0281 respectively), whereas women presented
higher pelvic obliquity. Another difference was found in the
Q25 measure, which showed that the main differences in
trunk sway were in the first half of the gait cycle. Finally,
there was a significant difference in mean position for trunk
sway, with a greater value for men than women. This showed
that women carry their trunk more centered, whereas men try
to lean their body sideward. In the transverse plane, there

were significant differences for trunk and pelvic rotation
(protraction–retraction) in central tendency measures. Mean,
Q25, and Q75 (p<0.05 in all cases) showed a difference
in mid-rotation, with greater values for women than men.
This is notable in the curve analysis (Fig. 5). Again, there
is a structural difference rather than a kinematic difference.
This means that women and men took different strategies for
trunk and pelvic rotation.Women tried to increase protraction
and decrease retraction of the trunk and pelvis. As discussed
earlier, this could be a strategy to compensate leg advance for
the fact that women have shorter legs than men. Differences
in whole gait phases were related to the difference in mid-
position. Additionally, results showed that women had higher
pelvic rotation frequency (p = 0.0022) and a greater IQR
measure(p = 0.0032). Despite the fact that women had
greater ROM for trunk rotation than men, this value was
not significant. We found significant differences in entropy
measures for trunk and pelvic rotation (p<0.05 in all cases),
with higher values for women than men.

B. CENTER OF MASS
The COM position, implemented based on [27], showed an
interesting anatomical difference by gender. We performed
the COM position normalized with respect to the height
of each participant. The results (Table 5) showed that men
had a COM position higher than women. Men had a COM
position at 51.7% of their body height, and women at 51.0%
of their body height, a statistically significant difference (p =
0.0065). This could be because anatomically, women have
shorter legs than men, which moves their COM position
down. Additionally, no significant differences were found for
VCOM or HCOM excursions.
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FIGURE 6. Power Spectrum from joint kinematic angles for men (black line) and women (gray line) in sagittal, frontal, and transverse planes.
The values were averaged by gender in corresponding frequencies. Principal frequency (Pfrec) is circled for each graph and represents the
frequency with the highest magnitude in the spectrum.

TABLE 5. Means, standard deviations, and p-values of COM excursions.
Body segment parameters were adapted from Winter [27] for COM
calculation. The variable ‘‘body position’’ shows the position of COM
normalized with respect to the height of each participant. The
horizontal (HCOM) and vertical (VCOM) excursions were calculated during
each gait cycle and then averaged. Gender differences were evaluated
with two-sample t-test, and p-values less than 0.05 represent significant
difference.

C. SPATIAL FEATURES
Women had significantly shorter normalized step width than
men (p = 0.0472). It was the result of greater hip adduction
and higher knee abduction during the gait cycle. For this rea-
son, women carried their legs towards the midline of the body
more than men. In addition, step and stride length normalized
by leg length were retrieved. Although women had longer
normalized step and stride length than men, no significant
differences were found by gender (Table 6).

D. MACHINE LEARNING CLASSIFIER
A total of 222 features were retrieved for each participant.
The matrix of features had a dimension of 81 × 222, where
rows represented the number of participants and columns the
number of features. As mentioned above, from the original
81 observations, 61 were found to be valid (30 female and

TABLE 6. Means, standard deviations, and p-values of spatial
parameters: step length, stride length, and step width. Gender differences
were evaluated with two-sample t-test, and p-values less than
0.05 represent significant differences.

31 male observations). The remainder was discarded due
to the presence of signal discontinuities that caused unus-
able information. Then, a two-sample t-test was used to
detect the significance level of each feature. In this context,
only 108 features presented significant differences by gender
(p<0.05). These features were used to train a machine learn-
ing classifier. Therefore, the size of the final training matrix
was 61× 108.The selected model was an SVM that used the
quadratic kernel for classification between classes. A four-
fold cross-validation was applied, and results are reported
through a confusion matrix (Fig. 7) and ROC curve (Fig. 8).

In Fig. 7, 1 represents the positive female class and 2 the
negativemale class. TP,FN ,FP and TN represent the number
of true positives, false negatives, false positives and true neg-
atives, respectively. N represents the number of observations.
The accuracy (ACC) can be defined as the percentage of
correctly classified instances. It was calculated as follows:

ACC =
TP+ TN

TP+ TN + FP+ FN
= 96.7% (10)
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FIGURE 7. Confusion matrix, 1 represents the positive female class and 2
the negative male class.

FIGURE 8. The model performance evaluation. ROC curve for male and
female classes.

