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ABSTRACT As the number of devices connected to the internet and the amount of data they generate
increases, the wireless spectrum is becoming an essential and scarce resource. Most connected devices use
wireless technologies that use the industrial, scientific, and medical (ISM) radio bands. As a result, different
technologies are interfering with each other. Today’s existing collision avoidance techniques either apply a
random back-off when a signal collision is detected or assume that knowledge about other nodes’ spectrum
occupation is known. These approaches are competent approaches to optimise inter-network spectrum usage,
but fail to optimise overall channel capacity and throughput of all neighbouring wireless networks. In
this paper, we present a Deep Neural Network (DNN) approach that can predict spectrum occupation of
unknown neighbouring networks in the near future by using online supervised learning in a multi-agent
setting. This prediction can be employed by existing network schedulers to avoid collisions with surrounding
networks or other electromagnetic sources. The DNN is trained in an online way, as the problem is a partially
observable stochastic game with continuous action space. Our findings show a reduction in the number of
collisions between the own network and neighbouring networks of 30%, and an increase in overall throughput
of 10% in a medium-sized network with an unknown set of neighbouring networks.

INDEX TERMS Collaborative wireless networks, deep learning, machine learning, wireless MAC.

I. INTRODUCTION
Dynamic spectrum access is one of the keys to improv-
ing spectrum utilisation in wireless networks, as to meet
the increasing need for capacity [1]. The phenomenon of
spectrum scarcity is getting increasingly serious with the
growing use of the unlicensed ISM radio bands. On licensed
bands, on the other hand, governmental agencies regulate
the spectrum and only a limited number of users can use a
specific set of frequencies. Recently, some approaches try to
make underutilised licensed spectrum available (e.g. Cogni-
tive Radios (CRs)), or move partially to unlicensed bands
when the licensed bands do not suffice (e.g. LTE-U). The
number of wireless devices is expected to grow from 8 billion
in 2016 to 28 billion in 2023, along with a projected increase
in transmitted data from 7.2 exabytes per month in 2016 to
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49.0 exabytes per month in 2021. Half of this data will be
exchanged via Wi-Fi on the ISM band [2].

Optimising the spectrum usage in a wireless network is a
well-studied area, with a lot of existing work focusing on
Medium Access Control (MAC) algorithm design. Most of
these algorithms, however, only try to optimise their own net-
work performance, as information about the others is unavail-
able. At the same time, the number of different technologies
that use the same ISM bands is also growing and, with
dynamic spectrum access, these MAC algorithms should take
cross-technology interference into account. Current collision
avoidance techniques in MAC algorithms could be divided
into three different classes [3]. (i) Random Access protocols:
Nodes can access the spectrum at any time to transmit pack-
ets. Most of the time, these protocols use a Carrier Sens-
ing Multiple Access (CSMA) collision avoiding technique
to reduce collisions. (ii) Time-slotted protocols: The spec-
trum is divided into fixed slots, and nodes can only use the
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spectrum during slots defined by some scheduling algorithm.
(iii) Hybrid protocols: Some protocols use partially slotted
transmission. Control signalling makes use of synchronised
time slots, while data transmission may use random access
protocols without time synchronisation. Alternatively, ran-
dom access protocols are extended with a slotted structure,
so transmissions can only start at specific fixed times. All
these techniques focus on optimising the technology’s own
performance, without taking the other’s performance into
account. To the best of our knowledge, there is no protocol
that is able to react to cross-technology behaviour to avoid
cross-technology interference.

Optimising the spectrum for cross-technology environ-
ments is complex because of the diversity of technologies,
the wide variety of different applications and the mobility
of nodes. This variety and mobility make the problem very
dynamic and hard to solve with naive approaches.

In this work, we consider a multi-channel access problem
where N nodes have access to C channels in an environ-
ment where other networks (possibly using other wireless
technologies) use the same portion of the spectrum. Nodes
at different positions have different views of the spectrum.
We assume that the MAC protocol used at the own network
is a slottedMACprotocol, such asMultiple Frequencies Time
Division Multiple Access (MF-TDMA) or slotted-CSMA
where the receiver decides when and on which channel to
perform transmissions. This could be achieved through a
(centralised or decentralised) scheduler, which is not part of
the scope of this paper. Nevertheless, our solution is com-
patible with those (centralised and decentralised) schedulers
by providing additional information to them. Our proposed
solution considers S × C slots, sorting them in increasing
order of predicted noise level. Then, the usedMAC algorithm
could select slots with less predicted noise first. Note that
we define noise as spectrum usage by other networks. We
call this set of unknown networks the Interfering Networks
Cluster (INC). To optimise the spectrum, we assume that we
want to optimise the overall throughput of all networks in the
environment, both the own network as well as the networks in
the INC. In other words, we optimise the overall throughput
by predicting the behaviour of the INC and change our own
behaviour by rescheduling slots if necessary. In this paper,
we focus on the prediction of the behaviour of the INC.

In general, the problem can be formulated as a partially
observable stochastic game, which is a natural extension of a
MarkovDecision Processes (MDPs) tomulti-agent scenarios.
Because of the large number of actions, the number of permu-
tations of S × C slots is (S × C)!, the action space should
be considered continuous and solving this problem with
Reinforcement Learning (RL) is hard [4]. We investigate the
use of deepmulti-agent supervised online learning as a way to
enable learning in an unknown environment by predicting the
spectrum usage (at every node) for upcoming slots. We define
a loss function that allows optimising the prediction based
on partially observable data. Our online approach makes the
proposed algorithm robust against unknown behaviour and

new environments. With this approach, we use techniques of
RL and supervised learning.

