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ABSTRACT Accelerating deep learning networks in edge computing based on power-efficient and highly
parallel FPGA platforms is an important goal. Combined with deep learning theory, an accelerator design
method based on the Winograd algorithm for the deep learning object detection model YOLO under the
PYNQ architecture is proposed. A Zynq FPGA is used to build the hardware acceleration platform of
a YOLO network. The Winograd algorithm is used to improve traditional convolution. In the FPGA,
the numerous multiplication operations in the YOLO network are converted into addition operations,
reducing the computational complexity of the model. The data of the original model are processed at a
low fixed point, reducing the resource consumption of the FPGA. To optimize memory, a buffer pipeline
method is proposed, which further improves the efficiency of the designed accelerator. Experiments show
that compared with the acceleration of the YOLO model based on GPUs and other FPGA platforms, the
proposed method not only optimizes FPGA resource usage but also reduces power consumption to 2.7 W.

Additionally, the detection accuracy loss is less than 3%.

INDEX TERMS FPGA, deep learning, Winograd, YOLO, buffer pipeline.

I. INTRODUCTION
In recent years, convolutional neural networks (CNNs) have
achieved great success in many fields of computer vision.
With the increase in application demand and the complex-
ity of application scenarios, the layers of CNN networks
continue to deepen, and the computational complexity of
deep learning models increases [1]. Deep learning plays an
important role in face recognition, industrial part detection,
autonomous driving and voice recognition [2]-[5]. Object
detection and recognition are the most challenging tasks in
deep learning. In these algorithms, the most representative
networks include single-shot-multibox-detection (SSD) [6],
Faster R-CNNs [7] and the you only look once (YOLO) [8]
series; among these, the YOLO algorithm has faster and more
accurate performance than the other methods.

In recent research, most object detection and recogni-
tion algorithms are carried out in graphics processing units
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(GPUs). Due to the large number of parallel computing units
in CNN, the performance advantage is more prominent in
CNN with a large number of repeated multiplication and
addition operations. In edge computing, it is obvious that a
server platform, which has a high power consumption, cannot
meet the requirements of being small, operating quickly and
consuming little power. Therefore, a large number of object
detection and recognition platforms based on edge comput-
ing have been proposed. Among them, application-specific
integrated circuits (ASICs) and field-programmable gate
arrays (FPGAs) are notable [9], and FPGAs can solve the
specificity problem of ASICs with the advantages of high
parallelism, high flexibility and low power consumption [10].
Therefore, research on CNN acceleration with deep learn-
ing based on edge computing platforms centres on FPGAs.
In terms of using high-level synthesis tools, Suda et al. [11]
proposed the acceleration of fixed-point CNNs using the
OpenCL framework and proposed a systematic method to
minimize execution time under given resource constraints.
However, the author adopted a kernel implementation scheme
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similar to GPU separation, so he did not make use of the
special OpenCL feature of FPGA kernel-to-kernel pipeline
communication to achieve better computing throughput and
minimum memory bandwidth. The OpenCL acceleration sys-
tem designed by Ling er al. [12] greatly improved perfor-
mance by caching all intermediate features on the chip and
using the Winograd algorithm to reduce multiplication and
accumulation of convolution. However, the data buffering
scheme limited the maximum size of the input image to
224 x 224, which cannot be achieved with a low-power and
low-cost SoC-FPGA. Regarding the optimization of FPGA
accelerators, Ma et al. [13] reduced memory access and data
exchange by optimizing the loops of a CNN, performing
quantitative analysis and optimizing the convolution of the
neural network design resources. On the VGGNet network,
throughput reached 645.25 GOPS, and latency was reduced
to 47.97 ms. However, they did not verify the acceleration
performance in large networks. Zhang et al. [14] proposed a
ping-pong structure for the buffer to achieve FPGA memory
optimization to ensure fast data interaction, and they analysed
the design space of the proposed FPGA accelerator with a
roofline model to solve the problem of optimizing computing
resources and bandwidth. In the research on accelerating
CNNs with FPGAs, on-chip resources and bandwidth are the
greatest challenges for FPGAs [15]. Making the best use of
FPGA resources to accelerate CNNs is the most important
problem to be solved This problem can be solved if the Wino-
grad algorithm is introduced into the acceleration of FPGAs.
Lu et al. [16], [17] added the Winograd algorithm to the
operation of a CNN for the first time and exceeded the limit of
an FPGA’s computing units. They reduced the computational
complexity of the CNN and proposed the concept of a line
buffer to reuse data efficiently. In another work of Lu and
Liang [18], they combined the Winograd algorithm with CNN
sparsity to improve the performance of an FPGA accelerator.
However, regarding Winograd algorithm acceleration [19],
too little work has been devoted to specific accelerator design
for object detection and recognition.

