
Received April 25, 2020, accepted May 11, 2020, date of publication May 18, 2020, date of current version June 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2995399

Modified Label Propagation on Manifold With
Applications to Fault Classification
YING XIE
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
School of Intelligent Engineering, Shenyang City University, Shenyang 110112, China

e-mail: xieyingemail@163.com

This work was supported in part by the National Natural Science Foundation of China under Grant 61733003.

ABSTRACT In process monitoring, fault classification performance heavily relies on the labels of training
data. However, the labeled data are inadequate and difficult to obtain because they require experienced
human annotators. In this paper, a modified label propagation (MLP) method is proposed to propagate
labels from labeled data to unlabeled data. The proposed label propagation algorithm has the following
advantages: (1) It constructs a global and local consistency framework with the aid of a data graph, manifold
learning, and data labels. This framework follows the assumption that data on the manifold will have similar
structures, and nearby data will have similar labels. (2) Considering the inner relationship between the
unlabeled data and historical data, a new definition for the initial label matrix is offered, which is significant
for label propagation. (3) The new method propagates labels in a low-dimensional manifold space, which
is different from most existing label propagation methods that propagate them in the original space. The
results reveal that under the global and local consistency framework, soft labels of unlabeled data are given
more effective predictions. With additional soft labels of unlabeled data, the MLP-based fault classification
method is introduced. The simulation results obtained using a toy example demonstrate the label propagation
performance of the MLP, and those obtained for the penicillin fermentation process verify the effectiveness
of the MLP-based fault classification method.

INDEX TERMS Modified label propagation, manifold learning, fault classification, semi-supervised
learning, fisher discriminant analysis.

I. INTRODUCTION
For process monitoring operations in control engineering,
fault classification plays a very important role in locat-
ing the fault and helping operators take correct reme-
dial measures [1]–[5]. However, data collected from an
industrial process are usually difficult to classify because
of the high-dimensional data characteristics and com-
plex data relationships involved. Based on these facts,
some classification methods have been proposed, such as
Fisher discriminant analysis (FDA) [6]–[8], support vec-
tor machine (SVM) [9], [10], and the k nearest neigh-
bor (kNN) classification [11], [12]. These methods are
supervised learning methods, requiring that the classes
of all training data are known; that is, all training
data are labeled. However, in industrial production pro-
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cesses, labeled data are usually inadequate, and the acqui-
sition of labeled data by employing skilled experts is
expensive.

Hence, in recent years, to overcome the disadvantages
of supervised learning methods, semi-supervised learning
(SSL) methods have drawn research interest [13]–[16].
These methods can acquire knowledge via both labeled
and unlabeled data for classification and are different
from supervised learning methods that are heavily reliant
on labeled data. Several SSL methods have been intro-
duced in process monitoring applications. For example,
Feng et al. proposed semi-supervised principal compo-
nent analysis for process monitoring [17]. Yan et al.
constructed a semi-supervised mixture-discriminant mon-
itoring scheme for an injection molding process [18].
Zhong et al. proposed a semi-supervised FDA model for
fault classification in industrial processes [19]. SSL meth-
ods can improve fault detection and fault classification
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performance even when labeled data are insufficient because
the structures and features of unlabeled data are effectively
explored.

