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ABSTRACT In the field of information security, privacy protection based on machine learning is currently
a hot topic. Combining differential privacy protection with AdaBoost, a machine learning ensemble clas-
sification algorithm, this paper proposes a scheme under differential privacy named CART-DPsAdaBoost
(CART-Differential privacy structure of AdaBoost). In the process of boosting, the algorithm combines the
idea of bagging, and uses a classification and regression tree (CART) stump as the base learner for ensemble
learning. Applying feature perturbation, based on a random subspace algorithm, the exponential mechanism
is used to select the splitting point for continuous attributes. We use the Gini index to find the optimal binary
partitioning point for discrete attributes and add noise according to the Laplace mechanism. Throughout the
process, a privacy budget is allocated in order to meet the appropriate differential privacy protection needs
for the current application. Unlike similar algorithms, this method does not require discretization during
preprocessing of the data. Experimental results with the Census Income, Digit Recognizer, and Adult Data
Set show that while protecting private information, the scheme has little impact on classification accuracy
and can effectively address large-scale and high-dimensional data classification problems.

INDEX TERMS Privacy protection, differential privacy, machine learning, AdaBoost.

I. INTRODUCTION
The disruptive development of the Internet has brought con-
venience and rapidity to communication and data sharing, and
has promoted the arrival of the era of big data. We leave a
lot of footprints on the Internet where various information
systems collect and accumulate rich data, which constitutes
an important foundation of big data. According to Schon-
berg, author of The Big Data Era: The Great Revolution
in Life, Work, and Thinking, big data can utilize all data,
not just a sample from it, and it can focus more on finding
and analyzing the relevance of things. However, in bringing
convenient services, such as personalized recommendations,
the risk of privacy breaches has also increased rapidly. Hence,
privacy issues are receiving more attention in machine learn-
ing research.

Data sets often contain private or sensitive information,
such as medical diagnoses and e-commerce transactions.
The information contained within this data has the poten-
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FIGURE 1. Privacy model.

tial to bring significant benefits to society, research institu-
tions, information consulting organizations, and government
decision-making departments, as data has become a very
important resource. This has greatly promoted interest in the
publishing, sharing, and analysis of data. However, there is
always a risk of inadvertently revealing personal information.
Fig. 1 shows the process from information collection to pri-
vacy protection, which can be divided into data publishing,
and data analysis, according to the purpose of the release.
Data publishing aims to share data sets publicly or allow the
public to run queries on the data. In the literature, this scenario
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is also called data sharing. Another scenario is data analysis,
which provides the public with a data model associated with
a particular algorithm, such as data mining and machine
learning algorithms. In both cases, various privacy protection
methods and privacy criteria are implemented and defined as
a privacy model [42].

Privacy protection technology can effectively handle per-
sonal data to prevent the leakage of sensitive information
during data publishing and data analysis. K anonymity [13]
is a technique for protecting private information by gener-
ating an anonymized data set such that each unique record
is hidden in an equivalence class of k records. This ensures
that individual records cannot be uniquely identified from
the data, and allows it to resist a linking attack, where an
attacker attempts to identify an individual by connecting the
anonymized private record with other publicly released data.
Improved algorithms such as l-diversity, t-closeness, and (a,
k)-anonymity make the private information in each equiva-
lence class more difficult to isolate. However, anonymization
technology is vulnerable if the attacker can utilize additional
background knowledge and, as there is no clear definition of
the assumptions of the attack model. Privacy cannot always
be guaranteed.

Differential privacy addresses these issues. This model is
based on a new definition of privacy proposed by Dwork
et al. for statistical databases [5]–[7], [9]. Under this mech-
anism, whether a record is either in or out of the data set
has little effect on the result of a calculation made on the
data set. Therefore, the risk of privacy leakage caused by
adding or deleting a record from the data set is reduced to
a minimum acceptable range, which is determined by a pre-
specified privacy protection budget. This ensures that the
attacker cannot obtain the individual information through
the results of calculation. Differential privacy addresses two
shortcomings of the traditional privacy protection model: 1)
Differential privacy protection is independent of background
knowledge, so that even if the attacker has significant back-
ground knowledge, it still provides good privacy protection.
2) Differential privacy is based on rigorous mathematical
theory and provides a quantitative assessment of the level
of privacy protection. The core concepts of differential pri-
vacy come from a range of fields such as machine learning,
data mining, statistics, and learning theory. Differential pri-
vacy has become the de facto privacy standard [19], [25].
In June 2016, at theWWDC conference, Apple Inc. indicated
that it implements differential privacy in its latest operating
system and applications to protect each user’s individual data.

For the privacy leakage problem in data model publishing
and analysis, differential privacy is implemented in machine
learning algorithms to protect private or sensitive informa-
tion, while also maximizing the availability of the published
data or algorithm [8], [27], [34], [35]. This paper focuses on
research into ensemble classification algorithms which are
applied to differential privacy. The machine learning ensem-
ble classifier [26] combines multiple independently trained
base classifiers to enable better prediction. Random forest and

AdaBoost are the two most common algorithms in ensemble
learning. The construction of the base classifier can adopt
different classification algorithms, such as a decision tree,
BP-neural network, etc. Therefore, the degree of flexibility
in ensemble learning is very high, so it is widely used in
classification problems and various competitions such as the
international KDD Cup which is usually won by an ensemble
method.

Based on the analysis of existing differential privacy deci-
sion trees, this paper improves the ensemble classification
model DP-AdaBoost [31] under differential privacy con-
straints. Since the algorithm is based on ID3 decision trees
that can only handle discrete attributes, it is necessary to
preprocess continuous attributes in the data set before clas-
sification. Aiming at this problem, this paper proposes a
CART-DPsAdaBoost algorithm, which does not require dis-
crete preprocessing of data continuous attributes, eliminates
the consumption of classification system performance. The
algorithm model can handle both discrete feature data and
continuous feature data. While maintaining a high classifi-
cation accuracy, it also takes into account the privacy and
availability of the classification model, and can effectively
deal with large-scale, high-dimensional data classification
problems.