As arepresentative network for object detection and recog-
nition, much research has been done on the FPGA accelera-
tion of the YOLO model, and many achievements have been
made. Nguyen et al. [20] used RTL circuit to accelerate the
YOLOV?2 algorithm, quantified network weight parameters to
binary, and reduced the digital signal processor (DSP) con-
sumption in FPGA acceleration. Although dynamic random-
access memory (DRAM) access and power consumption
were reduced through data reuse and dynamic random access,
the power consumption of this accelerator was still 18.29 W.
For edge computing, the power consumption needed to be
further improved. In another YOLOV2 acceleration work,
Nakahara et al. [21] combined binary networks and sup-
port vector machines (SVMs) in lightweight YOLOv2. They
designed a complete process and achieved excellent perfor-
mance. Although the detection speed of YOLO was acceler-
ated by reducing the computational complexity, they did not
consider the optimization of memory access.
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Based on the previous YOLOv2 and Winograd algorithm
acceleration research, this paper proposes a Winograd-based
YOLO algorithm acceleration method, which reduces the
computational complexity of the YOLO algorithm in FPGAs,
and proposes an FPGA accelerator memory optimization
algorithm, which reduces the computation time of FPGAs in
accelerating the YOLO algorithm.

The main contributions of this work are summarized as
follows:

(1) When accelerating the YOLO algorithm in an FPGA,
we introduce the Winograd algorithm into YOLOv2. Due to
the presence of large amounts of convolution operations in
YOLOV2 and high-level synthesis (HLS) tools to implement
convolution operations, the loops of multiplication operations
are replaced by addition operations. The multiplier resources
consumed by convolution calculations are greatly reduced.
Under the condition that the model accuracy is 78.25%, the
multiplier utilization rate of FPGA is greatly reduced.

(2) To improve the efficiency of data caching and pro-
cessing, we propose a state-of-the-art buffer pipeline method.
Pipeline optimization is carried out on the data cache, which
is involved in every convolution operation of the accelerator.
The timing analysis shows that latency can be reduced while
completing the same tasks.

(3) In this paper, a new YOLOV2 accelerator based on
the PYNQ architecture is proposed, and each convolu-
tion and pooling layer of YOLOV2 is accelerated on the
low-power and highly parallel Zynq FPGA platform. More-
over, fixed-point processing is carried out for the data, and the
32-bit floating-point weight parameters are fixed to 16 bits.
In addition, power consumption is reduced to 2.7 W. The
problem of the high power consumption of deep learning
object detection and recognition models based on edge com-
puting is solved.

The rest of this paper is organized as follows:
Section 2 reviews the background knowledge and the-
oretical support of CNNs and the Winograd algorithm.
Section 3 introduces the structure, data flow and fixed points
of processing elements (PEs) based on the Winograd algo-
rithm. Section 4 describes the pipeline structure of the accel-
erator PE’s memory and timing analysis. Section 5 provides
the overall architecture of the accelerator proposed in this
paper. Section 6 presents our experiments and result analysis,
and Section 7 concludes the paper.