Label propagation is a type of SSL method that has
attracted considerable attention recently [20]–[25]. Label
propagation is a commonly used method for propagating
labels of labeled data to unlabeled data using their simi-
larities and initial states. According to whether the model
can handle the outside data directly, existing label propaga-
tion methods can be divided into transductive and inductive
ones. Transductive learning methods can predict the labels
of inside unlabeled data but cannot predict the labels of
outside unlabeled data, such as linear neighborhood propa-
gation [26], special label propagation [27], projective label
propagation [28], sparse neighborhood propagation [29],
adaptive neighborhood propagation [30], and positive and
negative label propagation [31]. Owing to its effectiveness
and efficiency, label propagation is applied in many fields.
Several related methods have been researched as well. For
example, Wang et al. proposed a label propagation method
for synthetic data, and digit and text classification tasks [26].
Zhang et al. proposed a novel mechanism to obtain more
supervised information using propagated soft labels through
special label propagation [32]. Zhang et al. proposed a
nonnegative sparse neighborhood propagation method for
semi-supervised image classification [33]. Lin et al. proposed
dynamic graph-fusion label propagation for semi-supervised
multi-modality classification [34]. Zhang et al. proposed
a projective label propagation framework involving label
embedding, which can obtain the deep labels of all new
data [28]. Zoidi et al. proposed a positive and negative label
propagation method, which extends regular label propagation
to negative label propagation [31].

However, the aforementioned existing label propaga-
tion methods have certain potential shortcomings that may
degrade the classification results. First, data graph construc-
tion is an independent procedure before label propagation;
thus, the similarity weights resulting from precalculations on
the data graphmay not be jointly optimal for subsequent label
propagation. Therefore, traditional label propagation meth-
ods may suffer from inaccurately predicted results. Second,
in traditional label propagation methods, the initial label vec-
tor is usually simply defined as a zero vector for the unlabeled
data, without considering the inner relationship between the
unlabeled data and historical data. However, the relationship
between unlabeled data and labeled data and their implicit
characteristics are valuable and should be explored for defin-
ing the initial label matrix. Third, most traditional label
propagation methods propagate labels based on the original
high-dimensional space. However, real-world process data
usually contain various noises; undesirable, unnecessary, and
irrelevant features; and even corruptions. Therefore, it is more
likely that the predicted labels are inaccurate in practical sce-
narios. These features may lead to inaccurate label prediction
results.

To address these drawbacks, a modified label propaga-
tion (MLP) method is proposed in this paper. The major
contributions of the study findings to the field at large are
summarized as follows:

1) A global and local consistency framework is constructed
based on a data graph, manifold learning, and label propaga-
tion. This framework follows the global consistency assump-
tion that data on the manifold will have similar structures and
the local consistency assumption that nearby data will have
similar labels. By solving for minimization of the objective
function, optimal parameters such as the similarity weights
and projectionmatrix were obtained and used for further label
propagation.

2) In the initialization phase of label propagation, consid-
ering the inner relationship between the unlabeled data and
historical data, a new definition of the initial label matrix is
proposed based on the similarity and weight of each class,
which is significant in label propagation processes.

3) By minimizing the feature variations with respect
to neighboring structures, a low-dimensional manifold can
be obtained. Moreover, the proposed method propagates
label in a low-dimensional manifold. Therefore, the label
propagation result would be more accurate because a
low-dimensional manifold can remove noise and unfavorable
features and preserve the significant features hidden in the
data.

The remainder of this paper is organized as follows. A new
MLP method is proposed in Section II. A fault classification
method based on the MLP is introduced in Section III. A toy
example and the penicillin fermentation process (PFP) are
discussed in Section IV to demonstrate the effectiveness of
the proposed approaches. Finally, the conclusions are sum-
marized in the Section V.

II. MODIFIED LABEL PROPAGATION METHOD
Label propagation is a method for propagating labels of
labeled data to unlabeled data, according to the relationship
between the two data classes [20]–[25]. However, traditional
label propagation methods propagate labels after performing
an independent data graph construction process, in which the
similarity weights may not be optimal for subsequent label
propagation. Moreover, most traditional label propagation
methods propagate labels in the original high-dimensional
space, which usually contains undesirable and unnecessary
features. Considering this circumstance, an MLP method is
proposed, which is described as follows.