The remainder of this article proceeds as follows. The
related work in Section 2 gives an overview of the devel-
opment of classification methods under differential pri-
vacy constraints, culminating with the DP-AdaBoost model.
Section 3 gives the theoretical background of differential
privacy and adaptive boosting. Next, Section 4 discusses
the proposed CART-DPsAdaBoost algorithm in detail and
describes how it will be evaluated. Section 5 provides a
full examination and discussion of results from a range of
experiments comparing the proposed CART-DPsAdaBoost
with DP-AdaBoost and the original AdaBoost algorithms,
on three standard data sets. The Conclusion summarizes the
advantages and limitations of the proposedmethod, and looks
forward to future research.

II. RELATED WORK
There has already been significant research on differen-
tial privacy in machine learning. For example, Sarwate and
Chaudhuri [27] provided a general overview of the field,
briefly discussing classification, regression, dimensionality
reduction, time series, filtering, and other essential ‘‘build-
ing blocks’’ based on differential privacy. These include
differences between the input, output, and target perturba-
tions, the exponential mechanism, and differential privacy
statistics. Ji et al. [15] focus more on specific algorithms
under differential privacy and outline the operation of the
naive Bayesian model, linear regression, linear SVM, logistic
regression, kernel SVM, decision trees, k-means clustering,
feature selection, PCA, and statistical estimation. Abadi et al.
[1] applied target perturbation to deep learning. They adopted
a small-batch stochastic gradient descent method to solve
the problem of a non-convex loss function, and added noise
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at each step of the gradient descent. Shokri and Shmatikov
[30] designed a distributed deep learning model that enables
multiple parties to apply neural networks in combination.

In this paper, the ensemble classification model under the
differential privacy constraint is studied using a decision
tree as the base classifier. The decision tree is a commonly
used data classification model, implemented in algorithms
including ID3, C4.5, and CART [17]. The basic task of differ-
ential privacy data analysis is to extend existing non-private
algorithms to differential privacy algorithms. Under a given
interface mode, a decision tree based on differential privacy
can only perform a limited number of queries, and each
query will consume some of the privacy budget. Literature
[3] proposed the differential privacy decision tree algorithm
SuLQ-based on ID3 in an interface mode that uses the count
value of Laplace noise to calculate the information gain of
an attribute. However, since the privacy budget is consumed
multiple times in each iteration, a lot of noise is generated,
which leads to a significant reduction in the accuracy of
the prediction. In addition, SuLQ cannot handle continuous
attributes. In [18], the SuLQ algorithm is improved using
Microsoft’s Privacy Integrated Query (PINQ) platform. The
partition operator is used to segment the data set into disjoint
subsets, and then the ID3 decision tree is constructed. To
deal with the disadvantages of high noise and only dealing
with discrete attributes, literature [11] Friedman and Schuster
proposed that the DiffP-ID3 algorithm based on the expo-
nential mechanism evaluates all attributes simultaneously in
one query, reducing noise and privacy budget waste. DiffP-
C4.5 selects continuous attribute splitting points and achieves
optimal attribute partitioning through two exponential mech-
anisms. The DiffGen algorithm proposed in literature [21]
first uses a generalization technique, and then combines the
exponential mechanism and information gain to segment the
attributes. When the dimensionality of the dataset is low,
the privacy protection effect is improved. Literature [43]
improved the DiffGen algorithm and proposes the DT-diff
algorithm. On this basis, a feature model selection strategy is
proposed. By establishing a feature model to group samples,
and by adding noise, the algorithm makes full use of the
privacy budget and improves classification accuracy. In liter-
ature [23], Patil and Singh applied differential privacy based
on a random forest, and proposed the DiffPRF algorithm,
which uses ID3 as the base learner. Nevertheless, it can only
deal with discrete attributes. In literature [14], Mu Hairong
et al proposed a random forest algorithm, DiffPRFs, based
on differential privacy. During the construction of each tree,
the exponential mechanism is used to select the splitting point
and splitting attribute. This method does not need to carry
out discrete preprocessing of data. Literature [20], Mivule et
al. proposed a framework that uses AdaBoost iterations to
update data sets until the forest achieves an acceptable level
of prediction accuracy. However, the framework lacks detail
in that it does not give the specific content of the differential
privacy technology, or how it allocates the privacy budget.
The DP-AdaBoost algorithm [31], which is an AdaBoost

algorithm with differential privacy protection, uses a single-
layer ID3 decision tree as the base classifier for ensemble
learning in order to reduce the complexity of the model. The
algorithm no longer uses the counting function directly when
adding noise, but instead considers the weight value of each
record at simultaneously. Also, it does not need to introduce
noise in attribute division, so the final result has better classi-
fication accuracy. However, this method requires discretiza-
tion during preprocessing of the data set, which degrades the
classification performance. Table 1 summarizes the related
research based on decision tree classification methods under
differential privacy constraints.

Based on the analysis of existing research, this paper pro-
poses the CART-Differential Privacy structure of AdaBoost
(CART-DPsAdaBoost) for classification problems under pri-
vacy protection requirements: an AdaBoost classification
algorithm based on differential privacy protection. Under the
requirement of differential privacy protection, the algorithm
maximizes the advantages of AdaBoost ensemble learn-
ing. Compared with the similar method of DP-AdaBoost,
the method in this paper is less complex, the algorithm’s
efficiency is improved, while also maintaining its accuracy
of classification.

Theoretical analysis and experiments are conducted to
demonstrate that the advantages of this algorithm are as fol-
lows:

• In the boosting process, the algorithm combines the
idea of bagging with a random subspace algorithm for
attribute perturbation. While increasing the diversity of
the base classifier, the probability that each tuple is
selected during the iterative process is determined by
its weight. Compared with methods based on sequence
sampling, the proposed approach is more efficient at
classifying large, high-dimensional data sets.

• During the construction of the CART tree, the contin-
uous feature split point is selected by the exponential
mechanism, and the best split feature is selected by the
Gini index. Using the improvedCARTdecision stump as
the base learner for integrated learning, the complexity
of the model is low while avoiding the influence of the
depth of the tree on the level-sharing strategy in privacy
budget allocation.

• As the number of leaf nodes decreases greatly, more
privacy budget will be allocated, the added Laplace
noise will be reduced, and the resulting ensemble model
maintains a high classification accuracy.