Il. BACKGROUND

A. WINOGRAD CONVOLUTION

As a type of artificial neural network, CNNs [22] can solve
many problems that are difficult to solve with traditional neu-
ral networks. In terms of structure, a CNN usually includes
a convolutional layer, activation function layer, pooling layer
and fully connected layer, where the convolutional layer plays
a key role [23]. However, due to the complicated calcula-
tions and large amount of data involved in the convolutional
layer, the calculation time is great and many computational
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resources are consumed. Therefore, the main focus of this
paper is the convolutional layer calculation. In general,
the typical input and output data of the convolutional layer
include input feature maps, kernels and output feature maps.
The results of the convolution operation between the input
feature maps and convolution kernels are stored in output
feature maps and then transferred to the next layer. Suppose
there are N pieces of the input feature map and that its size is
H x W. The number of convolution kernels is M, and their
size is N x K x K. In each convolution kernel, one of the
dimensions must be equal to the number of pieces of the input
feature maps [24]. In the convolution operation, the size of
the kernels assigned to each feature map is K x K. Suppose
the stride is S; then, each K x K kernel operates once on
each of the N feature maps and then sums the result as a unit
element of the output feature map. Therefore, if the number
of convolution kernels in the previous layer is M, then the
number of feature maps in the next layer is M. If the size of
the output feature map is R x C, then R = # + 1 and
C = % + 1. The operation of the convolutional layer is
shown in equation (1).

N K K
Out[MI[RI[C1 =YD "> InlnllS x r +illS x r +]
n=0 i=0 j=0

xWIM][n]lGT (D

where Out and In represent the 3D matrixes of the output and
input feature maps and W represents the convolution kernel
matrix [25].

The Winograd minimum filtering algorithm has a signif-
icant effect in reducing the amount of calculation needed
for convolution with a smaller convolution kernel size [26].
For the YOLOV2 algorithm, the convolution kernels are all
3 x 3 and 1 x 1. These are so small that they are suit-
able for use with the Winograd algorithm to accelerate the
convolution operation. By using v(F(m,r)) = m+r — 1
multiplications, the Winograd algorithm calculates the con-
volution kernel F(m, r) with m outputs and dimensions [27].
Equation (2) indicates that the Winograd minimum filtering
algorithm is used for the convolution operation when the
convolution kernel size is 3 dimensions and the output matrix
is 2 dimensions [16]. d; represents the input feature map data,
gi represents the convolution kernel data, and m; represents
the output data.

80
. d di dy | mp +my +my
F(2’3)_|:d1 d d3] 81 _|:m1—m2—m3:|
82
my = (do — d2)go
0o+g1+&
m1=(d1+d2)%
0— 81+ &2
m2=(d0—d1)%

m3 = (d — d3)g2 @)

The inputs of the Winograd minimal filtering algorithm are
image data of m — r + 1 pixels, and the output is a vector
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of m dimensions. Because this algorithm performs 4 additions
on the input data, 3 additions on the convolution kernel
and 4 additions on the multiplied data, the algorithm increases
the number of addition operations. However, the number of
multiplications is reduced from 6 to 4 [28].

In the 2D convolution calculation, the convolution kernel
size represented by F(m x m, r X r)is r x r, and the output
matrix size is m x m. F(m x m, r x r) can be calculated from
F(m, r), as shown in equation (3).

Fmxm,r xr)

F(m, )11 F(m, r)im g1
F(m, )1 F(m, ) n 8&r2

= : : . 3)
F(m, r)m,l F(m, r)m,m 8r.m

When the size of the output matrix is m x m, the size of
the input image data must be (m +r — 1) x (m +r — 1).
The equations below can be used to calculate the number
of multiplication and addition operations and the number of
times the input data and the convolution kernel are processed.

Number of multiplications:

Multip=m+r—1)xm+r—1) @)
Times the input data are processed:
Finalapp = Mul x Addy + m x Addy (®))
Times the convolution kernel is processed:
Filterapp = Mul x Addy + r x Addy (6)
Number of additions:
Dataspp = 2 x Mul x Addy 7

Mul represents the number of multiplications required to
compute F(m, r). Addy, Addy and Add, represent the total
number of additions, the number of times the convolution
kernel is processed and the number of times the input data
used to calculate F(m, r) are processed, respectively.

In conclusion, when 2D convolution is carried out using
the Winograd algorithm, F(m x m,r X r) can be obtained
from F(m, r), as shown in equation (8).

Out = AT[(GFGT) ® (BT mB)1A, 8)

where the values of the transformation matrixes A, B and G
can be determined by the values of m and r. Therefore, the
transformation functions of the input and convolution kernel
are:

Transform(In) = BTInB, )
Transform(F) = GFG' . (10)

The inverse transformation function is:
Inverse_Transform(E) = ATEA. (11

In the design of the Winograd PE in Section 3.1, the input
convolution kernel parameters and feature map parameters
can be converted rapidly before operation with the transfor-
mation matrix begins.
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FIGURE 1. Network structure of YOLOv2.
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FIGURE 2. The data pipeline of the YOLOv2 accelerator.