A given dataset ismapped onto a graph, and each data in the
dataset correspond to a node in that graph [27], [35]. Dataset
X = [XL ,XU ] ∈ Rs×n, where XL = [x1, x2, . . . , xl] ∈ Rs×l

is the labeled dataset,XU = [xl+1, xl+2, . . . , xl+u] ∈ Rs×u is
the unlabeled dataset, s is the original dimensionality of each
data, and l + u = n is the number of samples. Assume that
C = {1, 2, . . . , c} is the class label set, and sample xi in XL
has a unique label vector ηi (i = 1, 2, . . . , l), where ηi,j = 1,
if xi is labeled as j ∈ {1, 2, . . . , c}; otherwise, ηi,j = 0.
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The objective function of the MLP model can be formu-
lated as follows

MinJ (P,S,F)

=

n∑
i=1

n∑
j=1

∥∥∥PT xi − PT xj∥∥∥2Sij + n∑
i=1

n∑
j=1

∥∥Sij∥∥2
+α

n∑
i=1

n∑
j=1

∥∥Fi − Fj∥∥2Sij
+β

(
γ1

n∑
i=1

‖Fi − Di‖2 + γ2
n∑
i=1

∥∥Fi − Qi∥∥2
)
,

s.t. PPT = I (1)

where P ∈ Rs×d is a projection matrix in the
low-dimensional space; S is the similarity weight matrix on
the graph; F = [f 1, f 2, . . . , f n] ∈ Rn×c is the soft label
matrix;D ∈ Rn×c andQ ∈ Rn×c are the initial label matrices,
which will be explained later in this section; α, β, γ1, and
γ2 are the regulation parameters; I is the identity matrix.
n∑
i=1

n∑
j=1

∥∥PT xi − PT xj∥∥2Sij is the manifold feature smooth-

ness term. It expresses the total variation in the manifold
features with respect to the neighboring structures. It follows
the global consistency assumption that data on the manifold

will have similar structures.
n∑
i=1

n∑
j=1

∥∥Fi − Fj∥∥2Sij is the label
smoothness term. It expresses the total variation in the labels
with respect to the neighboring structures. This term follows
the local consistency assumption that nearby data will have

similar labels.
n∑
i=1
‖Fi − Di‖2 +

n∑
i=1

∥∥Fi − Qi∥∥2 is the fitted

term; it expresses howwell the predicted soft labels fit the ini-

tial labels. It is worth noting that
n∑
i=1

n∑
j=1

∥∥PT xi − PT xj∥∥2Sij,
n∑
i=1

n∑
j=1

∥∥Sij∥∥2, and n∑
i=1

n∑
j=1

∥∥Fi − Fj∥∥2Sij share the same simi-

larity weight matrix. Therefore, this method can construct a
global and local consistency framework to explicitly integrate
the data graph, manifold learning, and label propagation.

Parameters P, S, and F in (1) are unknown. Because these
parameters are coupled, there is no direct method to solve for
them. To this end, we adopted an optimization strategy that
updates one of the parameters while fixing the others and vice
versa. The procedure for optimizing the objective function is
described below in detail.

The initial value of S is Sij = e‖xi−xj‖
2
/2δ2 , if i 6= j;

otherwise, Sij = 0. δ is the width parameter of the Gaussian
function. The initial value of F is fi,j = 1, if xi is labeled
as j ∈ {1, 2, . . . , c}; otherwise, fi,j = 0 [21], [22]. Then,
projection matrix P will be calculated in the low-dimensional
manifold [36]–[38], while the other parameters are fixed. The
objective function about P is

Min J (P) =
n∑
i=1

n∑
j=1

∥∥∥PT xi − PT xj∥∥∥2Sij, s.t. PPT = I (2)

which is equal to

MinJ (P) = tr
((

PTX
)
L
(
PTX

)T)
, s.t. PPT = I (3)

P t+1 at the (t + 1)th iteration is obtained by choosing the
smallest d eigenvectors, which correspond to the d smallest
eigenvalues of XLtXT at the t th iteration [39]. Here, Lt =
(I − St)T (I − St), and d denotes the dimensionality of the
low-dimensional manifold space.
After the low-dimensional manifold projection matrix P

is computed and the other parameters are fixed, the similarity
weight matrix Swill be updated. The objective function about
S is expressed as follows:

Min J (S) =
n∑
i=1

n∑
j=1

∥∥∥PT xi − PT xj∥∥∥2Sij + n∑
i=1

n∑
j=1

∥∥Sij∥∥2
+α

n∑
i=1

n∑
j=1

∥∥Fi − Fj∥∥2Sij (4)

S can be calculated from the derivative of J (S)with respect
to S.

