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ABSTRACT Polar Harmonic Transform (PHT) is termed to represent a set of transforms those kernels are
basic waves and harmonic in nature, which can improve the effect in Intelligent Transportation System (ITS)
applications. PHTs consist of Polar Complex Exponential Transform (PCET), Polar Cosine Transform (PCT)
and Polar Sine Transform (PST). PHTs can extract orthogonal and rotation invariant features and demon-
strated superior performance in various image processing and computer vision applications. For real time
systems and large multimedia databases, execution efficiency is always a significant challenge. With
widespread use of Graphics Processing Unit (GPU), this study presents GPU based PHTs. Proposed methods
are based on mathematical properties of PHTs and optimization techniques of GPU. Optimal parameter
selections for GPU execution are also discussed. In our experiments, proposed methods are over 1800 times
faster.

INDEX TERMS GPU, Polar harmonic transform, feature extraction, intelligent transportation system.

I. INTRODUCTION
With rapid development of artificial intelligence, intelligent
transportation system (ITS) especially autonomous driving
attracts multidisciplinary researchers and becomes one of
most promising directions. Autonomous driving technologies
are mainly divided into three parts: perceptual positioning,
planning decision making and executive control. As for per-
ceptual positioning, there are challenging tasks including
driver environment understanding [1], [2], road sign detection
[3], [4], pedestrian detection [5], [6], behaviour analysis
and prediction [7], depth estimation [8], [9], Vehicle-to-
everything (V2X) [10]–[12], and intelligent human-computer
interaction technology [13], [14]. Among these ITS applica-
tions and tasks, feature extraction plays a significant role.

Polar Harmonic Transforms (PHTs) consist of Polar Com-
plex Exponential Transform (PCET), Polar Cosine Trans-
form (PCT) and Polar Sine Transform (PST) [15]. PHTs
can extract orthogonal and rotation invariant features and
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demonstrated superior performance in ITS tasks. Farnoosh
and Ali [16] use PCT coefficients to correct uncertain labels
for getting more accurate body reconstruction. Al-asady and
Al-amery [17] obtain accurate features for human action
detection. Lin et al. [18] and Liu et al. [19] propose region
duplication detection scheme for feature point mapping.

PHTs also show competitive result in applications like
image watermarking [20]–[24], fingerprint indexing [25],
image copy-move forgery detection [26]–[29], color image
analysis [30], [31], breast cancer detection [32], hand vein
recognition [33], binary image recognition [34], MRI data
analysis [35], [36], video hashing [37], [38], airborne plat-
form localization [39], image retrieval [40]. For compute-
intensive tasks Graphics Processing Unit (GPU) based
parallel computing shows obvious advantages in many fields
likeWavelet transform [41], Fourier transform [42]. Comput-
ing speed is very important for ITS applications.

This paper focuses on GPU based Polar Harmonic
Transforms (GPHTs) that consist of GPU based Polar Com-
plex Exponential Transform (GPCET), Polar Cosine Trans-
form (GPCT) and Polar Sine Transform (GPST). For utilizing
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GPU parallel computational capability, we implement pro-
posed methods with Compute Unified Device Architecture
(CUDA) [43], [44]. Mathematical properties of PHTs are
also considered in CUDA. Different execution configurations
of GPU lead to different running time. Optimal parameter
selection are evaluated as well.

The organization of this paper is as follows. Themathemat-
ics definitions of PCET, PCT and PST are given in Section 2.
The proposed methods are presented in Section 3 after
introducing GPU memory structure and parallel execution
model. In Section 4, the performance of proposed method is
evaluated under different images. The experimental results
illustrate that proposed method is really effective. Finally,
concludes this study.