B. YOLO NETWORK

The networks commonly used for object detection and recog-
nition based on deep learning include R-CNN, the YOLO
series, SSD, etc. Among these networks, SSD is widely used,
but its structure is complex, the number of its parameters is
large, and its speed is not as high as that of YOLO. YOLO has
a similar structure to GoogleNet, but with a large increase in
detection speed. On the server side, YOLOV2 performs well,
but in the edge computing, the detection speed still has much
room for improvement. To reflect the acceleration effect of
FPGAs, we select the YOLOvV2 network in the YOLO series,
whose structure diagram is shown in Figure 1.

The framework used by YOLOV2 is the improved Darknet-
19. The Darknet-19 network consists of nineteen convolu-
tional layers, one average pooling layer, five maximal pooling
layers and one softmax layer. In Darknet-19, there are a large
number of 3 x 3 convolution filters, and in order to compress
features and increase network depth, a 1 x 1 convolution filter
was added between the 3 x 3 convolution filters. YOLOV2 is
improved by removing the last convolutional layer, the aver-
age pooling layer and the softmax layer, adding three 3 x 3
convolutional layers and one 1 x 1 convolutional layer, and
using convolution instead of a fully connected layer. A large
number of convolution operations result in a longer runtime
of the YOLOvV2 model on embedded terminals. However,
the FPGA'’s high-efficiency parallel computing capability can
perform the series of convolution operations in YOLOv2.
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1Il. PROPOSED YOLO ACCELERATOR BASED

ON WINOGRAD

Combined with the background knowledge in Section 2,
the Winograd algorithm was introduced into the convolution
operations of the YOLO network when we designed the
FPGA accelerator. In this section, we introduce the detail of
the PE structure and fixed-point processing of low-point data
for YOLO network acceleration.

A. WINOGRAD PE DESIGN
The Winograd algorithm achieves acceleration by reducing
the number of multiplications, but the number of additions
increases accordingly. Moreover, additional transformation
calculations and storage for the transformation matrix are
required. As the sizes of the convolution kernels and fea-
ture maps increase, the cost of addition, transformation and
storage needs to be considered. Furthermore, the larger the
feature map and transformation matrix are, the greater the loss
of calculation accuracy. To solve this problem, we choose to
only perform Winograd acceleration operations on the 3 x 3
convolution kernel and to group the input feature maps of
the PE. To minimize the resource consumption and latency
of storing the transformation matrix, we propose using the
buffer pipeline optimization method.

The convolution operation of the YOLO model is shown
in Figure 2. An input feature map entering the convolu-
tional layer operation is stored in the on-chip buffer, and
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FIGURE 3. The Winograd PE structure of the YOLO v2 accelerator.
the model’s parameter file is stored in the filter buffer. The - -
feature map is expanded to obtain the feature map vector in[M][H][W]:input images(M channels)
; : Flfillfol.Flfillfo][il[j]:weights
before.N fea.ture maps are transmitted t(.) th.e Winograd PE out{NJ[RI[Clroutput images(N channels)
operation unit. To maximize the parallelization of the oper-
ation, the model parameters and the feature map vectors Jor row = 0; row < H; row += 1 do
. R for col = 0; col < H; col++ do
are grouped separately. In the Winograd unit, the feature for fi = 0; fi < M; fi++ do
map vectors and the convolution kernels are multiplied and forfo=0;fo<N; for+do
added. Finally, the convolution result of each feature map —for=0j<Kfhtdo—
is obtained. The accumulator (ACC) unit fuses the features 3 outfrowjfooliffol +=Fhjffolfiti} infrow+ ool ithl;
and stores the calculation result in the output feature map Winograd(infrow][col][fi],F[fi] [fo],out[row][col] [fo])
buffer. All operation results wait for the next process to IDRE
be read. Winograd(in,F,out) {
The designed Winograd PE is divided into three parts that o

transfer the feature maps and kernel parameters to the convo- out= AU V]A
lution unit individually for calculation. As shown in Figure 3,

this process can be divided into three steps: first we transform
the feature map parameters taken from the buffer. As shown
in Section 2.1, the values of the transformation matrixes A, B
and G can be determined by the values of m and r. Thereby,
the transformed transformation matrix V can be obtained.
When the transformation of the feature map is complete,
we take out the convolution kernel parameters that are stored
in the buffer. In addition, the transformed feature matrix U
can be obtained by using the transformation of Figure 3. For
the last step, matrixes U and V are passed to the PE, and the
value of matrix M can be obtained by the point multiplication
operation. Finally, we obtain the output result. These three
steps are labelled as S1, S» and S3 respectively.