III. DEFINITION AND THEORETICAL BASIS
A. THE BASIS OF DIFFERENTIAL PRIVACY THEORY
1) DIFFERENTIAL PRIVACY
Definition 1 : (ε-Differential Privacy [5], [6], [9] Given adja-
cent data setD andD′, there is at most one difference between
the records, i.e. (D1D′ ≤ 1). A randomized mechanism M ,
and arbitrary outputO (O ∈ Range (M)) satisfy the following
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TABLE 1. Comparison of decision tree classification methods based on differential privacy constraints.

inequality, so M satisfies ε-differential privacy.

Pr [M (D1) ∈ O] ≤ eε Pr [M (D2) ∈ O] (1)

where Pr[·] represents the risk of privacy disclosure. The
privacy budget ε reflects the level of privacy protection that
M can provide. The higher the data security requirement,
the smaller ε has to be, and the more similar the probability
distribution of query results returned by the differential pri-
vacy algorithm on adjacent data sets is, and the more difficult
it is for the attacker to distinguish the adjacent data sets. The
value of ε should be combined with operational requirements
to achieve a balance between security and availability of
output.

Fig. 2 shows a more intuitive description of the nature of
differential privacy [4], [24]. The selection of the random
function M is independent of the background knowledge of
the attacker. The query function is f and the adjacent data sets
areD andD′. Differential privacy maps the result of the query
function f (·) to a randomized value field and feeds results
back the user with a certain probability distribution. The
degree of approximation of the probability distribution on
the adjacent data set is controlled by the parameter ε, so that
the output results are almost identical, thereby achieving the
purpose of protecting the individual information in the data
set.

FIGURE 2. The output probability of differential privacy on adjacent data
sets.

Definition 2 (Global Sensitivity [5], [6], [9]): For adjacent
data sets D and D′ that satisfy

∣∣D1D′ = 1
∣∣, given the query

function f : D→ Rd , the sensitivity of the function f is:

1f = max
D1,D2

‖f (D1)− f (D2)‖ (2)

where R represents the mapped real space, d represents the
query dimension of function f , and ‖f (D1)− f (D2)‖ rep-
resents the first normal form (1NF) distance between f (D1)

and f (D2).
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Global sensitivity reflects the maximum degree of change
in the results of a query function for a pair of adjacent data
sets. For most query functions f , the value of1f is relatively
small, such as for the counting function, the sensitivity1f =
1. It is worth mentioning that sensitivity is only one of the
properties of function f , that is independent of the data set D.

2) IMPLEMENTATION MECHANISM
The main implementation mechanism of differential privacy
is the noise mechanism. Laplace mechanism and exponential
mechanism are the two most commonly used mechanisms.
The noise mechanism is constrained by the global sensitivity
and privacy protection budget. Too much noise will affect
the usability of the results, while too little will not provide
sufficient security.
Definition 3 (Laplace Mechanism [12], [16], [19]): Given

an arbitrary function f : D → Rd , if the output of the
expressionK (D) satisfies the following equation, thenK (D)
satisfies the requirements of ε - differential privacy.

K (D) = f (D)+
(
Lapace

(
1f
ε

))d
(3)

where Laplace
(
1f
/
ε
)
is the Laplace distribution obeying

the scale parameter1f
/
ε, and the amount of noise is related

to the values of 1f and ε.
The Laplace mechanism uses the noise generated by the

Laplace distribution to disturb the true output value to achieve
differential privacy protection. Since the Laplace mechanism
is only suitable for the protection of numerical results, for
non-numeric data, such as entity objects, McSherry and Tal-
war [44] proposed an exponential mechanism.
Definition 4 (Exponential Mechanism [12], [16], [19]):

Given a utility function q : (D× O) → r (r ∈ Range),
if the Function F (D, q) satisfies the following equation, then
F (D, q) satisfies ε- differential privacy.

F (D, q) = {r : Pr [r ∈ O]} ∝ exp
(
εq (D, r)
21q

)
(4)

where D is the input data set, the output is an entity object
r , and 1q is the global sensitivity of the utility function
q (D, r). The function F selects and outputs r from Range
in proportion to the probability of exp

(
εq (D, r)

/
21q

)
.

3) RELATED LEMMA
Usually a complex privacy protection problem has to be
solved by applying differential privacy protection algorithms
multiple times. In this case, in order to ensure that the privacy
protection of the entire process is controlled within a given
budget ε, it is necessary to reasonably allocate all privacy
budgets to the various steps of the entire algorithm. At this
point, two supporting lemmas can be used.
Lemma 1 (Sequential Composition [19], [24]): Suppose,

in a set of mechanisms M1,M2, . . . ,Mn, if Mi satisfies εi-
differential privacy, then for the same data set D, the combin-
ing mechanism M (M1 (D) ,M2 (D) , . . . ,Mn (D)) will pro-
vide

∑n
i=1 εi- differential privacy.

Lemma 2 (Parallel Composition [19], [24]): Suppose,
in a set of mechanism M1,M2, . . . ,Mn, if Mi satis-
fies εi -differential privacy, then for disjoint data sets
D1,D2, . . . ,Dn, the combining mechanism
M (M1 (D) ,M2 (D) , . . . ,Mn (D)) will provide (max εi)-
differential privacy.

B. CLASSIFICATION AND REGRESSION TREE
1) IMPROVED CART
A Classification and Regression Tree (CART) is a popular
binary decision tree that can be used for classification or
regression analysis [10], [33], [41]. This paper considers to
reduce the complexity of the model while increasing the
diversity of themodel tomaintain a certain degree of accuracy
of the base classifier. To this end, two types of randomness
schemes, sample perturbation and feature perturbation, are
introduced in the process of building the base classifier, that
is, the bootstrap sampling scheme is introduced during the
iteration of the ensemble algorithm, and the random subspace
algorithm is used in feature selection.

Literature [14] Mu Hairong et al. proposed DiffPRFs, a
random forest algorithm based on differential privacy protec-
tion. This algorithm uses an exponential mechanism to select
split points and split features during tree construction, and
adds noise according to the Laplace mechanism. Although
the algorithm does not require discrete preprocessing of the
data, the exponential mechanism is called twice per iteration,
which consumes a large amount of privacy budget, resulting
in a low utilization rate of the privacy protection budget.