II. POLAR HARMONIC TRANSFORMS
This section introduces PHTs, and for further details
refer to [15].

A. POLAR COMPLEX EXPONENTIAL TRANSFORM (PCET)
Given a 2D image function f (x, y), it can be transformed from
Cartesian coordinate to polar coordinate f (r, θ) as following
formulae transform, where r and θ denote radius and azimuth
respectively.

r =
√
x2 + y2, (1)

and

θ = arctan
( y
x

)
. (2)

PCET is defined on the unit circle that r ≤ 1, and can be
expanded with respect to the basis functions Hnl(r, θ) as

f (r, θ) =
∞∑

n=−∞

∞∑
l=−∞

MnlHnl(r, θ), (3)

where the coefficient is

Mnl =
1
π

∫ 2π

0

∫ 1

0
f (r, θ)H∗nl(r, θ)rdrdθ. (4)

The basis function is given by

Hnl(r, θ) = Rn(r)eilθ , (5)

where

Rn(r) = ei2πnr
2
. (6)

Rewrite Eq. (4) with Eqs. (5) and (6):

Mnl =
1
π

∫ 2π

0

∫ 1

0
f (r, θ)(cos(2πnr2 + lθ )

−i sin(2πnr2 + lθ ))rdrdθ, (7)

|Mnl | is rotation invariant and can be used for feature
extraction.

B. POLAR COSINE TRANSFORM AND POLAR SINE
TRANSFORM (PCT & PST)
PCT is given by

f (r, θ) =
∞∑
n=0

∞∑
l=−∞

MC
nlH

C
nl (r, θ), (8)

where the coefficient is

MC
nl = �n

∫ 2π

0

∫ 1

0
f (r, θ)HC∗

nl (r, θ)rdrdθ. (9)

The basis function of PCT is

HC
nl (r, θ) = RCn (r) e

ilθ , (10)

where

RCn (r) = cos(πnr2), (11)

and

�n =


1
π

if n = 0

2
π

if n 6= 0.
(12)

Rewrite Eq. (9) with Eqs. (10), (11) and (12):

MC
nl = �n

∫ 2π

0

∫ 1

0
f (r, θ) cos(πnr2)

×(cos(lθ )−i sin(lθ))rdrdθ. (13)

Similarly, PST is given by

f (r, θ) =
∞∑
n=1

∞∑
l=−∞

MS
nlH

S
nl(r, θ), (14)

where the coefficient is

MS
nl = �n

∫ 2π

0

∫ 1

0
f (r, θ)HS∗

nl (r, θ)rdrdθ. (15)

The basis function of PST is

HS
nl(r, θ) = RSn (r) e

ilθ , (16)

where

RSn (r) = sin(πnr2), (17)

Rewrite Eq. (15) with Eqs. (16) and (17):

MS
nl = �n

∫ 2π

0

∫ 1

0
f (r, θ) sin(πnr2)

×(cos(lθ )−i sin(lθ))rdrdθ. (18)

PCT and PST are defined on unit circle as well. |MC
nl | and

|MS
nl | are rotation invariant.
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FIGURE 1. Logical view of GPU.

III. PROPOSED METHOD
A. GPU ARCHITECTURE
GPU contains Streaming Multiprocessors (SM). Parallel
threads on SM are grouped into a thread block. Thread blocks
are grouped into a grid that corresponds to a CUDA kernel
function call in a GPU program [43]. Each block in a grid has
its own block id. The number of threads in a thread block and
the number of thread blocks in a thread grid can be specified
and can also impact the computation efficiency [44].

GPU has several memory models such as register, local
memory, shared memory, global memory, constant memory
and texture memory as shown in FIGURE 1.