To the best of our knowledge, this paper is the first attempt
to provide a Multi-Agent Machine Learning (MAML) solu-
tion that predicts the spectrum usage to optimise spectrum
sharing and increases the overall throughput of all networks
in the environment. We can use our approaches with different
unknown sources, and evaluate the algorithm in a realistic
simulator with multiple topologies and scenarios. This work
focuses on the prediction of the spectrum usage of the INC in
a multi-agent partially observable environment while using
the spectrum itself, by training a DNN. We run simulations
to compare our algorithm with traditional slot selection algo-
rithms. Also, this algorithm was implemented in the SCAT-
TER radio [5], a wireless radio developed by the two times
prize winner SCATTER team that reached 6th place in the
DARPA Spectrum Collaboration Challenge (SC2).1 In this
competition, teams were challenged to build a collaborative
wireless radio to improve the Quality of Service (QoS) of all
the networks in the same collision domain [6], [7].

The remainder of this paper is structured as follows:
we first discuss the related work and state of the art in
section II. Secondly, we mathematically describe the prob-
lem in section III. In section IV, we discuss our proposed
algorithm and architecture, while in section V, we discuss the
implementation in the simulator and the SCATTER wireless
radio system. The results are shown in section VI where we
compare the algorithm with other techniques in simulation
and a real setup by using the DARPA SC2 testbed. Finally,
we conclude this work in section VIII.

II. RELATED WORK
Spectrum and channel management have been widely stud-
ied. Traditional channel management algorithms focus on
avoiding collisions within one network. Nowadays, a lot of
different algorithms aiming at avoiding collisions or priori-
tising different users exist. In recent years, Machine Learning
(ML) approaches to optimising certain network management
problems have gained popularity. In this section, state of the
art concerning collision avoidance techniques, CR networks
and ML in wireless networks are discussed.

A. COLLISION AVOIDING TECHNIQUES
As described previously, three main approaches to collision
avoidance exist. (i) Random Access protocols: The sim-
plest (and still widely used) Collision Avoiding technique
is ALOHA [8]. With this generic and easy-to-use approach,
nodes use the medium at any time and retry after a random
back-off time if transmission fails. Nowadays, a lot of Ran-
dom Access protocols are extended with CSMA [9]. This
technique listens to the medium and only starts transmit-
ting if the medium appears free. It sends the packet after
a random interval, starting from the moment it no longer
notices any activity on the medium. This can be extended

1https://www.spectrumcollaborationchallenge.com
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with an RTS/CTS (Request To Send/Clear To Send) flow
control mechanism. This method tries to avoid collisions
by creating coordinated access to the medium using control
signals between nodes. RTS/CTS communication cannot be
used between different networks or across network tech-
nologies, while carrier sensing strategies also listen to other
network technologies. It is known that some CSMA networks
(such as Wi-Fi) may face starvation if other network tech-
nologies are using the same spectrum with no listen before
talking mechanisms [10]–[12]. (ii) Time-slotted protocols:
Another way of using the spectrum is by defining fixed
time slots. This is called Time Division Multiple Access
(TDMA), or MF-TDMA if we also subdivide the available
bandwidth into different channels. These MAC protocols
need network-wide synchronisation so that every node can
start listening and receiving precisely at the intended time,
as defined in the MF-TDMA schedule. Over the last years,
we have seen more and more technologies using TDMA
schemes, especially in sensor networks [13] andVehicular Ad
hoc Networks (VANETs) (such as STDMA, SOFTMAC, and
TC-MAC.) [14]. Also, MF-TDMA MAC protocols are used
more frequently in newer technologies such as 6TiSCH (Time
Synchronized Channel Hopping) [15]. (iii) Hybrid protocols:
Some protocols use a partially slotted transmission. Control
signalling canmake use of synchronised time slots, while data
transmission may use random access protocols without time
synchronisation. Other protocols use techniques of Random
Access protocols, but all the transmissions start on predefined
slots (e.g. Slotted ALOHA).

B. COGNITIVE RADIO NETWORKS
The most natural solution to solve the spectrum scarcity
problem is to increase the number of frequency bands. CR
allows users (denominated Secondary Users (SUs)) to use
other frequency bands (e.g. licensed frequency bands) as long
as they are free and not used by Primary Users (PUs) (the
actual users of the frequency band) [16]. Different techniques,
such as Spectrum Decision, Spectrum Sharing and Spectrum
Mobility, have been proposed. Most of these algorithms also
use Spectrum Sensing where the SU senses the spectrum to
decide if it is free and could be used for its own traffic.

Much work was done in the last years to support CR Net-
works (CRNs). Not only at the physical layer where spectrum
sensing techniques are implemented, but also on the MAC,
where sensing scheduling schemes, sensing-access tradeoff
design, spectrum-aware accessMAC, andCRMACprotocols
are proposed [17]. These MAC protocols optimise the use of
the spectrum by using the spectrum sensing performed by
the physical layer to avoid the PU. Most of these proposed
algorithms still try to optimise their own traffic, as long they
are not interfering with the PU. On the network layer tomog-
raphy, spectrum-aware routing, and QoS control could help.
This is addressed in the literature to increase the performance
of current CRNs [17]. This network layer is outside the scope
of this work.

FIGURE 1. Reinforcement learning.

In contrast with CRNs, we use another technique to sup-
port QoS and optimise spectrum usage. We assume that all
networks in the environment have equal priority, and no
additional spectrum can be used. We don’t use the terms PU
and SU but own network (i.e., the network we can control)
and the INC, the set of interfering networks.