In this paper, based on the analysis of existing research, in
the construction of the base classifier CART tree, an exponen
tial mechanism is used to select the split point for continuous
attributes, and the Gini index is used to select the best split fe
ature, which ultimately ensures the utilization of privacy prot
ection budget. Formally, we define the following parameters:
Sample set Di, sample size Ni, attribute set3

(
3′ ∈ 3

)
, Ri is

the size of the set of spaces evaluated by the utility function
q, number of class labels k, and entity object r. We record
the probability Prk of belonging to category k (k ∈ K ). The
gini value of the probability distribution is Gini (Pr) =∑K

k=1 Prk (1− Prk)
= 1−

∑K
k=1 Pr

2
k . Then the CART classification tree in this

paper is a binary tree that satisfies the following conditions:
i) Measure the Gini index value of sample set Di:

Gini (Di) = 1−
∑K

k=1

(
Ni
N

)2
ii) Consider each possible binary partition for each

attribute;
For continuous attributes, the exponential mechanism is

used to select the splitting points:

exp
(

ε
21qq

(
Dk ,3′

))
|Ri|∑

i exp
(

ε
21qq (Dk ,3

′)
)
|Ri|

(5)
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For discrete attributes, calculate all subsets to get the min-
imum Gini index:

Gini
(
D,3′

)
=
N1

N
Gini (D1)+

N2

N
Gini (D2) (6)

iii) Determine whether the termination condition has been
reached;

iv) Recursive call i) -iii);
v) Return improved CART decision tree.

Algorithm 1 Build_DPTree (D (i) ,3, εc, d)
Input:D = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}; xi ∈ 3; yi ∈
{−1, 1}; CART tree depth, d ;Privacy budget, εc.
Output: Base classifier gt (x).
1: repeat
2: ε̄ = εc

d+1
3: Select 3̄ = {31, · · ·,3k} from 3 by random

subspace algorithm;
4: Gini indexminimization principle, choose the optimal

3′ binary division from 3̄;
5: if Node satisfies the termination condition: then
6: Classification leaf node

Dy = Partition
(
D (i) ,∀y ∈ [Y ] : ry = y

)
;

7: Return leaf nodes to mark:
maxy

(
Ny = Count

(∣∣Dy∣∣));
8: else if 3̄ contains n Continuous attributes, perform

step 9 then
9: ¯̄ε = ε̄

2(n+1)
10: Select continuous attribute split point

exp
(
¯̄ε

21qq
(
Dy,3′

))
|Ri|∑

i exp
(
¯̄ε

21qq
(
Dy,3′

))
|Ri|

where q
(
Dy,3′

)
is availability function, 1q

is sensitivity, |Ri| is the size of interval set;
11: Divide data set D into Dl and Dr ;
12: Build left and right subtrees:

tl = Build_DPTree (Dl (i) ,3, ε̄, d + 1) ;
tr = Build_DPTree (Dr (i) ,3, ε̄, d + 1) ;

13: end if
14: untilNode label consistent,Maximum depth d , privacy

budget exhausted.
15: return gt (x)

The improved CART decision tree reduces the complexity
of the model by controlling the depth of the tree. When the
tree is built, the data is divided into two and entered into the
left and right subtrees respectively. The algorithm can han-
dle both discrete features and continuous features.Compared
with the ID3 and C4.5 decision tree algorithms, the Gini
index is used to select the best split feature, which avoids the
preference impact of information gain and information gain
rate on the number of feature values.The CART classification
tree in this paper has a better advantage as a base classifier for
ensemble learning.

C. ENSEMBLE LEARNING ADABOOST
1) WEAKLY LEARNABLE THEOREM
AdaBoost originated from an important theoretical issue
discussed in [Kearns & Valiant, STOC ’89]: ‘‘weakly
learnable’’?= ‘‘strongly learnable?’’ For the Probably
Approximately Correct (PAC) learning theory in machine
learning. The PAC Model is defined as follows [28], [29]:
Definition 5 (Learnable or strongly learnable): Suppose

we have a polynomial algorithm that has a high probability
of obtaining a learning model with a small error, which is
called learnable or strongly learnable. The formal definition
for 0<δ, ε ≤ 0.5 is as follows:

Pr (Ex∼D [II [h (x) 6= f (x)]] < ε) ≥ 1− δ (7)

Definition 6 (Weakly learnable): Suppose we have a polyno-
mial algorithm that outputs a learning model with an error
of 0.5-1

/
p(p is the parameter of the polynomial). Then the

process is called weakly learnable.
In 1990 Schapire and Freund [29] proved the equiva-

lence of weakly learnable and strongly learnable algorithms
through constructive methods. A boosting algorithm was
then proposed, which can combine several weak learning
algorithms that are slightly better than random guessing into
a high-precision strong learning algorithm as an alternative
to searching directly for a strong learning algorithm that
is difficult to find under normal circumstances. This is the
famous weakly learnable theorem.

2) ADABOOST (ADAPTIVE BOOSTING)
Ensemble learning can achieve better generalization perfor-
mance than a single learner by combining multiple weak
learners. At present, ensemble learning uses bagging and
boosting methods. A random forest is a popular type of
bagging method. In the boosting algorithm family, AdaBoost
is currently the most successful.

AdaBoost [28] is an iterative process that adaptively
changes the distribution of training samples, allowing sub-
sequent base classifiers to focus on previously intractable
samples. The core idea is: given the training set, initialize
the sample distribution, call the weak learning algorithm to
obtain the base classifier, and then adjust the weight of the
training samples according to the error rate of the classifier,
so as to reduce the weight of the correctly classified samples
and increase the weight of the incorrectly classified samples.
Based on the new sample distribution, after a number of iter-
ations, a set of complementary base classifiers are obtained
and linearly combined into a strong classifier to improve
the accuracy and stability of the ensemble classifier. The
algorithm classification model is shown in Figure 3, and the
specific pseudo-code is shown in algorithm 2.

IV. PROPOSED ALGORITHM
The AdaBoost algorithm continuously generates weak clas-
sifiers through a series of iterations, but does not include pri-
vacy protection. If there are two data setsD1 andD2, and their
data differ by only one record, the difference in classification
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FIGURE 3. AdaBoost classification model. Dt represents the sample distribution of the data set after
each iteration, and αt represents the weight coefficient of the base classifier.