Figure 4 shows the convolution operation pseudo-code
of adding the Winograd algorithm into YOLO proposed in
this paper. Winograd (in, F, out) represents the calculation
function of Winograd designed for the FPGA. The size of the
input feature map is M x H x W, and the size of the output
feature map is N x R x C. When the data are input to the
Winograd function for the acceleration operation, the feature
map data and kernel data are expanded and grouped. In a
conventional convolution operation, six cycles are executed.
After the Winograd algorithm is added, Loop-5 and Loop-
6 can be eliminated, which saves the multiplier computation
caused by the Loop operation in the FPGA.
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FIGURE 4. Pseudo-code of Winograd. Winograd(in, F, out) is the Winograd
function.

B. LOW-BIT FIXED POINT
In the calculation of a CNN, the sizes of the weights and bias
parameters affect the performance of the whole network [29].
A large number of high-precision floating-point arithmetic
operations will not only increase the power consumption of
the model but also affect the computing speed. Therefore,
before a CNN is used with an FPGA, the model data should
be fixed-point. In a large number of studies [30]-[33], it was
found that compared with floating-point number operations,
fixed-point data are more suitable for efficient computation
with FPGAs. In a study of Chen et al., it was found that
the power consumption of fixed-point data of 16 bits was
only 0.136 times that of 32-bit data, while the accuracy of
the model decreased by only 0.26%. Therefore, in train-
ing a YOLO model, 32-bit data was selected in this paper.
However, when deploying the YOLO model in an FPGA,
the feature map data, convolution kernels and bias parameters
were quantified as 16 bits.

The fixed-point data process is shown in Figure 5. The
32-bit data consist of three parts [34], which are the sign
bit (S, 1-bit), exponen bits (E, 8-bits) and mantissa bits
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FIGURE 5. (a) 32-bit floating-point data (b) 16-bit fixed-point data.

(M, 23-bits). The exponen bits are the integer part of the
floating-point number, and the mantissa bits are the fractional
part of the floating-point number. Fixed-point numbers differ
from floating-point numbers in that the decimal point is
fixed. Once the three-part width of the fixed-point number
is determined, the position of the decimal point will never
change [35]. In Figure 5, the range of signed fixed-point
numbers that can be expressed is [—2F =1 2E-1_ 1], and the
data precision is 2¥ .

We take the YOLO convolution filter data 3.709685 as an
example. Its 32-bit floating-point number representation is
shown in Figure 5(a); it contains § integer bits and 23 dec-
imal bits, which is similar to the original data. Figure 5(b)
shows the fixed-point data type used in this paper, which
contains 1 sign bit, 3 integer bits, and 12 decimal bits;
compared with the 32-bit floating-point data, the error is
only 0.0002.

IV. MEMORY OPTIMIZATION BASED ON THE

PROPOSED BUFFER PIPELINE

A. BUFFER PIPELINE

To solve the memory optimization problem of FPGA accel-
erator design, we propose the buffer pipeline method for the
first time. In the logical part of Zynq, data interact with the
CPU through an external storage DDR DRAM. The DDR
is controlled by an advanced extensible interface (AXI) bus
when data are exchanged with the accelerator. To ensure that
the timing requirements are met in the data flow, a first-in
first-out (FIFO) interface is added after the AXI bus. In this
way, the data of the accelerator’s input and output data can be
transmitted efficiently.

At the input interface of the accelerator’s PE, we usually
add a buffer set to change the data format and wait for a
certain length of time. The pipeline architecture of the accel-
erator proposed in this paper is shown in Figure 6. In the input
data part of the accelerator, the input buffer sets are divided
into three parts: Buf_Inl, Buf_In2 and Buf In3. The output
buffer sets are divided as Buf_Out1, Buf_Out2 and Buf_Out3.
This pipeline structure can take full advantage of each buffer
to ensure data interaction and transmission. During the jump
cycle of the clock bus, the storage capacity of each buffer can
be maximized. The details of the timing advantages of this
structure are analysed in Section 3.2.
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pipeline optimization proposed in this paper. The clock lines of all the
buffers are uniformly planned on the CLK bus, and the data in the buffer
are formatted in the input data transfer module.