C. MACHINE LEARNING FOR WIRELESS NETWORK
MANAGEMENT
ML in Wireless Networks is a growing research domain.
Many decision-making problems in wireless networks, such
as vertical handovers in heterogeneous networks [18] and
power allocation in energy harvesting communication sys-
tems [19], are already using ML techniques. These optimisa-
tion algorithms can typically be described as anMDP. In con-
trast, the multi-channel access problem is usually described
as a PartiallyObservableMarkovDecision Process (POMDP)
or, in a multi-agent setup, as a partially observable stochastic
game.

If the model can be described as an MDP or a POMDP,
RL is a widely used technique to derive a policy. With RL,
an agent acts in an environment. By experimenting in the
environment, the agent receives rewards or penalties and
learns to optimise the reward in different games as visualised
in Figure 1 [20]. Different techniques are described in litera-
ture to solve RL problems, by using simple algorithms as Q-
learning, or more complex solutions to solve more complex
problems by using DNNs [21], even in multi-agent environ-
ments [22].

ALOHA-QIR, proposed by Chu et al. is an algorithm
that uses Q-Learning to improve slotted ALOHA [23]. With
this approach, they can double the maximum throughput
of Slotted ALOHA while increasing the energy-efficiency.
ALOHA-QIR creates a kind of superframe that consists of
S slots on top of the structure of naive slotted ALOHA. Each
slot in the superframe represents a score in the Q-Table. The
reward used in the Q-Learning algorithm of this approach is
based on whether the transmission was successful or resulted
in a collision or failure. Combining ALOHA and Q-Learning
results in a light-weight and fitting protocol for mostWireless
Sensor Networks (WSNs). One of the disadvantages of this
approach is its poor scalability. As the number of nodes
and the amount of data grows, the ALOHA-QIR algorithm
does not scale because it can only use a single channel. A
more dynamic approach is proposed by Wang et al. [24].
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Theymodeled theDynamicMulti-channel Access problem as
a POMDP. At the start of every time slot, a user selects one
channel to sense the spectrum and transmits a packet. They
search for a policy by using a Deep Q-Network (DQN), pro-
posed byGoogle Deepmind [25]. By classifying each channel
in one of two states, good or bad, they are able to learn a
near-optimal policy by using online learning. However, this
approach will not work in realistic and complicated scenarios
with multiple users and simultaneous transmissions because
it does not scale very well [24]. Also, the employed action-
space is relatively small. If the action space becomes large
when selecting multiple timeslots, a redesign of the DQN
is necessary. In contrast, our solution optimises the multi-
agent and multi-channel problem using partially observable
supervised learning. This provides better scalability in terms
of nodes and size of the superframe, both in number of
channels as number of time slots.

III. PROBLEM FORMULATION
In this section, we state the problem formally and mathemati-
cally. Used symbols are described in Table 1 and defined later
in this section.

In this work, we consider a network of N nodes, called
the own network, and a second (unknown) set of networks,
called the Interfering Networks Cluster (INC). We assume
that the nodes of our own network have access to C chan-
nels, and use a slotted MAC protocol. This MAC protocol
could be an MF-TDMA protocol, or a slotted random access
protocol. We define a superframe with S time slots. When
using an MF-TDMA protocol, this superframe is equal to the
MF-TDMA superframe. Otherwise, we define a superframe
length S. This artificial superframe could be used together
with a slotted random access protocol.

We define t as a global reference of time. t is the number
of slots that have passed since the start of the first node in the
environment. Because we have a slotted MAC protocol, all
nodes in our own network start a slot at exactly the same time.
This is a general property of a slotted MAC protocol. Every
node n executes an action Ant,c ∈ {Idle,TX ,RX} at time t for
every channel c. Furthermore, we denote TXnt,c and RX

n
t,c as:

TXnt,c =

{
1 if Ant,c = TX
0 otherwise

(1)

RXnt,c =

{
1 if Ant,c = RX
0 otherwise

(2)

Each node executes exactly C actions at a specific time t ,
one action for each channel at every time slot. Note that Idle
is part of the action space.

∀n ∈ [1,N ], ∀c ∈ [1,C], ∀t : TXnt,c + RX
n
t,c ≤ 1 (3)

The INC is completely unknown. As a result, there is an
unknown number of nodes in the INC, using unknown proto-
cols, and even noise generators, jammers, could be part of the
INC. We define Pt,c as the usage of channel c at time t by the

TABLE 1. Overview of used symbols.

INC, where Pt,c = 1 if a source in the INC used channel c
at time t , and Pt,c = 0 otherwise. Due to fading, power con-
trol, and the Modulation and Coding Scheme (MCS) setting,
the interference of a generated signal is different for different
nodes at different positions. We define Pnt,c as the usage of
channel c at time t by the INC with energy above the noise
threshold in the interpretation of node n. Pnt,c = 1 if and only
if the INC produces energy that, at node n at time t on channel
c is above the noise threshold.
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As described above, the goal of this work is not to design
a new MAC protocol or algorithm but rather to improve
the available information as an enabler to use the spectrum
smarter and more efficiently. For the remainder of this paper,
we assume that the used MAC protocol avoids all collisions
in the own network and for every transmission, there is at
least one node listening (this could be realised by a cen-
tralised MF-TDMA algorithm for example). Communication
between two different nodes in our own network is successful
if and only if at a given time slot t at least one node is
in an RX state and only received a message from exactly
one other node of the own network at a given channel c.
As described above, we assume that the used MAC protocol
avoid collisions within our own network:

∀c ∈ [1,C],∀t :
∑

n∈[1,N ]

TXnt,c ≤ 1 (4)

Based on this assumption, we define that communication
of the own network at time t on channel c is successful if one
own node is transmitting on channel c where the destination
node has no interference of the INC. We use γt,c to determine
if an own packet could be delivered successfully. Note that
there is always a chance that the communication fails because
of the environment (e.g. fading, etc.).