Algorithm 2 AdaBoost
Input: D = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}; base learn-
ing algorithm, L; number of iterations, T .
1: Initialize weight distribution: D1 (x) = 1

n ;
2: for t = 1 to T do
3: Call algorithm L to generate base classifier:

gt = L (D,Dt) ;
4: Estimate the error of gt : τt = Px∼Dt (gt (x) 6= yi);
5: if τt > 0.5 then
6: break;
7: end if
8: Weight of gt : αt = 1/2 ln

(
1−τt/τt

)
;

9: Update sample distribution:

Dt+1 (x) =
Dt (x)
Zt
×

{
exp (−αt) , if gt (x) = yi
exp (αt) , if gt (x) 6= yi

=
Dt (x) exp (−αtyigt (x))

Zt
where Zt is the normalization factor to ensure that
Dt+1 is a distribution.

10: end for
Output: G (x) = sign

(∑T
t=1 αtgt (x)

)

results may be reflected on each weak classifier. Therefore,
privacy protection of the entire AdaBoost algorithm results in
the need to add differential privacy protection noise for each
weak classifier.

Assuming that the data provider can perform a series of
classification analysis on the data and has full access to the
entire data set, it can add noise in the classifier generation
process. At this time, in the interface mode, data mining
workers can only obtain the counting function results after
differential privacy protection, and construct their own clas-
sifiers. Therefore, it is necessary to add differential privacy
noise in the construction of weak classifiers. However, for the
AdaBoost algorithm, the differential privacy noise is added to
the weak classifier generation process, which will bring the
noise to the subsequent weak classifier construction, causing
the noise to be continuously superimposed, and ultimately
affecting the quality of the generated results.

Therefore, in order not to cause large deviations in the final
classification results, the algorithm in this paper adopts full
access mode to protect the data set. Add the corresponding
noise after the base classifier is constructed, and calculate the
corresponding maximum data set weight value when gener-
ating each base classifier. After obtaining the base classifier,
it is necessary to add differential privacy noise in combination
with the weight value to obtain the classification result with
differential privacy.

A. ALGORITHM FRAMEWORK
1) ALGORITHM MODEL
Given the number of iterations of the algorithm is T and the
total privacy budget is εp, each iteration generates a new base
classifier. The construction process of the algorithm model is
as follows. The specific pseudo-code is shown in algorithm
3.

Step 1: Initialize the weight distribution of data samples.
Step 2: Recursively use the bootstrap sampling strategy

and call Algorithm 1 to generate the base classifier.
Step 3: Calculate the proportion of misclassified data, and

calculate the corresponding weight coefficient of the base
classifier in the overall classifier according to the error rate.

Step 4: Update the weight distribution of the data samples
according to the error rate.

Step 5: According to the weight distribution, find the
maximum weight value as the sensitivity, and calculate the
noise value required by each leaf node according to the noise
formula, add it into the base classifier, and get the base
classifier that satisfies the differential privacy protection.

Step 6:Determinewhether the current number of iterations
has satisfied the given value, and terminate if it is satisfied,
otherwise perform the next step.

Step 7: Return to Step 2 and continue to build a new base
classifier.

Step 8: The obtained base classifiers are linearly combined
to obtain a final integrated classifier that meets differential
privacy protection.

The strong classifier generated through the above steps is
an integrated classification algorithm model with differential
privacy protection, which can be directly distributed to data
mining workers without worrying about privacy leakage.
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Assume that the initial training set isD = (x2, y2) {(x1, y1) ,
, . . . , (xn, xn)}, with attribute collection,3, and class label

set, Y . The size of the data set is n. The initial sample weight
distribution D1 =

(
ω1,1, . . . , ω1,i, . . . , ω1,n

)
, ω1,i = 1

/
n,

i = 1, . . . , n.

Algorithm 3 CART-DPsAdaBoost
Input: D = {(x1, y1) , (x2, y2) , · · ·, (xn, yn)}; xi ∈ 3; yi ∈
{−1, 1}; number of iterations, T ; Privacy budget, εp.
Output: εp-differential privacy classifier:
G (x) =

{
ĝ1 (x) , ĝ2 (x) , · · ·, ĝt (x)

}
;

1: Initialize weights: D1 (i) = 1/
n, i ∈ [1, n];

2: Error function: E (g (x) , y, i) = exp (−yig (xi));
3: εc =

εp
T − log (αt);

4: for t = 1 to T do
5: Select Dt of size |D| from D by bootstrap sampling;
6: Call algorithm 3 to generate base classifier gt (x)

gt (x) = Build_DPTree (D (i) ,3, εc, d)
7: Calculate the error rate of gt (x):

τt =
∑
ωt (i) I [gt (xi) 6= yi] , i ∈ [1, n] ;

8: if τt > 0.5 then
9: break
10: end if
11: Weight coefficient of gt (x): αt = 1

/
2 ln

(
1− τt

/
τt
)
;

12: Update weights distribution:

Dt+1 (i) =
Dt (i) exp (−αtyigt (xi))

Zt
where Zt is the normalization factor

Zt =
n∑
i=1

Dt (i) exp (−αtyigt (xi))

13: Add Laplace differential privacy noise to gt (x)

ĝt (x) = gt (x)+ Laplace
(
maxωt,i (T logαt)

εc

)
14: end for
15: return G (x) = sign

(∑T
t=1 αt ĝt (x)

)
The algorithm protects private information through the

Laplace noise mechanism. The amount of noise is controlled
by the privacy budget parameter ε. The reasonable allocation
of privacy budgets allows the added noise to protect user
privacy without reducing the effectiveness of the data due to
excessive noise. Since each prediction is obtained from a leaf
node, Laplace noise is added to the leaf node after the weak
classifier is generated. When calculating the level of noise,
the weight value ωi of each record needs to be considered
so that the function sensitivity dynamically changes in the
differential privacy noise calculation formula. According to
the sensitivity formula, S (f ) = max (ωi) is obtained, and
the Laplace noise formula is converted into K (D) = f (x)+(
Laplace

(
max (ωi)

/
ε
))d , and finally the class label and the

total number of records with noise of each leaf node are
obtained [31], [33]. The utility function of the exponential

FIGURE 4. Improved algorithm model.

mechanism in the algorithm uses the Gini index, which is the
division criterion in the CART algorithm.