B. TIMING ANALYSIS OF THE BUFFER PIPELINE

Every Winograd PE operation inside the accelerator is cached
through the buffer sets, including taking data from the buffer
into the PE, computing the PE and taking the data for the
cache from the PE. The time to input the data for each buffer
is T;,, the time needed for the data from the buffer to enter
the PE for computing is 7,,. The time taken by the buffer
after the operation of the acceleration PE is T,,;. The time
to complete the whole task flow is Ty,e. Assume that the
number of tasks completed in the acceleration PE is n and
that T, # Teo # Tour (it does not matter if all three operations
take the same amount of time). According to the sequence of
the regular memory access structure, the time to complete all
tasks is found with equation (12).

Tsum = n X Ty =n X (Tiy + Teo + Tour) (12)

The proposed buffer pipeline structure improves the sin-
gle buffer set to a three-buffer structure, and carries out a

VOLUME 8, 2020



C. Bao et al.: Power-Efficient Optimizing Framework FPGA Accelerator Based on Winograd

IEEE Access

Tout s s | s s
Buffer In [ Buind | i [ Butin1 | i
Compute X E { PE_Comp |[: E 1 PE_Comp E
Buffer Out \__{ Buf out/t | ; \_| Bufouf1 | ; \__{ Buf_out1
Task [} Task 2 [ M Task 3
! : : : : : y
One Bufter | ' Tam | i | |
------------------ e L e s e e
Buffer In Bufin1 || Buf Bufin3 || | i i i i
Compute PE_C { PE_Comp2 ]| PE_Comp3 | | i i i
Buffer Out l \\_fli Bur ¢ { Burd [ Buf_outs | i i |
[ et | | | | | |
k/){ | Task 2 i i ' i '
' U Task3 ' ' ' '
. I\ )
Y Y
TBP_sum 7-savr-:'

FIGURE 7. Timing changes when the buffer pipeline is not added to the accelerator computing unit and when the buffer pipeline is added. When the
task is executed three times, the time the buffer pipeline method saves is Tsqve, where Buffer In, Compute, and Buffer Out represent the three stages

of completing the computing task.

three-level pipeline. We set the following variables:

TI:’]%\?( = max(Tin, Teos Tour) (13)
Té}%}x = max(Tin, Teco), (14)
Ty = max(Teo, Tour)- (15)

Since the whole task can be divided into three stages,
the total time latency when completing n tasks is shown in
equation (16).

Tpp_sum = Tin + Toax + Tmax X [ =G = DI+ T3y + Tour

= Ty +max(Tiy, Teo) + max(Tin, Teo, Tour)

x [n— 3 — D]+ max(Teo, Tour) + Tour- (16)

We take a set of three tasks as an example to make a
timing diagram for the conventional calculation and the buffer
pipeline structure as shown in Figure 7.

Toum =3 X Tiask = 3 X (Tin + Teo + Tour) 17

When the buffer pipeline is used for memory, the time
taken to complete the entire task is shown in equation (18).

TBP_sum = Tin + Tééx + Tééi + TI%sz + Tout
= Ty + max(Ti,, Teo) + max(Tin, Teo, Tour)

+ max(Teo, Tour) + Tour- (18)

According to the property of inequality, it can be found
that:

max(Tiy, Teo) + max(Tiy, Teo, Tour)+max(Teo, Tour) < 3T¢o

max(Tiy, Teo) + max(Tiy, Teo, Tour)+max(Teo, Tour) < 3Ty

maX(Tin’ Tco) + maX(Tina T, Tout)"'maX(Tco» Tout) < 3Tout

19)
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Therefore, clearly, Tsym > Tpp sum. The time saved by
the method proposed in this paper is Tsae, as shown in
equation (20).