∂J (S)/∂S =
(
PTX

)T (
PTX

)
S+ αFFTS+ S

−

((
PTX

)T (
PTX

)
+ αFFT

)
(5)

By setting ∂J (S)/∂S to zero, St+1 at the (t + 1)th iteration
can be updated as

St+1 =
(
XTP t+1PTt+1X + αFtF

T
t + I

)−1
×

(
XTP t+1PTt+1X + αFtF

T
t

)
(6)

In this method, the similarity weights can be obtained in a
global and local consistency framework, which is optimal for
the next iteration.
Next, the predicted soft labels matrix,F, can be updated by

the following formulation

MinJ (F)

= α

n∑
i=1

n∑
j=1

∥∥Fi − Fj∥∥2Sij + β (γ1 n∑
i=1

‖Fi − Di‖2

+ γ2

n∑
i=1

∥∥Fi − Qi∥∥2
)

(7)

The first term of (7) is a label smoothness term. It indicates
that similar samples have similar labels. The second term
is a fitted term, which measures the difference between the
predicted soft labels and initial labels.
Because initial labels are significant to the label propaga-

tion process, a detailed definition of initial labels is given in
this section. Let D = [d1, d2, . . . , d l+u] ∈ R(l+u)×c denote
the initial labels of all data based on similarity. For labeled
data, di,j = 1, if xi is labeled as j ∈ {1, 2, . . . , c}; otherwise,
di,j = 0. For unlabeled data, the initial values of di,j are
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FIGURE 1. Illustration for initialization of qi,j .

calculated using e‖xi−µj‖
2
/2σ 2/

∑
j
e‖xi−µj‖

2
/2σ 2 , where µj is

the mean of the j-th class of labeled data, and σ is a known
parameter. Q =

[
q1, q2, . . . , ql+u

]
∈ R(l+u)×c denotes the

initial labels of all data based on the weight of each class. For
labeled data, qi,j = 1, if xi is labeled as j ∈ {1, 2, . . . , c};
otherwise, qi,j = 0. For unlabeled data, suppose that Ni (1),
Ni (2), . . .Ni (k) are the k nearest neighbors of xi and their
labels are lNi (1) , lNi (2), . . . lNi (k). Then, the weight of xi
from each class is calculated as follows

qi,j =
∑

xm∈Ni(K ),lNi(K )∈j

e‖xi−xm‖
2/2σ 2

/
∑
j

∑
xm∈Ni(K ),lNi(K )∈j

e‖xi−xm‖
2/2σ 2 ,

m = 1, 2, . . . , l, K ∈ {1, 2, . . . , k} (8)

Here,
[
qi,1, qi,2, · · · , qi,c

]
is the initial label vector of xi.

Fig. 1 illustrates the calculation procedure of qi,j for the
unlabeled data. The red point at the center of Fig. 1 indicates
unlabeled data. The black points surrounding the red point
indicate labeled data. The digits on top of the black points
are the labels, and the digits on the edges between the red
point and black points indicate weights. In Fig. 1, the red point
has six neighbors from three different classes. According to
(8), the weights of the first, second, and third classes of data
can be 0.3 + 0.2 + 0.1 = 0.6, 0.3 + 0.4 = 0.7, and 0.2,
respectively. The total weight is 0.6 + 0.7 + 0.2 = 1.5.
Finally, the initial label vector of the red point should be[
0.6
1.5 ,

0.7
1.5 ,

0.2
1.5

]
.