1Gini (3) = Gini (D)− Gini3 (D)

qGini (R,3) = −
∑
i∈3

R3i

1−
∑
y∈Y

(
R3i,y
R3i

)2
 (8)

where Ry means that a record belongs to label y, R3i,y means
that a record values 3i on feature 3, and its label is y.
Minimizing the Gini index is equivalent to maximizing

Gini3 (D) with a sensitivity of 1qGini = 2. Compared with
an information gain sensitivity of log (|D| + 1)+ 1

/
ln 2, and

the lower sensitivity of the Gini index as the scoring function,
this improves the efficiency of the exponential mechanism
[2], [36]. In this paper, the number of iterations is specified
in advance, and the weight value αt of each weak classifier is
considered in the privacy budget allocation, that is, the budget
assigned to each weak classifier is εp

/
T − log (αt).

2) CLASSIFICATION
Inmachine learningmodel training, the complex and accurate
weak classifier is easy to overfit after integration, which leads
to the decrease of the accuracy of prediction.Considering the
influence of tree depth on privacy budget allocation and time
efficiency, the weak classifier with lowmodel complexity and
certain accuracy will have better classification results and
time cost after integration. Adaboost does not need such a
precise decision tree. The simplest way is to set the depth of
the tree to 1, that is, each tree is composed of a split attribute
and two leaf nodes. The algorithm’s classifier model is shown
in Figure 4.

The above algorithm generates an ensemble classifier
G (x) under εp-differential privacy, and the process of clas-
sifying the test set is shown in Algorithm 4.

For each record in the new sample set, apply each base
classifier in the final ensemble model to classify and predict
it. The classification result obtained by each base classifier
is multiplied by the corresponding weight, and then a lin-
ear combination is performed to obtain the final classifica-
tion result. The classification results of all records are then
output. The algorithm model performs well on large data
sets, can process high-dimensional data, and has fast training
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Algorithm 4 Classify New Samples

Input: Test set, M̂ ; εp-differential privacy classifier G (x).

Output: Classification result Y
(
M̂
)
.

1: repeat
2: For each sample to be classified
3: for i = 1 to m do
4: From the current root node to the leaf node;
5: Calculate the product of the current tree

prediction result and the tree weight;
6: Linear combination: sign

(∑T
t=1 αt ĝt (x)

)
7: end for
8: until Arrival leaf node
9:return Output result Y

(
M̂
)
of sample set M̂

speed, which realizes effective prediction of large-scale, high-
dimensional data classification.

B. ALGORITHM PERFORMANCE
1) PRIVACY
In this paper, in the final classifier generation process, the
number of iterations of the algorithm is defined in advance,
so the CART-DPsAdaBoost algorithm adopts a hierarchical
equalization method. Firstly, the total privacy budget εp is
evenly distributed to each tree εc = εp

/
T − log (αt). The

sample set of each tree based on bootstrap sampling has
an intersection. According to differential privacy Lemma 1,
the total privacy budget is a superposition of the budget
consumed by each tree. For each tree, the privacy budget
is evenly distributed to each layer ε̄ = εc

/
(d + 1), and

the samples of each node in each layer are disjoint subsets.
According to differential privacy Lemma 2, the budget of
each layer is not superimposed, that is, the budget of each
node is ε̄ = εc

/
(d + 1). We use half ε̄

/
2 of each node budget

to estimate the number of node instances and decide whether
the node meets the termination condition. If so, the node is
designated as a leaf node and we use the other half of the
budget to determine the leaf node class count. If the current
node has n continuous attributes, the budget of the other half
is divided into n + 1, which is used to select the splitting
point of each continuous attribute. The budget consumed by
the exponential mechanism is ¯̄ε = ε̄

/
2 (n+ 1) each time.

According to Lemma 1, the budget consumed by the multiple
exponential mechanisms is a superposition of each time.
The total privacy budget consumed by the algorithm is not
greater than εp, satisfying ε- differential privacy protection.
The proof is as follows:

Proof: Assume adjacent data setsD andD′,
∣∣D1D′ = 1

∣∣,
M (D) and M

(
D′
)
respectively represent the output of the

random algorithm, the total privacy budget is εp, the weight
of the base classifier gt (x) is αt , and the number of base
classifiers is T . For each continuous attribute, there are ri
division methods, and the probability that ri is selected by

the exponential mechanism is:

p (ri) =
E (D, ri)∑

ri∈Range E (D, ri)
(9)

where E (D, ri) represents exp
(
ε̂q (D, ri)

/
21q

)
and p (ri) is

a weight, then the continuous attribute partitioning scheme
ri participates in the global selection with a probability pro-
portional to p (ri)E (D, ri). The Gini index is used to divide
the discrete attributes. If the attribute 3′ has v values, there
are (2v − 2)

/
2 divided subsets, and the calculated Gini index

values for attribute 3′ are:

Gini
(
D,3′

)
=
N1

N
Gini (D1)+

N2

N
Gini (D2) (10)

where N1 and N2 are disjoint subsets, and ε̂ =

εc
/(
(d + 1)

∣∣(2v − 2)
/
2
∣∣) is obtained according to differen-

tial privacy Lemma 1 The differential privacy budget for the
Gini index can be converted according to Lemma 2:

prob (M (D) = ri)
prob (M (D′) = ri)

=

∏∣∣∣ 2v−22

∣∣∣
i=1 p (ri)E (D, ri)∏∣∣∣ 2v−22

∣∣∣
i=1 p (ri)E (D′, ri)

=

∏∣∣∣ 2v−22

∣∣∣
i=1

exp
(
ε̂q(D,ri)
21q

)
∑

i∈Range
exp

(
ε̂q(D,ri)
21q

) exp ( ε̂q(D,ri)21q

)
∏∣∣∣ 2v−22

∣∣∣
i=1

exp
(
ε̂q(D′,ri)

21q

)
∑

ri∈Range
exp

(
ε̂q(D′,ri)

21q

) exp ( ε̂q(D′,ri)21q

)

=

∏∣∣∣ 2v−22

∣∣∣
i=1

(
exp

(
ε̂q(D,ri)
21q

))2
(
exp

(
ε̂q(D′,ri)
21q

))2 ·
∑

ri∈Range
exp

(
ε̂q(D′,ri)