Tsave - Tsum - TBP_sum
=n X (Tin + Teo + Tour) — {Tin + max(Tiy, Teo)

+ max(Tin, Teos Tour) X [n — (3 — 1)]

+ max(Teo, Tour) + Tour} (20
V. OVERALL ARCHITECTURE OF THE
YOLO ACCELERATOR
The overall hardware architecture of the accelerator designed
in this paper is shown in Figure 8. The software structure
can be divided into two parts: PS (Processing System) and
PL (Progarmmable Logic). On the PS side, it integrates
ARM cores and uses the Linux operating system. In addi-
tion, the Python language environment is preserved when the
operating system is ported. The CPU can control all interfaces
between the PS and PL. The accelerator uses CPU scheduling
to input the feature maps of the YOLO network parameters
into the DDR buffer and interact with peripheral operating
system circuits through the bus. The CPU uses the AXI bus
to read the operation results of the acceleration circuit and
execute the application of image pre-processing and display
on the PS side. On the PL side, the data in the external DDR
are cached in the on-chip RAM, and the convolution and pool-
ing circuits of the YOLO accelerator are laid out and wired
in the FPGA. The hardware design bitstream file and the
design instruction file (Tcl) are passed to the OS overlay.
The hardware circuit and the YOLO’s IP core are parsed
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FIGURE 8. Overview of the YOLOv2 accelerator architecture based on the PYNQ platform.

in the overlay. Finally, the data path of the entire hardware
accelerator is completed.

VI. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL SETUP

The Winograd YOLO accelerator proposed in this work
is generated by Vivado HLS 2018.2. The HLS can con-
vert a C-language program into the RTL circuit required
by the FPGA. The hardware architecture is built in Vivado
2018.2. The acceleration platform is developed in a Xil-
inx PYNQ-z2 board. The main chip is Zynq XC7Z020-
1CLG400C, which contains a 630 KB block RAM, 220 DSP
slices, an ARM dual-core Cortex-A9 processor, and an exter-
nal 512 MB DDR3.

The configuration parameters of the YOLOv2 network
selected for acceleration are shown in Table 1. Because the
size of the YOLOvV2 model convolution kernels are 3 x 3
and 1 x 1, it is suitable for the calculations of the Winograd
algorithm.

B. FIXED-POINT DATA ANALYSIS

In Section 3.2, we proposed a method of quantifying 32-bit
data as 16-bit data. In this section, we apply this method to
YOLOV2, Tiny-YOLO [36], and Sim-YOLO. Tiny-YOLO
and Sim-YOLO are simplified versions of YOLOv2. We
train these three networks on the PASCAL VOC 200742012
dataset, and extract a convolution kernel and bias parame-
ters. Then, the 32-bit data obtained undergo 16-bit and 8-bit
fixed-point processing. In the fixed-point transformation of
the 8-bit data, we set the sign bit (S, 1-bit), exponen bit
(E, 2-bits) and mantissa bit (M, 5-bits). Then, we use the
fixed-point network on the original test dataset for evalua-
tion, and the final accuracy is shown in Figure 9(b). Com-
pared with the original-precision network, the accuracy of
the YOLOV2 network decreased by 2.88% at 16 bits. The
accuracy of Tiny-YOLO and Sim-YOLO decreased by 2.91%
and 2.1% respectively. At 8 bits, compared to the original-
precision network, the accuracy of the YOLOv2 network
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TABLE 1. Parameter configuration of the YOLOv2 model used in this
paper.

Layer Type  Filters Slrzizi?St Output
1 C 32 3x3/1 224%224x32
2 M 2x2/2 112x112x32
3 C 64 3x3/1 112x112x64
4 M 2x2/2 56x56%x64
5 C 128 3x3/1 56x56x128
6 C 64 1x1/1 56x56x64
7 C 128 3x3/1 56x56x128
8 M 2x2/2 28x28%128
9 C 256 3x3/1 28x28%256
10 C 128 1x1/1 28%28%128
11 C 256 3x3/1 28x28%256
12 M 2x2/2 14x14x256
13 C 512 3x3/1 14x14x512
14 C 256 1x1/1 14x14x256
15 C 512 3x3/1 14x14x512
16 C 256 1x1/1 14x14%256
17 C 512 3x3/1 14x14x512
18 M 2x2/2 Tx7%512
19 C 1024 3x3/1 7x7x1024
20 C 512 1x1/1 TxT7x512
21 C 1024 3x3/1 7x7x1024
22 C 512 1x1/1 TxT*x512
23 C 1024 3x3/1 Tx7x1024
24 C 1000 1x1/1 7x7x1000

Note: C=Convolutional Layer, M=Maxpool Layer.

drops by 8.32%. The accuracy of Tiny-YOLO and Sim-
YOLO decreased by 4.12% and 3.25% respectively. In the
YOLOV2 network, compared with using 8-bit fixed-point
parameters, the accuracy of the network model decreases
less with 16-bit fixed-point parameters. Therefore, we select
16 bits as the FPGA-accelerated network parameter type.