B. DIRECT COMPUTATION METHOD ON GPU
Each GPU thread handles a pixel data. Parallel threads sig-
nificantly boost PHTs. Following variables can be set on
GPU. gridDim.x is the number of thread blocks in a thread
grid, blockId .x is the index of thread block in a thread
grid, blockDim.x is the number of threads in a thread block,
threadId .x is the index of thread in a thread block. We define
id as the index of a thread in a thread grid. id can be calculated
by following formula,

id = blockDim.x × blockId .x + threadId .x (19)

For an image with N × N resolution, each pixel is repre-
sented as (x, y). The pixel in x-th column and y-th row can be
mapped to GPU thread id by following equation:

y× N + x = id, (20)

where 0 ≤ y < N , 0 ≤ x < N . x and y can be calculated
from id :

y =
⌊
id
N

⌋
, (21)

x = mod(id,N ), (22)

where mod(·) is modulo operator. According to Eqs. (21)
and (22), parallel GPU threads with different id can access
different (x, y) pixel data to accomplish PHTs on GPU
directly.

C. FAST COMPUTATION METHOD ON GPU
From Eq. (13), we can find for the pixels with same r and
cos(πnr2), the different integrated part is

FIGURE 2. Symmetric pixels as a group.

f (r, θ)(cos(lθ ) − i sin(lθ )). Axis symmetric and origin sym-
metric pixels like (x,y), (−x,y), (x,−y), (−x,−y), (y,x),
(−y,x), (y,−x), (−y,−x) can be grouped and share compu-
tation as shown in FIGURE 2. Their Cartesian and polar
coordinates are shown in Table 1.
As known sin(θ ) and cos(θ ) functions are periodic func-

tions with period 2π . Periods for sin(lθ ) and cos(lθ )
are 2π/l. Derived from the periodic and symmetric properties
of trigonometric functions that used in Fast Fourier Trans-
form (FFT) [45], mathematical relationships for trigonomet-
ric functions exist with respect to different l. If l is divided
by 4 with remainder 1 that means mod(l, 4) = 1, following
relationship for sine function can be deduced:

sin(l(
π

2
− θ)) = cos(lθ ), (23)

sin(l(
π

2
+ θ)) = cos(lθ ), (24)

sin(l(π − θ)) = sin(lθ), (25)

sin(l(π + θ)) = − sin(lθ ), (26)

sin(l(
3π
2
− θ)) = − cos(lθ ), (27)

sin(l(
3π
2
+ θ)) = − cos(lθ ), (28)

sin(l(2π − θ)) = − sin(lθ ). (29)

Similar relationships also exist for cosine function and
other l values. For the eight symmetric points on the same
radius r , coefficients can be calculated simultaneously.
Based on previous discussion, we rewrite Eq. (13) and have

GPCT

GPUMC
nl = �n

∫∫
D
w(x, y) cos(πn(x2 + y2))

×(Gl(x, y)− iHl(x, y)) dx dy, (30)

where

D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ x2 + y2 ≤ 1}, (31)
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TABLE 1. Coordinates for symmetric pixels.

where Gl(x, y) and Hl(x, y) is shown in Eqs. (32) and (33), as
shown at the bottom of this page, and w(x, y) is given by

w(x, y) =

1 if (x, y) /∈ P
1
2

if (x, y) ∈ P,
(34)

where

P = {(x, y)|y = x, y = −x, x = 0, y = 0}. (35)

Similarly, GPST is given by

GPUMS
nl = �n

∫∫
D
w(x, y) sin(πn(x2 + y2))

×(Gl(x, y)− iHl(x, y)) dx dy. (36)

As for PCET, we can simplify rewrite Eq. (7) based math-
ematical property of trigonometric functions as,

cos(2πnr2+lθ )=cos(2πnr2) cos(lθ )−sin(2πnr2)sin(lθ ),

(37)

FIGURE 3. Mapping between (x, y ) and GPU threads id .

and

sin(2πnr2+lθ )=sin(2πnr2) cos(lθ )+cos(2πnr2) sin(lθ).