21q

)
∑

ri∈Range
exp

(
ε̂q(D,ri)
21q

)
=

∏∣∣∣ 2v−22

∣∣∣
i=1

(
exp

(
ε̂
(
q (D, ri)− q

(
D′, ri

))
21q

))2

×

∑
ri∈Range

exp
(
−ε̂(q(D,ri)−q(D′,ri))

21q

)
exp

(
ε̂q(D,ri)
21q

)
∑

ri∈Range
exp

(
ε̂q(D,ri)
21q

)

≤

∏∣∣∣ 2v−22

∣∣∣
i=1

(
e
ε̂
2

)2 e−ε̂2 ∑
ri∈Range

exp
(
ε̂q(D,ri)
21q

)
∑

ri∈Range
exp

(
ε̂q(D,ri)
21q

)
=

∏∣∣∣ 2v−22

∣∣∣
i=1

e
ε̂
2

=

∏∣∣∣ 2v−22

∣∣∣
i=1

e
εc

2(d+1)
∣∣∣ 2v−22

∣∣∣
= e

εc
d+1 (11)

According to Lemma 2, the degree of differential privacy
protection for each tree is:∏|d+1|

i=1
e
εc
d+1 = eεc (12)
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Therefore, εc-differential privacy protection is provided.
For the ensemble classification model G (x), the total dif-

ferential privacy budget satisfies:

Prob (M (D) = R)
Prob (M (D′) = R)

≤

∏T
i=1 αt exp

(
q(D,ri)
21q

)
·
( εp
T − logαt

)
∏T

i=1 αt exp
(
q(D′,ri)
21q

)
·
( εp
T − logαt

)
=

∏T

i=1

(
αt exp

(εp
T
− logαt

)
·
(∣∣q (D, ri)− q (D′, ri)∣∣))

= e
∑T

i=1

(
logαt+

εp
T −logαt

)
= eεp (13)

Therefore, G (x) provides εp- differential privacy.

2) APPLICABILITY
The CART decision tree can handle both continuous and
discrete attributes, and can eliminate the influence of the
number of feature values. In this paper, the exponential mech-
anism is used to deal with continuous attributes, and the Gini
index deals with discrete attributes, so that the algorithm can
process both continuous attribute data and discrete attribute
data, and ensures the reasonable use of privacy budget.

The introduction of two types of randomness schemes
makes the ensemble model under differential privacy protec-
tion still have good performance, and to a certain extent solves
the problems caused by large-scale, high-

dimensional data classification. This is because in the train-
ing process of the algorithm, the training samples of each tree
are obtained through bootstrap sampling. As the training sets
are different, the decision tree models generated are different.
The random subspace algorithm is introduced when selecting
the best split feature, so that the decision tree model generated
by the same training set may also be different. The diversity
of the final integrated model comes not only from the sample
perturbation in the training set, but also from the feature
perturbation, which makes the generalization performance of
the model can be further improved by the difference between
the base classifiers, and the applicability of the algorithm is
better.

3) PERFORMANCE EVALUATION METHOD
F-Measure is a commonly used index used to evaluate the
performance of the classifier. It comprehensively measures
the accuracy and recall rate of the model, and the value
range is [0, 1]. Consider a two-category problem where the
outcome can be either positive or negative [32], [37]. If the
prediction is positive and the real outcome is positive, this
is a true positive (TP). If the prediction is positive and the
observed result is negative, this is a false positive (FP). A false
negative (FN) occurs when the prediction is negative but the
result is positive. The F-measure provides a measurement that
combines both precision and recall. The evaluation indicators

TABLE 2. Experimental data set.

are defined as follows:

Precision =
TP

TP+ FP
(14)

Recall =
TP

TP+ FN
(15)

F −Measure =

(
1+ β2

)
· Pr ecision · Recall

β2 · Pr ecision+ Recall
(16)

where β is a coefficient that adjusts the relative importance
of Precision and Recall. When the value of β is 1, F-Measure
is defined as F1Score, and the larger the value of F1Score,
the better the algorithm availability.

In the experiment, the Receiver Operating Characteristic
(ROC) Area Under the Curve (AUC) is also used to evaluate
the generalization performance of the classifier [35]. The
ROC curve is drawn from the ratio between the TP and FP
calculated from the confusion matrix. The value of the AUC
is in the range [0, 1]. Higher values of the AUC indicate better
generalization performance of the classifier.

C. SOME OPTIMIZATION OF THE ALGORITHM
Differential privacy noise is related to the privacy budget
and function sensitivity. For adjacent data sets D and D′,
the sensitivity of the counting function is always 1. However,
considering the change in the weight value, the sensitivity
becomes a statistical function of the weight, and the maxi-
mum weight value must be evaluated in each iteration. In the
AdaBoost algorithm, if a record is classified incorrectly in
the current iteration, its weight value is increased in the next
iteration. For noise records (also called outliers), the weight
will become exceptionally high after several iterations, which
makes the added differential privacy noise excessive, and
reduces the classification performance. Therefore, it is neces-
sary to perform some form of outlier detection. This is done
by means of a threshold parameter θ . When the record weight
is greater than θ . in the current iteration, the sample weight is
set to 0. In step 12 of Algorithm 2, the formula for calculating
the weight becomes:

Dt+1 (i)=


Dt (i) exp (−αtyigt (xi))

zt
, if Dt (i)≤θ

0, ifDt (i) > θ

(17)

2) For an unbalanced data set, the model is trained by
changing the distribution of the unbalanced data to obtain a
new sample set with a more balanced ratio [22], [39], [40].
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FIGURE 5. Classification accuracy of CART-DPsAdaBoost under different
conditions in 3 data sets.

Literature [38] proposed a new Random Balance sampling-
AdaBoost (RBS-AdaBoost) algorithm, which can randomly
change the unbalanced rate and distribution of unbalanced
data to conduct classification and learning on the generated
data sets.

V. EXPERIMENTAL SCHEME AND RESULT ANALYSIS
A. EXPERIMENTAL DATASET
The classifier training, testing, and data preprocessing in this
article are all implemented in Pycharm based on Python 3.7.
The Adult Data Set from the UCI Machine Learning Repos-
itory was used to help design the algorithm control experi-

FIGURE 6. The relationship between sample size and model accuracy.

ments. The validity of the algorithm was verified using the
Census Income large-scale data set. Finally, Kaggle Data’s
Digit Recognizer dataset was used to further validate the
effectiveness of the algorithm in dealing with large-scale,
high-dimensional data classification problems. Table 2 shows
the format of the three data sets.