It follows from (7) that

MinJ (F) = αtr
(
FTLF

)
+ β

[
γ1tr

(
(F− D)T (F− D)

)
+ γ2tr

(
(F− Q)T (F− Q)

)]
(9)

By setting ∂J (F)/∂F to zero, the updated Ft+1 at the
(t + 1)th iteration is

Ft+1 = (αLt+1 + β (γ1 + γ2) I)−1 (β (γ1D+ γ2Q)) (10)

Parameters 0 < α < 1 and 0 < β < 1 regulate the
relative significance based on the label smoothness and fitted
terms in (1), respectively, and α and β are restricted such
that α + β = 1. Moreover, parameters 0 < γ1 < 1 and

0 < γ2 < 1 regulate the relative significance based on initial
labelsD andQ, respectively, and γ1 and γ2 are restricted such
that γ1 + γ2 = 1. Parameter adjustment is mainly based
on data structures and historical experience or knowledge.
For example, for the centralized data in each class, γ1 can
be increased accordingly. When there is a sudden change
in industrial production processes or the process data are
highly clustered in a few operating points, γ2 can be increased
accordingly.

Parameters P, S, and F are updated based on the above
iteration method until the following convergence condition is
satisfied

‖Ft+1 − Ft‖2 ≤ ε (11)

where ε is a threshold. The convergence condition indicates
there is no significant difference between the predicted soft
labels for two sequences. Next, optimal values of P, S, and
F can be obtained. Eventually, the soft label of sample xi is
determined according to argmax

j
{f ij}, i.e., the column index

of the largest element in f i.

III. FAULT CLASSIFICATION BASED ON MODIFIED LABEL
PROPAGATION
Label propagation is a transductive learning procedure for
predicting the labels of unlabeled data. In other words, label
propagation can predict the soft labels of unlabeled data
only in a given dataset, indicating insufficient generalization.
In the following paragraphs, a fault classification approach is
proposed based on the MLP and FDA models [6], [40].

The proposed MLP method is used to obtain the soft labels
of unlabeled data. Now, thewithin-class scattermatrix SUw and
between-class scatter matrix SUb of the unlabeled data, and
the within-class scatter matrix SLw and between-class scatter
matrix SLb of the labeled data can be obtained. Using them in
FDA, a semi-supervised counterpart, called SFDA, is derived.
Sb is the regularized between-class scatter matrix and Sw
is the regularized within-class scatter matrix, and they are
defined as follows:

Sb = θSLb + (1− θ)S
U
b

Sw = θSLw + (1− θ)S
U
w (12)

where θ is a trade-off parameter adjusting the proportion
based on the labeled data and unlabeled data. Then, the pro-

jection matrix is computed asW = arg max
W

tr
(
WT SbW

)
tr
(
WT (Sw+ωI)W

) ,
whereω is the regularization parameter. The original data can
be projected onto a lower-dimensional space via W . Then,
a classifier is designed to classify data in this low-dimensional
space. In this study, we used the probability density function
as the classifier.

First, the mean µj and covariance ξ j of the j-th class data
are calculated in the low-dimensional space. The j-th class
mean and covariance are calculated as follows

µj = θµ
l
j + (1− θ)µ

u
j

ξ j = θξ
l
j + (1− θ) ξ

u
j (13)
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whereµlj andµ
u
j are the means of the j-th class of labeled data

and unlabeled data, respectively; ξ lj and ξ
u
j are the covari-

ances of the j-th class of labeled data and unlabeled data,
respectively.

The linear discriminant analysis method assumes that
each class of data obeys the Gaussian distribution. The
conditional probability density function [34], [35] of the
lower-dimensional projectio z can be represented by the mean
µj and covariance ξ j.