γt,c =


1 if

∑
n∈[1,N ] TX

n
t,c = 1∧∑

n∈[1,N ] RX
n
t,c(1− P

n
t,c) = 0

0 otherwise

(5)

Because the INC is unknown, there is, from an external
point of view, no way to know if the observed INC spectrum
usage indicates successful packet transmission. We merely
assume that communication in the INC is successful if
γ ′t,c = 1, where:

γ ′t,c =

{
1 if

∑
n∈[1,N ] TX

n
t,c = 0 ∧ Pt,c = 1

0 otherwise
(6)

We define the maximum network packet throughput, 0̂,
as the sum of all successful transmissions:

0̂ =
∑
t

∑
c∈[1,C]

γt,c (7)

In the same way, we define the maximum network packet
throughput of the INC:

0̂′ =
∑
t

∑
c∈[1,C]

γ ′t,c (8)

We define 0 and 0′ as the actual packet throughput for the
own network and INC respectively.

The objective of this algorithm is to maximise the overall
network throughput of all the networks, own network and the
networks of the INC, by choosing the actions A as optimally
as possible for all channel-timeslot pairs for all nodes n in the
own network. We define the overall network throughput of
superframe as follows:

z(α) = α0 + (1− α)0′ with α ∈ [0, 1] (9)

where α denotes the relative priority between the own net-
work and the INC, where 0 indicates priority for only the own
network, while 1 indicates priority of the INC network.

Note that to increase the throughput0 and0′, we can either
(i) increase the number of transmissions (TX /RX actions),
(ii) generate more data, or (iii) decrease the number of colli-
sions between the INC and the own network. We assume that
we have no control about the data generation and can only
control nodes in the own network. The only way to increase
the throughput is by reducing collisions.

We define ωt,c to be 1 if there was a potential collision
between the INC and the own network the slot at time t on
channel c, and � as the total number of potential collisions.

ωt,c =

{
0 if

∑
n∈[1,N ] TX

n
t,c + Pt,c ≤ 1

1 otherwise
(10)

� =
∑
t

∑
c∈[1,C]

ωt,c (11)

As we assume there are no collisions in the own net-
work (Equation 4), the only way to maximise z(α) is to
minimise �.

Furthermore, we assume that every node n can measure
energy on all C channels. Based on new hardware radio
technologies (such as Software Defined Radios (SDRs) [26])
supporting simultaneous energy measurement over a broad
bandwidth is possible [27]. We define ont,c ∈ [0, 1] as the
observation made at time t on channel c for node n. We define
that ont,c = 1 if the amount of energy detected on channel c on
time t for node n is so high that it was not possible the receive
any (other) packet. Note that all energy is detected, including
energy generated by the node itself or neighbouring nodes of
the own network.

We define TXt,c as the global TX action in the own network.
Where TXt,c = 1 if and only of at least one node of the own
network is transmitting data at timestamp t on channel c:

TXt,c =
∨

n∈[1,N ]

TXnt,c (12)

Finally, we define ξnt,c as the global indicator of successful
packet delivery within our network. ξnt,c = 1 if and only if
RXnt,c = 1 and node n received a packet correctly at time t on
channel c.

Each node also contains some network information and
statistics. In this work we assume we have access to the fol-
lowing node and network information: (i) each node knows if
a slot is allocated inside the network or by using Equation 12
if TXt,c = 1. In most MF-TDMA protocols such information
is (partially) known at the nodes and for CSMA networks
this could be implemented by the use of RTS/CTS strate-
gies. (ii) Each node knows if packets are received correctly:
ξnt,c = 1

IV. FRAMEWORK
A. ARCHITECTURE
As illustrated in Figure 2, the proposed approach con-
sists out of five main components: the spectrum monitor,

95036 VOLUME 8, 2020



R. Mennes et al.: Multi-Agent Deep Learning for Multi-Channel Access in Slotted Wireless Networks

FIGURE 2. Architecture of the algorithm for an own network of three
nodes.

preprocessing unit, predictor unit, probability matrix on each
node and the overall (centralised or decentralised) sched-
uler. The first component of our architecture is the spectrum
monitor. Each node captures the energy on the overall spec-
trum [28]. This monitor information is forwarded to the next
component, the preprocessing unit. The preprocessing unit of
node n creates the correct observation values Ont,c, together
with the network schedule TXt,c, the node schedule Ant,c, and
success information ξnt,c for node n, for every timestamp t in
the last (artificial) superframe on each channel c.
For every (artificial) superframe, the predictor unit pre-

dicts the upcoming spectrum usage generated by the INC.
We define pnt,c as the result of the prediction unit where
pnt,c ∈ [0, 1] indicates if the slot is predicted as highly used
(value close to 0) or is predicted as free (value close to 1).
These pnt,c values form a probability matrix. These probability
matrices are used by the scheduler to select slots expected to
be free, as to avoid collisions. Note that the scheduler could
be a (centralised or decentralised) MF-TDMA scheduler, or a
slotted CSMA Access Point (AP) that defines when nodes
could transmit. This could be realised in a MF-TDMA net-
work where a sender node transmits a request for slots to the
receiver, to which the receiver replies with the best available
slots based on the prediction.