The marker on the ROC curve (Fig. 8) shows the perfor-
mance of the SVM classifier. The marker shows the values of
the false positive rate (FPR) and the true positive rate (TPR).
The FPR of 0.03 indicates that the SVM classifier assigns 3%
of the observations incorrectly to the positive class. The TPR
of 0.97 indicates that the SVM classifier assigns 97% of the
observations correctly to the positive class. Similar results in
ROC curve were achieved for both classes.

The area under curve (AUC = 0.99) is a measure of the
overall quality of the SVM classifier. The maximum AUC
is 1, which corresponds to a perfect classifier. Larger AUC
values indicate better classifier performance.

The overall quality and accuracy of the chosen model
represent very promising results to classify participants by
gender using only depth sensors.

E. HIGHLIGHT FEATURES
In addition to the t-test applied, with the multivariate neigh-
borhood component analysis (NCA), the highlights fea-
tures to cluster both groups could be discovered. It can be
seen in Fig. 9. Trunk rotation (Q75), trunk sway (IQR),

FIGURE 9. Significant differences weighted with the multivariate NCA
algorithm. The highlighted features are labeled in the scatter plot.

knee abduction and adduction (entropy), and pelvic obliq-
uity (ROM) were the features most differentiated between the
groups.

IV. DISCUSSION
Kinematic comparisons by gender have been primarily ana-
lyzed using discrete joint angle metrics, with ROM the
most frequently reported variable in the literature. Some
additional variables are the mean, maximum, or minimum
values of excursions during the gait cycle. As noted by
Frimenko et al. [12], these latter variables are often more
related to structure than motion,. Therefore a good interpre-
tation of the data is required to be able to distinguish them.
We decided to include central tendency measures because our
purpose was to find structural and kinematic differences by
gender. These measures allowed retrieval of the limb position
inherited by gait pattern.

Our results showed clear evidence of differences by gender
for hip ROM in the sagittal plane, with a greater value for
women than men. Conversely, with a certified device and
an entire population aged 50 years or older, Ko et al. [28]
reported significantly lower hip ROM in the sagittal plane for
women than men. According to Kobayashi et al. [29], gait
pattern varies with age. In this context, with a younger popu-
lation, Hurd et al. [30] reported greater hip ROM for women
than men, but without significant difference. This could have
been due to small study size, with only 20 participants. The
most consistent results have been found for hip ROM in
the frontal plane. Our results support earlier the theories of
Bruening et al. [31], Cho et al. [24], and Hurd et al. [30].
They suggested a greater hip ROM in the frontal plane for
women than for men. The same results were found even for
the older adult population [28] and treadmill tests [32].

Ko et al. [28] analyzed knee excursion in the frontal plane,
finding no significant differences by gender, though this study
used an older adult population. With a similar sample to ours,
both Cho et al. [24] and Roislien et al. [33] reported greater
knee valgus angle in women than men. Similar results were
found in our study. This could be an interesting difference
linked to a potential cause for the prevalence of knee injuries
in women.
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Cho et al. [24] reported a significant difference in the mean
position value of pelvic tilt. Women had the pelvis tilted
farther anteriorly. In addition, Chung et al. [34] reported the
female trunk tilted farther anteriorly. These differences have
been noted by gender in clinical measures of lower extremity
alignment (LEA) [35]–[37]. According to [12], this is a man-
ifestation of structural difference, rather than kinematics. Our
central tendency and dispersionmeasures match these results.
In addition, we found a significant difference in mean posi-
tion for trunk sway, with greater value for men than women.
This showed that women carry their trunk more centered,
whereas men try to lean their body sideward. Furthermore,
women had greater mean position of trunk and pelvic rotation
(protraction or retraction). This could represent a strategy that
women took to compensate their leg advance.

As we expected, there were differences revealed only in
the frequency domain. Bruening et al. [31] reported that
pelvic rotation has a possible phase shift. That study reported
the concave external rotation wave was slightly delayed in
women compared with men. This was only an empirical
finding, without performing the phase shift analysis using
a standard method. In contrast, through spectral analysis,
we found no differences by gender in phase shift during pelvic
rotation. However, an interesting significant difference was
found in phase shift of knee flexion: women delay knee flex-
ion, and therefore foot lift, compared with men. This could be
due to anatomical differences, given women have shorter legs
thanmen. To compensate for this difference, women try to get
a more extended position of their knee. This allows women to
achieve a higher advance with the opposite limb. No further
differences were found when analyzing phase shift.