P (z |z ∈ j) = (2π)−
r
2
(
det ξ j

)− 1
2

× exp
{
−
1
2

(
z− µj

)T
ξ−1j

(
z− µj

)}
(14)

where r represents the number of low-dimensional spaces.
Suppose that the prior probability of each class is equal;
then, according to Bayes’ formula [43], the posterior prob-
ability P (z ∈ j |z ) can be calculated. For any new data, xnew,
the projection on a low-dimensional space is z. Then, z is
brought into the conditional probability density functions
of all classes of data. Thus, the conditional and posterior
probabilities can be calculated. After that, the category of new
data can be identified through the following classification
criterion

C (xnew) = argmax
j
{P (z ∈ j |z )} , j ∈ {1, 2, . . . , c} (15)

where C (xnew) is the class of xnew.
The process modeling and monitoring procedures based on

MLP are summarized in the following subsections.

A. MODELING
(1) Obtain the labeled dataset [XL , η] =

[(
x1, η1

)
, · · · ,(

xl, ηl
)]
and unlabeled datasetXU = [xl+1, xl+2, . . . , xl+u].

(2) Construct a neighborhood graph and initialize S,F, D,
and Q.
(3) Update P, S, and F until F is convergent, and then

obtain the soft label matrix F.
(4) Given a set of training data, including labeled data

and soft labeled data, use the SFDA method to obtain the
projection matrixW .
(5) Calculate µj and ξ j of the j-th class of data.

B. MONITORING
(1) Obtain new data, xnew.
(2) Calculate the low-dimensional projection z using

z = WTxnew.
(3) Calculate the conditional probability and posterior

probability.
(4) The class of xnew can be identified.
The flowchart of the MLP-based fault classification

approach is shown in Fig. 2.

IV. CASE STUDY
In this section, a toy example is used to explain the label
propagation performance of the MLP, and the PFP is adopted

FIGURE 2. MLP-based fault classification procedure.

FIGURE 3. Testing dataset 2 with 10 labeled data.

to describe the performance of the MLP-based fault classifi-
cation method.

A. TOY EXAMPLE
In the toy example [44], [45], we introduce the two-moon
dataset. The two-moon datase contains two classes (called
class 1 and class 2), each of which is located in a half-
moon shape.We generate two testing datasets, namely testing
dataset 1 and testing dataset 2. In testing dataset 1, each
class consists of 60 samples; in testing dataset 2, each class
consists of 30 samples. We consider the traditional label
propagation(LP), linear neighborhood propagation (LNP),
and positive and negative label propagation (PNLP) methods
for comparison. Table 1 lists the accuracy levels of the LP,
LNP, PNLP, and MLP methods used in this case study.

Let us consider testing dataset 2, as shown in Fig. 3.
Five samples from each class are labeled and represented
by red solid squares and blue solid triangles, respectively.
The remaining 25 samples in each class are unlabeled data
represented by black points. Parameter d is set to 1 in this
simulation, k is 10, both α and β are 0.5, γ1 and γ2 are 0.4
and 0.6, respectively, and ε is 1e−6.
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FIGURE 4. Label propagation results: (a) LP; (b) LNP; (c) PNLP; (d) MLP.

FIGURE 5. Penicillin fermentation process flow diagram.

The label propagation results obtained using LP, LNP,
PNLP, and MLP are shown in Fig. 4. In this case study, the
accuracy levels of the LP, LNP, and PNLP methods are 72%,
54%, and 66%, respectively. In contrast, theMLPmethod can
yield the desired LP result, and its accuracy is 94%. From
these results, we inferred that theMLPmethod can effectively
leverage labeled and unlabeled data in the LP procedure, and
the optimal global and local consistency framework in the
MLP is beneficial for LP.

B. PENICILLIN FERMENTATION PROCESS
The PFP is a complex biochemical process [46]–[49]. The
process flow diagram of the PFP is shown in Fig. 5. It consists
of two major operational phases: bacterial growth phase and
penicillin secretory phase. Because data generated under dif-
ferent initial conditions and operation modes have different
categories, the PFP is a good candidate for evaluating the
performance of the MLP-based fault classification method.