Note that there are clear differences with our previous
work described in [29]. In [29], the observation Ont,c was
defined as the energy detected at node n at time t at channel
c produced by the INC. This definition is unobtainable in
realistic scenarios because there is no way of subtracting the
energy produced by the own network from the observation.
Only in simulators it was possible to obtain this value. In this
work, we extended the framework, algorithm and ML model
in such a way that the observation is realistic; Ont,c is the
overall energy (i.e., own plus INC energies) detected at node
n at time t at channel c.

B. PREDICTION UNIT
As described above, the predictor unit predicts the used slots
in the upcoming superframe used by the INC. These pre-
dictions could be used by the scheduler to take an action
to select slots. We define the prediction as πnt (O

n,TX ) :
RH×S×C , {0, 1}H×S×C 7→ RS×C , the policy predicted by
the prediction unit of node n at time t based on observation

matrix On and schedule matrix TX . H defines a number of
history frames. Additionally, we define π∗nt (On,TX ) as the
theoretically optimal policy.

If we want to model this problem as an RL problem,
we need to define the actions. An action could be defined
as selecting m ‘free’ slots to the correct destination, where
m is the number of slots required to deliver the data. In our
approach, we assume that m is unknown and that the sched-
uler takes care of it. Therefore, we describe our action as
sorting all the slots of a superframe. If wewant to describe this
problem discretely, our action is sorting S × C slots, where
the first slot of the sequence is the best slot to use. As such,
there are (S × C)! different actions in this discrete case. The
scheduler decides how many slots are needed, and can just
select slots based on the order. Intuitively, the interesting
action space seems smaller, because we are only interested
in them best slots. However, because each node is generating
a prediction and only free slots can be selected, it is possible
that non-optimal slots will be selected. If the number of slots
that need to be selected grows, reducing the action space is
less interesting.

Another way of representing the action space defined pre-
viously is by using a continuous space and representing our
problem as a stochastic game with a continuous action space.
As an advantage, this would make labelling during online
playing easier. On the other hand, this type of game is very
complex and hard to solve. It is still a domain of interest as no
successful attempts have been made so far to derive learning
dynamics for this setting [4].

On the other hand, there is a lot of information we could
teach the system based on energy observations and successful
transmissions. This inspired us to combine supervised learn-
ing with RL techniques to solve this problem. We describe
three main components: the State, the Label and Loss func-
tion, and the Neural Network (NN):

1) STATE
The input features represent the state of the environment in
the last H superframes. We describe the state as [On,TX ],
with observationmatrixOn ∈ RH×S×C and network schedule
information TX ∈ {0, 1}H×S×C . Each element of On corre-
sponds to a value ont,c, and element of TX corresponds to a
value TXt,c. We use this state representation to indicate when
observations could be used to recognise patterns. If TXt,c = 1
we know that a node is using the spectrum at time t in channel
c. This implies that the observationOnt,c could be based on our
own spectrum usage. TX helps to indicate our own possible
spectrum usage.

2) LABEL AND LOSS
To construct the label, we define slots as good, bad, or
unknown. After defining φ as the noise threshold, Good and
Bad slots are defined as:

Goodnt,c = Ont,c < φ ∨ ξnt,c (13)
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TABLE 2. Hyperparameters NN used in the predictor unit.

Badnt,c = ¬Good
n
t,c ∧

(
¬TXt,c ∨ RXnt,c

)
(14)

Unknownnt,c = ¬
(
Goodnt,c ∨ Bad

n
t,c
)

(15)

In Equation 13, we define good slots as slots where the
amount of energy detected is lower than the noise threshold,
along with those containing a successful transmission. Oth-
erwise, as stated in Equation 14, if a slot is not good and not
part of the overall schedule or part of the own node receiving
schedule, we define a slot as being bad. We define all slots
in the superframe that are not good nor bad as unknown,
as shown in Equation 15.

We define the loss in Equation 16 as the cross entropy loss
of the good and the bad labels, divided by the number of slots
we could update. Note that the loss of unknown slots is 0 and
the NNwill try to maintain the output value of these slots. The
divisor normalises the loss, ensuring the NN will not simply
attempt to label as many slots as possible as unknown.

L = −
∑

t,cGood
n
t,c log

(
πnt,c

)
+ Badnt,c log

(
1− πnt,c

)∑
t,cGood

n
t,c + Bad

n
t,c

(16)

3) NEURAL NETWORK
In this work, we use a DNN to optimise the prediction.
As shown in Figure 3, we use 8 fully connected layers with

for each layer S × C × b
(8− l)H

8
c × 2 neurons, where l is

the index of the layer, with l ∈ N : 0 ≤ l < 8. We use a swish
activation function [30] on each layer except for the last (out-
put) layer, where a softmax activation is applied on the last
dimension. The softmax activation function ensures that each
cell in the output matrix, which represents the prediction, is a
value between 0 and 1, predicting the probability of the slot
being used by the INC.

Because data generation, schedule policies, network topol-
ogy, and the environment could change drastically, online
learning is necessary. It is almost impossible to train the pre-
dictor unit offline on a comprehensive distribution. Therefore
we apply online learning with experience replay. After every
δ steps we execute a training step where we randomly select
samples from the replay buffer. To optimise the weights in
the NN we use an RMSProp optimiser. All hyperparameter
values used in this work are defined in Table 2.

C. MULTI-AGENT EXAMPLE
Each node in the network runs the entire framework. Each
node constructs its own state by using its own RF information

and network information. Each node uses its own prediction
unit and each node executes its own online learning process.
Each node has its own prediction and this has a direct influ-
ence on the slot selection. Note that selecting a slot is actually
(partly) a network decision. At least two nodes should agree
on allocating a slot. The advantage of using this framework
is that this negotiation to select slots is done by the (already
existing) slot scheduling algorithm that is independent of the
framework. The resulting action taken by the scheduler is part
of the state and has an influence on the behaviour of every
node. All nodes are working almost independently while
they optimise a network objective, increase the spectrum
efficiency, or as discussed in section III, decrease the inter-
network collisions.