Pelvic obliquity has been proposed as a mechanism to
lower VCOM excursions [38]–[40]. According to these
authors, greater pelvic obliquity in women than men may
represent a mechanism to reduce VCOM excursion. Con-
sequently, this reduces energy consumption during walking.
Smith et al. [40] used the sacrum as an estimated measure
of COM excursion. The author showed that females had
both greater pelvic obliquity and smaller VCOM excursion
than males. These differences were found only for the older
adult population. For a younger population, no significant
differences were found. Bruening et al. [31] used the cen-
ter of trunk segment as an approximation of the COM.
The author reported significant difference only in normal-
ized VCOM excursions, with greater values in women than
men. Gomez Jiménez et al. [26] reported differences in
non-normalized HCOM excursions, with lower values for
women than men. In the latter case, the COM was chosen
just anterior to the tenth thoracic vertebra as described by
Perry and Burnfield [41]. We refute the COM position cho-
sen in these previous studies. In contrast with them, we mea-
sured the COM position with regard to all body segments
through the Winter method [27]. Our results showed that,
although women had greater pelvic obliquity, there were
no significant differences in vertical or horizontal COM
excursions by gender. Similar results were found by [31].

Most strikingly, our results show clear evidence of gender
differences in normalized COM position that match his-
torical hypotheses. Results showed that men had a COM
position higher than women, 51.7% versus 51.0% of their
body height, respectively. Additionally, using the Winter
method, we reported around 3 centimeters in VCOM and
HCOM excursions. This is similar to older studies, which
reported approximately 3–5 centimeters. Notably, measure-
ment depends on sampling conditions.

Differences in the arm and shoulder have been less
explored within analysis of the upper body. According to
Bruening et al. [31], arm swing was higher in women com-
pared to men. The author reported that the women had signif-
icantly greater shoulder ROM. Conversely, our system could
not detect these differences. Only a difference in shoulder
mid-position in the frontal plane was found. Although there
were no significant differences, our results showed a lower
shoulder ROM in the sagittal plane for women than men. The
underlying reason could be related to gait speed. Gait speed
has proven to have a significant effect on the movement of
the upper limbs [42].

Frimenko et al. [12] reported that step length is related
to body height and not related to gender. According to the
author, height-matched participants of opposite gender likely
have similar step lengths. Our results support this theory.
As is indicated in [23], normalization by body height or leg
length must be applied. In this way, no significant differences
were found in step or stride length. Bruening et al. [31]
had similar results for normalized measures. As mentioned
earlier, women take different strategies to compensate for
their lower leg length. Some of these strategies are related
to delayed knee flexion and greater mean value of the trunk
and pelvic rotation. Through these, women achieve a greater
advance with the forward limb. These compensations could
be the reason why gender differences in the normalized step
or stride length disappear. Within step width, our results
confirm a smaller normalized value when normalization by
hip width is applied. This supports the theories of Gomez
Jiménez et al. [26], Cho et al. [24], and Sakaguchi et al. [25],
which employed a similar sample to ours.

Certain indicators were applied when choosing the dataset
for this study to be representative of a young population.
Kobayashi et al. [29] concluded that gait pattern is age-
dependent, and Sun et al. [43] reported that different gait
patterns related to self-esteem may exist between genders.
According to the latter study, self-esteem levels look similar
in young populations. These are the reasons that we focused
our study only on a healthy young population with similar
ages. This allowed us to avoid effects of health, age, or self-
esteem on these measurements.

V. CONCLUSION
Aswe hypothesized, the proposed non-invasive, cost-effective
system based on depth cameras may be able to retrieve
relevant features of human gait patterns. We proved this by
solving the problem of the classification of gait by gender.
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Our results and classification performance also support the
existing evidence about differences in gait pattern by gender.

Using the multivariate analysis NCA, the highlights fea-
tures to cluster both groups were retrieved. Trunk rotation
(Q75), trunk sway (IQR), knee abduction and adduction
(entropy), and pelvic obliquity (ROM) were the features most
differentiated between the groups.

In addition, earlier theories about the COM position, nor-
malized spatial variables, ROM, and position of limbs during
walking were supported. Central tendency measures allowed
us to find many structural differences by gender. The mag-
nitude of principal frequency measured the amount of move-
ment at gait frequency and could be used as an alternative
measure to ROM excursion. Finally, phase shift should be
analyzed in more depth since no other studies were found
with which to compare our results in detail.

In conclusion, these features could be used for a deeper
biomechanical human gait analysis. It should be noted that
the ankle excursion could not be detected, and the analysis
of shoulder excursion produced opposite results to those
reported in previous studies. These joints require special
attention when being analyzed in the future. In addition, our
future work will be to test how the system works in other
environments. It will involve identifying walking patterns
at different walking speeds, ages, or even for neurological
diseases. The effectiveness of this kind of study helps to
understand the importance of depth sensors for biomechan-
ical assessments.
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