Data used for this evaluation were generated using Pen-
sim V2.0. Training data and testing data from different
classes were obtained by setting different initial conditions,
set points, temperature controllers, and controller types for
monitoring the pH. To achieve the best fault classification
performance, 14 measurement variables were selected for
monitoring, which are listed in Table 2. The PFP was run
under four different modes—namely the normal mode, Fault
1 mode, Fault 2 mode, and Fault 3 mode—for generating
different types of data (Table 3). The normal mode was run
when default initial conditions, set points, and temperature
controller settings were used. A PID controller was used to
regulate the pH. Fault 1 was caused by increasing the aeration
rate with a ramp fault. Fault 2 was caused by increasing
the agitator power with a step fault. Fault 3 was caused by
increasing the substrate feed rate with a ramp fault. The
normal operation mode lasted for approximately 220 h. The
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TABLE 1. Accuracy levels of LP, LNP, PNLP, and MLP (%).

TABLE 2. Selected monitored variables for the PFP.

TABLE 3. Description of selected four process classes for the PFP.

other fault operation modes lasted for approximately 110 h
each, and the sampling interval was 1 h.

In the modeling phase, the training dataset contained 300
samples (120 normal samples, and 60 Fault-1, Fault-2, and
Fault-3 samples) from four different classes. We generated
two testing datasets, namely testing dataset 1 and testing
dataset 2. In testing dataset 1, the magnitudes of Fault 1,
Fault 2, and Fault 3 are 0.7, 1.5%, and 0.7, respectively; in
testing dataset 2, the magnitudes of Fault 1, Fault 2, and
Fault 3 are 0.9, 2%, and 0.9, respectively.

When there are 25 labeled samples in training dataset (10
labeled samples concluded in normal class, 5 labeled samples
concluded in Fault 1, Fault 2, and Fault 3 class, respectively),
let us consider testing dataset 2. The testing dataset 2 consists
of 100 normal samples, and 50 Fault-1, Fault-2, and Fault-3
samples, which appear in sequence. For comparison, FDA,
LP-SFDA, LNP-SFDA, and PNLP-SFDA approaches were
used for fault classification. Parameter r in the FDA, LP-
SFDA, LNP-SFDA, PNLP-SFDA, and MLP-SFDA models
is set to 4. Parameter k is set as 5; d is 3; α and β are set to

0.5; γ1 and γ2 are equal to 0.9 and 0.1, respectively; ε is 1e−6;
and θ is 0.7 in the MLP-SFDA method.

After the FDA, LP-SFDA, LNP-SFDA, PNLP-SFDA, and
MLP-SFDA models are established, the corresponding pro-
jection matrix W in the five models can be obtained. This
helps calculate the corresponding low-dimensional projection
z. Fig. 6 shows the first, second, and third directions of the
projection results of the test data with the FDA, LP-SFDA,
LNP-SFDA, PNLP-SFDA, and MLP-SFDA methods. The
projections of the test data in low-dimensional subspace
are separated using the five models. However, the pro-
jections obtained with FDA, as shown in Fig. 6(a), are
closer to each other than those obtained with LP-SFDA,
LNP-SFDA, PNLP-SFDA, and MLP-SFDA, as illustrated in
Figs. 6(b), 6(c), 6(d), and 6(e), respectively. Fig. 6(a) demon-
strates that when only a few labeled data are used, the
FDA-based discriminant results are poor. This is because
the FDA method relies on the information of labeled data.
As observed in Figs. 6(b), 6(c), and 6(d), the projections
obtained with LP-SFDA, LNP-SFDA, and PNLP-SFDA are
farther away from one another than in Fig. 6(a). This reveals
that the information from unlabeled data has been effec-
tively used in the discrimination. In contrast, the projections
obtained with MLP-SFDA are distinctly separate from each
other. This indicates that using the soft labels of unlabeled
data and because of their semi-supervised nature, the MLP-
SFDA method can obtain a better discriminant subspace for
more accurate predictions.