As an example, suppose node A wants to transmit a packet
to node B in the own network. The two nodes have a separate
observation and different influences of other networks in the
wireless spectrum. If A wants to select a slot to B, node A
needs to negotiate with node B. Node B can indicate which
slots are better to receive the message based on the informa-
tion of the prediction. The negotiation and the slot allocation
process are done by the scheduler. If a slot is selected, it can be
used in the next superframe. Once the superframe is finished,
each node labels each slot as Good, Bad or Unknown by
using Equation 13, Equation 14 and Equation 15. This label
is based on the local information of the node. The sample
(i.e., the state and the label) will be stored in the own replay
experience buffer of each node. Each node uses its own replay
buffer to retrain the network in an online way.

V. EXPERIMENTAL SETUPS
To evaluate the proposed algorithm, we performed simula-
tions and executed a real experiment using the testbed built
especially for the DARPA SC2 competition [6].

A. SIMULATION SETUP
To evaluate the framework in simulation, we used an
MF-TDMA discrete event simulator written in Python based
on the 6Time Synchronized Channel Hopping (TiSCH) sim-
ulator of Palattella et al. [31], combined with RF-data we
monitored during the SC2 competition. During this part of the
competition, 19 different teams were involved. In previous
work [29], we already modified the simulator to make it
possible to have two separate networks, where one of them
does not use the MF-TDMA schedule, but only generates
spectrum usage.

As shown in Figure 4, we simulated two different network
topologies: (i) a ring network, Figure 4a, and (ii) an AP
topology, Figure 4b. In both topologies, there are 6 nodes
of the own network (blue), and two nodes that represent
the INC network (grey). In the ring network, we use an
MF-TDMA network, with each node generating data to be
forwarded to a neighbour. In the AP network, we simulate
a network in infrastructure mode with one central AP and
5 clients. The 5 clients generate data while the AP replies
to any successfully delivered message. With this topology,
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FIGURE 3. Visualisation of the DNN.

FIGURE 4. Topologies and routing of the simulated test network with one
unknown network (grey) representing the INC, and 6 own nodes (blue).

we use an MF-TDMA network and a CSMA network with
an RTS/CTS control mechanism. In both setups, traffic is
generated with a uniform random probability.We assume that
a scheduler can schedule the slots in the superframe at the
start of that superframe. In all setups, we use a superframe
of 20 time slots and 4 channels.

B. DARPA SC2 COMPETITION EXPERIMENTAL SETUP
In 2017, the Defense Advanced Research Projects Agency
(DARPA) organised a three-year competition aimed at opti-
mising spectrum usage by using Artificial Intelligence (AI)
in real networks. This competition was called the Spectrum
Collaboration Challenge (SC2) [6]. We participated in this
competition as team SCATTER and reached sixth position.
In the SC2 competition, different teams played in the same
environment with 10 nodes each. All teams received traffic
they needed to deliver. If the QoS requirements of a given
flow are achieved for at least 10 seconds, a flow is called
stable and every next second, for which the flow is still
stable, the team received a number of points for the given
flow. To ensure collaboration: if not all teams were able to
achieve some minimal score, each team received the score
of the worst-performing team. Because, for each scenario,
many matches were played, collaboration was required,
especially because the available spectrum was limited and

incumbents or jammers could be active in the same environ-
ment. Each team was able to use their preferred technologies
on the physical layer, MAC layer and network layer. The SC2
competition made use of a custom testbed called Colosseum.
This testbed exists out of 128 wireless nodes, combined with
an RF-simulator.

The proposed algorithm was implemented using Ten-
sorflow,2 while the preprocessing was implemented using
Cupy.3 A distributed scheduler is used. If a new slot needs to
be selected, the sender sends a request to the receiver for slot
allocation. The sender proposes a number of slots, while the
receiver selects one of them, based on the value of their local
prediction [5]. Other nodes can overhear this communication,
as long as there is no interference. Only if they do receive
these messages on the broadcast control channel, do they
know that a slot is used by the own network.

In the experiments executed on the SC2 Colosseum,
we played against two randomly picked other teams. The
scenario used in our experiments was called Alleys of Austin.
In this scenario, each team has 10 nodes (nine ground soldiers
and one helicopter) moving around in Austin, Texas. There
are three stages, each having progressively more data to be
delivered, while the teams move closer and closer to each
other.

To train the algorithm, we first played 30 matches with
three teams. During these matches, we pre-trained the DNN
by using the hyperparameters described in Table 2. To make
this possible, we enabled a preprocessing step. During this
preprocessing step, we mapped all the data to a 44 by 28 slot
frame. This is achieved by using a bilinear interpolation.

During the competition, it was not possible to use the
replay buffer across different matches. No data could be
exchanged and each radio’s state was reset after every
match. The duration of every game was between 3.5 and
15 minutes, depending on the selected scenario. To optimise
the learning process, we (i) increased the learning rate during
the competition to 10−3, (ii) decreased the replay buffer size

2https://www.tensorflow.org
3https://cupy.chainer.org
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to a maximum capacity of 5000 examples and (iii) increased
the minibatch size to 512. This improves the prediction as
quickly as possible for the current (unknown) match. Note
that it was not feasible to share information about successfully
received packets with all nodes, as was assumed to be possible
in the simulations. In this setup, more slots are annotated as
unknown due to missing information.