As we can see from Figure 9(a), in the process with fixed-
point data, the storage occupied by the network parameters
also decreases. Compared with the original-precision model,
the size of the YOLOV2 model was reduced by 7 times in
the 16-bit fixed-point transformation. Tiny-YOLO and Sim-
YOLO are reduced in size by 8 and 12 times, respectively.
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FIGURE 9. (a) The size changes of the YOLOv2, Tiny-YOLO, and Sim-YOLO models under 32-bit, 16-bit, and 8-bit parameter
types, respectively. (b) The accuracy changes of the YOLOv2, Tiny-YOLO, and Sim-YOLO models under 32-bit, 16-bit, and

8-bit parameter types, respectively.

TABLE 2. Comparison of the proposed design with previous works with YOLO hardware.

Sim-YOLO-v2 on GPU Tiny-YOLO Lightweight YOLO-v2 Tiny-YOLO-v2 .
(37) 37] 21) 20] This work (YOLO-v2)
. Zynq .
Platform GTX Titan X Ultrascale+ Zynq Ultrascale+ Virtex-7 VC707 Pyng-z2
Frequency 1 GHz N/A 300 MHz 200 MHz 125 MHz
BRAMs N/A N/A 1706 1026 880
DSPs N/A N/A 377 168 153
LUTs-FFs N/A N/A 135 K-370 K 86 K-60 K 38 K-36 K
Image Size 416x416 416x416 224x224 416x416 416x416
Accuracy (mAP) (%) 66.79 48.5 67.6 51.38 78.25
Power (W) 170 6 N/A 8.7 2.7

Thus, the 16-bit fixed point parameters can not only ensure
the accuracy of the YOLOV2 model but also reduce the size
of the model.

C. RESULT ANALYSIS
In this experiment, the Winograd algorithm parameters are
used in the convolutional layers of YOLOv2. The YOLO
accelerator is generated by Vivado HLS. In the block design,
the hardware bit file and parameter file are generated. The
operating system PS schedules the hardware logic and allo-
cates the acceleration resources. Before the network param-
eters are loaded into the FPGA, the data are quantized to
the fixed-point 16-bit type. The final average time for the
accelerated platform to process each image is 124 ms, and
the average detection accuracy is 78.25%. The experimental
environment and detection results are shown in Figure 10.
At the end of the experiment, we compare the acceleration
effect of this accelerator with other platforms. As shown
in Table 2, compared with the GPU platform, this accelerator
based on the PYNQ platform not only maintains accuracy
but also greatly reduces power consumption. In comparison
with the accelerator implemented on the Zynq Ultrascale+
platform, after the introduction of the Winograd algorithm,
the number of adders in our accelerator increases, but the
number of DSPs is significantly reduced. In addition, over-
all resource consumption is reduced. In this experiment,
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FIGURE 10. Experimental environment and detection results.

accuracy is improved because the YOLOvV2 model that we
select in this work has greater precision than simplified
YOLO networks such as Tiny-YOLOv2.
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VII.

CONCLUSION

To solve the problem of limited resources and excessive
power consumption in edge computing for deep learning
detection networks, we proposed an architecture based on
the Winograd algorithm for YOLO accelerator design on an
FPGA platform, which quantified network parameters and
solved the problem that a YOLO network needs a large
number of DSPs for FPGA acceleration. To optimize mem-
ory, we proposed a buffer pipeline optimization method,
which greatly improved the efficiency of data interaction.
Test results show that compared with the implementation
of YOLO in a GPU and in Zynq Ultrascale4, the method
proposed in this work maintained accuracy, saved resources,
greatly reduced power consumption and had a profound effect
on accelerating deep learning networks in edge computing.
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