Next, the fault classification performances of FDA,
LP-SFDA, LNP-SFDA, PNLP-SFDA, and MLP-SFDA are
discussed. Fig. 7 shows the posterior probability values of
testing samples in the five methods corresponding to FDA,
LP-SFDA, LNP-SFDA, PNLP-SFDA, and MLP-SFDA. The
final classification results produced by the five methods
are shown in Fig. 8. The classification accuracy rates
achieved with FDA, LP-SFDA, LNP-SFDA, PNLP-SFDA,
and MLP-SFDA are 57.2%, 87.6%, 81.2%, 87.2%, and
97.6%, respectively. Specifically, according to Fig. 8(a), 23
samples that originally belong to Fault 2 are misclassified as
belonging to Fault 3. For Fault 1, eight samples are misclassi-
fied as belonging to Fault 3. In the normal data, 76 samples are
misclassified as belonging to Fault 3. Fig. 8(a) demonstrates
that when there are only a few labeled data, the classifica-
tion performance of FDA is poor because it depends on the
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FIGURE 6. Results of dimension reduction: (a) FDA; (b) LP-SFDA; (c) LNP-SFDA; (d) PNLP-SFDA; (e) MLP-SFDA.

information of labeled data. Figs. 8(b), 8(c), and 8(d) indicate
that the classification accuracy of the LP-SFDA, LNP-SFDA,
and PNLP-SFDA methods is slightly higher than that of

the FDA method, but there are still some misclassifications.
Therefore, using a semi-supervised method improves clas-
sification performance. In contrast, Fig. 8(e) shows that the
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FIGURE 7. Posterior probabilities of samples: (a) FDA; (b) LP-SFDA; (c) LNP-SFDA; (d) PNLP-SFDA; (e) MLP-SFDA.
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FIGURE 8. Fault classification results: (a) FDA; (b) LP-SFDA; (c) LNP-SFDA; (d) PNLP-SFDA; (e) MLP-SFDA.
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TABLE 4. Classification accuracy of FDA, LP-SFDA, LNP-SFDA, PNLP-SFDA, and MLP-SFDA (%).

classification accuracy of the MLP-SFDA method is much
higher than that of the FDA, LP-SFDA, LNP-SFDA, and
PNLP-SFDA methods.

Table 4 lists the classification accuracy rates achieved
using FDA, LP-SFDA, LNP-SFDA, PNLP-SFDA, andMLP-
SFDA in this case study. The resuls indicate improvements in
classification performance owing to the LP performed using
MLP and the semi-supervised characteristic of unlabeled
data. Therefore, based on the above results, we can conclude
that the soft labels of unlabeled data can be predicted more
accurately using the proposed method. With the additional
soft labels of unlabeled data, the fault classification abil-
ity of MLP-SFDA is greater than that of FDA, LP-SFDA,
LNP-SFDA, and PNLP-SFDA.

V. CONCLUSIONS
In this paper, an MLP method is proposed to accurately
propagate labels from labeled data to unlabeled data. The toy
example is utilized to evaluate the performance of MLP.
Compared to the LP, LNP, and PNLP methods, the MLP
method with a new global and local consistency framework,
has been validated in predicting the soft labels of unlabeled
data accurately. In addition, the MLP-based fault classifi-
cation method is introduced with additional soft labels of
unlabeled data. As a proof of concept, the PFP is utilized
to verify the fault classification performance of the proposed
method. The results proved that the MLP-SFDA method can
achieve higher classification accuracy than the traditional
FDA, LP-SFDA, LNP-SFDA, and PNLP-SFDA methods.
Furthermore, the proposed approach can improve the fault
classification accuracy effectively.

Although the proposed method yields encouraging results,
optimization of the model parameters still needs to be investi-
gated, and more subjects and complex industrial process data
will be required to test the MLP and MLP-SFDA-based fault
classification methods in future.
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