VI. RESULTS DESCRIPTION
A. SIMULATION RESULTS
In order to discuss our results fairly, we introduce four alter-
native approaches: (i) Regular is the approach that is used
in most systems today. In order to reach a high throughput,
the approach uses all free slots in the internal schedule.
In other words, it uses only a traditional MF-TDMA schedule
algorithm or CSMA strategy without having collisions in the
own network. (ii) No Sending is an extreme approach where
the own network will not send any packets at all. This is an
extreme case, but shows us the optimal performance of the
INC. (iii) Optimal is the hypothetical best solution to solve
the problem when α = 0.5. In this approach, the own net-
work knows the behaviour of the INC up front, which is not
possible in reality. Lastly, (iv) DQN, a strategy based on the
work of Wang et al. [24]. Here, each node maintains its own
DQN. As this did not scale to a superframe of 20 time slots,
we instead used a superframe of size 1 for this approach. This
reduced the complexity of the problem drastically from 420

to 4 actions. We compare these strategies with our approach,
which we call the Prediction approach. We trained our mod-
els on 22 scenarios for 10 episodes, while we evaluate all
approaches on 36 unknown other scenarios.

1) MF-TDMA RING TOPOLOGY
In Figure 5, we show the average Overall Throughput z(α)
of a superframe. First of all, we see that No Sending’s per-
formance decreases as α grows, since the own network is not
using any slots at all. On the other hand, theRegular strategy’s
performance improves as α is growing. It makes sense that
the Regular approach outperforms all other approaches if α
is close to one, as it is the most aggressive approach. The
DQN approach clearly underperforms, while our proposed
Prediction approach is always performing at least as good
as the Regular approach (when α < 0.8) or the Optimal
approach (when α > 0.8). Note that the optimal strategy
tries to optimise the problem for α = 0.5, as explained
in section V, meaning it may be outperformed by other
approaches for different values of α. In Figure 8b, it is shown
that thePrediction approach could reduce the average number
of collisions for each superframe by 30% in comparison to the
Regular scheduler. For throughput in Figure 6, packet success
ratio in Figure 7, and missed opportunities in Figure 8a, our
Prediction approach is always in between the performance
of the Regular scheduler and the Optimal approach. Note
that in comparison to the Regular scheduler, our Prediction
approach reduces the throughput slightly, as the Prediction

FIGURE 5. Average overall throughput z(α) of a superframe in the
MF-TDMA mesh network and INC for different scheduling approaches.

approach is less aggressive. This leads to fewer collisions, but
also some more missed opportunities if the module generates
a false positive. Note that slots that are predicted with a free
probability close to 0 are never selected by the scheduler.
This results in fewer slots and lower throughput. The same is
represented in the packet loss, illustrated in Figure 9. It is clear
that the average loss, of the own network and the INC, for the
Prediction approach is better than for the other approaches.
However, the loss of the own network is a slightly higher for
the Prediction approach in comparison to the Regular strat-
egy. We can apply the same reasoning as with the throughput,
where sending opportunities are not taken if the predicted slot
value is too low, which makes the strategy less aggressive.

2) MF-TDMA AP TOPOLOGY
If we change our topology from a full mesh to an AP
approach, the throughput of our own network drops, due to
the schedule of the AP reducing the potential for parallel
communication using different channels. As the AP is posi-
tioned in the centre of the collision domain, it experiences a
lot of interference. For this setup, Figure 10 shows that as long
as α < 0.7, the prediction approach outperforms Regular
scheduling. More importantly, we also reduced the number
of collisions by a factor of 1.3, as shown in Figure 13b,
while the throughput of the own network is nearly unchanged
and the throughput of the INC has increased by a factor
of 1.17, as shown in Figure 11a and Figure 11b respectively.
The INC packet success ratio (shown in Figure 12b) is 10%
higher, because the predictor avoided upcoming collisions.
The average number of missed opportunities per superframe
with the Prediction approach is less than 7% higher than
with the Regular scheduler. The average packet loss drops
from 41% for the Regular strategy to 38% for the Prediction
approach as shown in Figure 14.
To speed up the testing process, we did not evaluate

the DQN approach, as it is clearly not feasible to run
it in real cases and was previously outperformed by our
approach.
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FIGURE 6. Average throughput per superframe for different scheduling
approaches in an MF-TDMA mesh network.

FIGURE 7. Average Packet Success Ratio per superframe for different
scheduling approaches in an MF-TDMA Mesh network.

FIGURE 8. Average number of missed opportunities and collisions for the
own network in an MF-TDMA mesh scenario.

3) CSMA AP TOPOLOGY
In the CSMA setup, no slot is scheduled at the beginning of
every frame. Nodes can send an RTS message to the AP from

FIGURE 9. Packet loss of own network, INC and average of both in an
MF-TDMA mesh scenario.

FIGURE 10. Average overall throughput z(α) of a superframe in the
MF-TDMA AP network and INC for different scheduling approaches.

the moment they have a data frame ready. The AP can reply
with a CTS at any time. Once that is received, the node can
send the message. In comparison to theMF-TDMAAP setup,
this will reduce the queue length of all nodes as transmission
is no longer necessarily delayed until at least the start of the
next superframe.