(38)

Finally, the GPCET is given by

GPUMnl =
1
π

∫∫
D
w(x, y)

×(cos(2πn(x2 + y2))Gl(x, y)

− sin(2πn(x2 + y2))Hl(x, y))

−i(sin(2πn(x2 + y2))Gl(x, y)

+ cos(2πn(x2 + y2))Hl(x, y)) dx dy. (39)

Gl(x, y) =



(f (x, y)+ f (y, x)+ f (−y, x)+ f (−x, y)
+f (−x,−y)+ f (−y,−x)+ f (y,−x)+ f (x,−y))cos(lθ ) if mod(l, 4) = 0
(f (x, y)− f (−x, y)− f (−x,−y)+ f (x,−y))cos(lθ )
+(f (y, x)− f (−y, x)− f (−y,−x)+ f (y,−x))sin(lθ ) if mod(l, 4) = 1
(f (x, y)− f (y, x)− f (−y, x)+ f (−x, y)
+f (−x,−y)− f (−y,−x)− f (y,−x)+ f (x,−y))cos(lθ ) if mod(l, 4) = 2
(f (x, y)− f (−x, y)− f (−x,−y)+ f (x,−y))cos(lθ )
−(f (y, x)− f (−y, x)− f (−y,−x)+ f (y,−x))sin(lθ ) if mod(l, 4) = 3,

(32)

Hl(x, y) =



(f (x, y)− f (y, x)+ f (−y, x)− f (−x, y)
+f (−x,−y)− f (−y,−x)+ f (y,−x)− f (x,−y))sin(lθ) if mod(l, 4) = 0
(f (x, y)+ f (−x, y)− f (−x,−y)− f (x,−y))sin(lθ)
+(f (y, x)+ f (−y, x)− f (−y,−x)− f (y,−x))cos(lθ ) if mod(l, 4) = 1
(f (x, y)+ f (y, x)− f (−y, x)− f (−x, y)
+f (−x,−y)+ f (−y,−x)− f (y,−x)− f (x,−y))sin(lθ) if mod(l, 4) = 2
(f (x, y)+ f (−x, y)− f (−x,−y)− f (x,−y))sin(lθ)
−(f (y, x)+ f (−y, x)− f (−y,−x)− f (y,−x))cos(lθ ) if mod(l, 4) = 3,

(33)
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TABLE 2. Running time of GPCT with different unrollNum and blockDim.x .

TABLE 3. Running time of GPST with different unrollNum and blockDim.x .

FIGURE 4. Running time of GPCT with different unrollNum on synthetic
images.

By using Eqs. (30), (36) and (39), a group of symmetric
pixels can be handled by a GPU thread. In this case, Eqs. (21)
and (22) should be reevaluated. As shown in FIGURE 3, we
select one pixel from row 0, two pixels from row 1 and so on,
then concatenate them for GPU threads. We have:

y× (y+ 1)
2

+ (N − 1− x) = id, (40)

FIGURE 5. Running time of GPST with different unrollNum on synthetic
images.

where 0 ≤ x ≤ y < n. GPU thread id is in following range

y× (y+ 1)
2

< id ≤
(y+ 1)× ((y+ 1)+ 1)

2
, (41)

y can be deduced from id as

y =

⌊
−1+

√
1+ 8× id
2

⌋
, (42)
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TABLE 4. Running time of GPCET with different unrollNum and blockDim.x .

FIGURE 6. Running time of GPCET with different unrollNum on synthetic
images.

FIGURE 7. Running time of GPCT with different blockDim.x on synthetic
images.

x can be calculated as

x = N − 1−
(
id −

y× (y+ 1)
2

)
. (43)

D. UNROLL OPERATION
Unroll operation is an important technique that optimizes
GPU execution speed by reducing branch penalties and hid-
ing latencies including the delay from reading data [44].

FIGURE 8. Running time of GPST with different blockDim.x on synthetic
images.

FIGURE 9. Running time of GPCET with different blockDim.x on synthetic
images.

In proposed method, unroll operation is to calculate more
than one group of pixels in a thread. Let unrollNum be the
number of groups calculated in a thread. To choose an opti-
mal unrollNum depends on algorithm complexity and GPU
memory limitation.