In Figure 15, it is shown that the overall throughput
of our Prediction approach is always between the Regu-
lar scheduler and the theoretical Optimal. Figure 16b and
Figure 17b clearly show that our proposed Prediction
approach is more aggressive in the CSMA setup in com-
parison to the MF-TDMA setup. This is probably because
the data transmissions start immediately, which makes it
harder to learn a pattern, because more frames are labelled
as unknown. In the MF-TDMA setup, only a few packets of
the own network are scheduled in the first few frames. In this
setup, the number of missed opportunities is similar for the
Prediction approach and for the Regular scheduler, as shown
in Figure 18a, as new data can be scheduled immediately,
instead of having to wait for the next superframe. On the other
hand, as shown in Figure 18b, we see that we reduced the
number of collisions in comparison to the Regular scheduler
by 20% on average for each superframe. This results in an
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FIGURE 11. Average throughput per superframe for different scheduling
approaches in an MF-TDMA AP scenario.

FIGURE 12. Average packet success ratio per superframe for different
scheduling approaches in an MF-TDMA AP scenario.

FIGURE 13. Average number of missed opportunities and collisions for
the own network in an MF-TDMA AP network.

almost equal loss for the own network by using the Regular
strategy or the Prediction approach, but the loss of the INC
drops from 34% to 30%, as shown in Figure 19.

FIGURE 14. Packet loss of own network, INC and average of both in an
MF-TDMA AP scenario.

FIGURE 15. Average overall throughput z(α) of a superframe in the
CSMA AP network and INC for different scheduling approaches.

TABLE 3. Experimental results.

B. EXPERIMENTAL RESULTS
As mentioned previously, the algorithm was also imple-
mented in the SCATTER radio [5] . To compare our algorithm
in the entire system, we compared against an Exponentially
WeightedMoving Average (EWMA) collision avoidance slot
selection algorithm. This algorithm simply selects new slots
based on a historical moving average of the detected energy
given a specific slot. After the pre-training, as mentioned
before, we executed two times 16 matches, where we played
against two other randomly selected competitors during the
final year of the SC2 competition.

In Table 3, we show that the average throughput of the own
network increases from 20Mb/sec to 22Mb/sec. The collision
avoidance rate is represented by the game score of a match
(this value depends on how well other teams are consistently
maintaining traffic) which increases by almost 10 points on
average. The stability of the own network is measured by
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FIGURE 16. Average throughput per superframe for different scheduling
approaches in a CSMA AP scenario.

FIGURE 17. Average packet success ratio per superframe for different
scheduling approaches in an a CSMA AP network.

FIGURE 18. Average number of missed opportunities and collisions for
the own network in a CSMA AP scenario.

the Individual Score. Given the rules of SC2, our system
starts scoring after achieving the QoS requirements of a given
traffic flow for at least 10 seconds, with a boost of almost
3000 points. The number of move operations decreased,

FIGURE 19. Packet loss of own network, INC and average of both in an
CSMA AP scenario.

meaning better slots were found at first instance, considerably
reducing the number of suboptimal decisions. Note that MCS
and gain control adapters are still enabled in the system and
try to optimise the packet success ratio given the channel
conditions. This fact explains why the packet success ratio is
almost the same for both the EWMAalgorithm and prediction
algorithm.

VII. ALGORITHM HARDWARE REQUIREMENTS
Within the context of the SC2 competition, full-blown servers
were used to execute the algorithms. If we want to deploy
the proposed algorithm on real devices, nodes need to be
equipped with enough memory. They need to have memory
available to store the model and the replay buffer. The number
of elements of the replay buffer is defined as 2MHSC . In our
example, we used 32-bit floats (4 bytes), a replay buffer size
(M ) of 20,000 (as defined in Table 2), S and C are 20 and
4 respectively, and a history (H ) of 50 superframes. This
would mean that we used 610MiB of memory for the replay
buffer. Note that we can quickly reduce the size if we store
fewer elements or reduce the history. In addition, for the NN
proposed in this work, the number of neurons to store in the
network is defined in Equation 17.

29
2
S2C2H2

+ 23SCH (17)

For our example, the network needs 885MiB of memory.
Note that this can be reduced by decreasing the size of theNN.
Alternatively, a Convolutional Neural Network (CNN) capa-
ble of producing useful predictions may be more memory-
efficient.

The computation effort needed to run the proposed
algorithm could be offloaded to AI-enabled chipsets or hard-
ware acceleration (like GPUs or FPGAs). These chipsets are
quickly dropping in cost and are becoming commonplace in
smartphones.

During the DARPA SC2, the nodes were built to have more
than enough resources available. The constraints to deploy the
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algorithm on real devices was out of the scope of this work
and will be provided in future work.

VIII. CONCLUSION
In this paper, we presented a multi-agent spectrum prediction
approach to optimise the wireless spectrum for a multichan-
nel slotted wireless network and a set of other (unknown)
networks. By using a DNN, we are able to predict the
upcoming superframe. Based on this information a (receiver-
side) scheduler can avoid collisions with other neighbouring
networks. These neighbouring networks could use different
and unknown technologies. The DNN is trained in an online
way, using techniques of both RL and supervised learning.
Because of the continuous action space and the multi-agent
environment, we model the problem as a partially observable
stochastic game with continuous action space. As deriving a
policy with RL in this case is unfeasible, we create partially
observable labels to optimise a prediction by using online
supervised learning.

We showed that by using a prediction approach, in simula-
tion we were able to reduce the number of inter-network col-
lisions by 30% in comparison to commonly used schedulers.
We showed that we increased the overall throughput in a
variety of topologies and settings. Additionally, the algorithm
was implemented in the SCATTER radio built to participate
in the SC2 competition. We showed that, in comparison with
a EWMA slot selection algorithm, our proposed algorithm
increased our own throughput from 20Mb/sec to 22Mb/sec
and increased the score of the game, which indicates higher
throughput by the other teams as well.
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