IV. EXPERIMENTAL RESULTS
Images with different resolution and content are tested to
illustrate the feasibility and efficiency of proposed GPHTs.

95104 VOLUME 8, 2020
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FIGURE 10. Real images in ITS applications.

FIGURE 11. Running time of GPHTs with different unrollNum on real images.

FIGURE 12. Running time of GPHTs with different blockDim.x on real images.
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TABLE 5. Running time of PHTs and GPHTs on synthetic images.

Windows 10 and Visual Studio 2015 are used to perform
experiments, CPU (Intel Core i3-8100) has 4 cores with
3.6GHz frequency, GPU (Nvidia GeForce GTX 1060) has
1280 cores with 1594MHz frequency and graphic memory
is 6GB, CUDA version is 9.0.176.

A. SYNTHETIC IMAGES
Synthetic images are used. They are generated by following
formula:

f (i, j) = rand(1, 255), 0 ≤ i < N , 0 ≤ j < N , (44)

where rand(·) is a function to randomly generate a integer.
1,000 synthetic images are generated. In this experiment, n
ranges from 11 to 16 and l ranges from 11 to 15.
With different unrollNum and blockDim.x, the running

time of GPCT, GPST and GPCET are different as shown in
Tables 2, 3 and 4 respectively.
unrollNum is defined as a power of two, like 2, 4, 8.

For 1000 images with 2048 × 2048 resolution,
FIGUREs 4, 5 and 6 show running time curve of
GPCT, GPST and GPCET for different unrollNum. When
log(unrollNum) is 1, GPCT, GPST and GPCET achieve the
best performance.

We evaluate the impact of blockDim.x. blockDim.x is
defined as a power of two, like 2, 4, 8. FIGUREs 7, 8
and 9 show running time curve of GPCT, GPST and
GPCET for 1000 synthetic images. As for GPCT when
log(blockDim.x) is 7, proposed method is the fastest and
is about 11.39 times comparing to log(blockDim.x) is 0.
Similarly, GPST and GPCET achieve the best performance
when log(blockDim.x) is 7.
With optimal unrollNum and blockDim.x, we evaluate

GPHTs against PHTs as shown in Table 5. While image reso-
lution increasing, the proposedGPHTs outperform obviously.
In our experiment for images with 2048 × 2048 resolution,

TABLE 6. Running time of PHTs and GPHTs on real images.

GPCT runs 1887.5 times faster than PCT on CPU. GPST
can achieve 1795.4 times faster than PST on CPU. GPCET
is 1527.1 times faster than PCET on CPU.

B. REAL IMAGES
ITS real images are shown in FIGURE 10. 128 image patches
with 512× 512 resolution are selected. In this experiment, n
ranges from 1 to 25 and l ranges from 1 to 25.

As shown in FIGURE 11when log(unrollNum) is 2, GPCT,
GPST and GPCET achieve the best performance. We also
evaluate optimal blockDim.x as shown in FIGURE 12. When
log(blockDim.x) is 7, GPCT, GPST and GPCET achieve the
best performance.

With optimal unrollNum and blockDim.x, Table 6 shows
the running time comparison of GPHTs and PHTs. In our
experiment for real images with 512× 512 resolution, GPCT
runs 961.8 times faster than PCT on CPU. GPST can achieve
975.3 times faster than PST on CPU. GPCET is 790 times
faster than PCET on CPU.

V. CONCLUSION
In this paper, we propose GPU based PHT. By using the
symmetric properties andmathematical properties of trigono-
metric functions, parallel GPU threads can manipulate pixels
simultaneously. Formulas between GPU thread id and image
pixel (x, y) are deduced. For real time systems and large mul-
timedia databases, proposed method can fully unleash GPU
parallel computational capability. Comprehensive experi-
ments are also given to illustrate the effectiveness of proposed
method. Wide range of emerging applications that using
PHTs will be inspired from this study.
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