The Adult Data Set contains 6 continuous attributes
and 8 attributes. The category attribute is income level,
and the category values are ‘‘<= 50K’’ ‘‘>50K’’. There
are 32,561 tuples (no missing values) in the data set,
70% of which were used as the training set and 30% as
the test set. Census Income has 41 attributes, including
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FIGURE 7. The algorithm model evaluates part of the diagram.

FIGURE 8. Comparison of CART-DPsAdaBoost with AdaBoost and
DP-AdaBoost on the adult data set.

8 numerical attributes, 33 discrete attributes, and a total
of 199,523 records. Digit Recognizer’s 42,000 records form
a large-scale, high-dimensional dataset concerned with iden-
tifying handwritten numbers. It contains 784 attributes with
10 label categories as shown in Table 3 below. Through each
iteration, one of the label classes is selected as a positive
sample, and the rest are merged into a negative sample.
A down-sampling strategy is adopted, and the average value
is used as the final result.

B. EXPERIMENTAL DESIGN
To test the validity and performance of the CART-
DPsAdaBoost algorithm, we conducted several sets of exper-
iments: 1.) The difference between added noise and no added
noise; 2.) The impact of the privacy budget on the accuracy
of the classifier; 3.) The relationship between the

size of the training set and the accuracy of the classi-
fication; 4.) The evaluation of the overall performance of
the algorithm; 5.) A comparison against the DP-AdaBoost
algorithm [31]. Apart from the second experiment, the total
privacy budget is ε = 1, and the number of features randomly
selected by nodes in the random subspace algorithm is k = 5.
In order to evaluate the impact of the privacy protection

strategy on the data classification performance of the algo-
rithm, a Gini index-based single-layer decision tree algorithm
is used on the data set, and its level of accuracy is taken as a

baseline. Then multiple sets of experiments are run. Since the
algorithm introduces two kinds of randomness and the prob-
ability of adding noise is done by the Laplace mechanism,
the values of n Laplace noise levels are averaged to ensure
differential privacy (n = 100 in this experiment). Finally,
each group of experiments was performed 5 times, with the
average value taken as the final result.

C. ANALYSIS OF EXPERIMENTAL
1) EXPERIMENT
As shown in Fig. 5(a-c), we set ε = 0.05, 0.1, 0.25, 0.5,
0.75, 1, and took the accuracy of the CART stump classifier
as the baseline to compare the results of the classification
models with and without noise on the three data sets. When
the value of ε is small, the accuracy of the ensemble classifier
is low. As the value of ε increases, the classification accuracy
rate gradually increases. This is because the larger the degree
privacy budget ε, the less noise is added, and so the smaller
the impact on the availability of data, but the lower the of
privacy protection. In Fig. 5(a), it can be seen from the first
inflection point on the curve that about 10 base classifiers
are sufficient to essentially reach the optimal model, and
the accuracy rate is stable after about 30 base classifiers, at
the second inflection point. It can be seen from the experiment
that when ε = 1, T = 51, the accuracy of the model on the
Adult Data Set reaches a peak of 0.8156953503050705.

In the Census Income large-scale dataset, the model stabi-
lized after about 40 base classifiers. The peak parameter
values are ε = 1, T = 91, when the model accuracy rate
is 0.8629021667760998. For the Digit Recognizer dataset,
due to the larger amount of data and higher dimensionality,
more privacy budgets are allocated. While protecting data
privacy, the algorithm performs better on large-scale, high-
dimensional data sets, indicating that the algorithm has good
data scalability.

Fig. 6(a-c) show the relationship between dataset size and
model accuracy. The accuracy of the CART-DPsAdaBoost
algorithm with differential privacy increases with the size of
the training set, and rises from 50% to 81% in the Adult
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TABLE 3. Category label for digit recognizer datasets.

TABLE 4. How Precision, Recall, and F1Scores vary with ε.

TABLE 5. AUC performance comparison.

Data Set. The larger the privacy budget, the closer the accu-
racy of the model is to the accuracy of the unnoised model,
and the 800 sample sets have reached the upper limit of
the model. For the large-scale dataset of Census Income,
this rises from 35% to about 85%. Due to the increase in
the number of features, the model finds it easier to learn,
and by about 400 samples it has reached the limit of the
model. On the Digit Recognizer high-dimensional dataset,
the T = 10 accuracy rate is 0.944015444015444, and the
model size stabilizes when the sample size reaches about 400.
This experiment again validates the classification effective-
ness of the algorithm for large-scale, high-dimensional data
sets. With experimental settings of ε = 0.05, 0.1, 0.25, 0.5,
0.75, 1, T = 10, the proposed algorithm is compared with
the DP-AdaBoost algorithm, where the data under the same
conditions of the DP-AdaBoost algorithm are provided by
literature [31]. Under different privacy budgets, the experi-
mental results of the two models are shown in Fig. 8.

2) EVALUATION
Table 4 and Table 5 show the performance of the algorithm
at different data protection levels across the three data sets.
The model was evaluated by the value of the F1Score and
the value of the AUC of the ROC curve. In Table 4, as the
privacy budget increases, the availability of the algorithm
improves. Of course, the limitation of the classification and

regression tree height and the probability of adding noise lead
to noise mean deviation, and there is a phenomenon that the
F1Scorefluctuates when the privacy protection level is raised.
In the Adult Data Set in Table 4, after ε = 0.25, the F1Score
stabilizes, and Fig. 7(a) shows the curve of precision, recall,
and F1Score as a function of ε. In the Census Income and
Digit Recognizer datasets, after ε = 0.5, the F1Score tends
to stabilize. This experiment shows that the algorithm adds
less noise in the high-dimensional dataset to make the model
performance stable and the algorithm has better usability.
As shown in Table 5, as the level of privacy protection is
higher, the generalization performance of the model gener-
ally shows better performance. The experimental results of
the Adult Data Set show that the AUC change is the most
unstable, as shown in Fig. 7(b) for the ROC at ε = 1. As the
number of features in the Adult Data Set is small, adjusting
the privacy budget causes a greater disturbance to the AUC
value. The F1Score results in Table 4 also show that the lower
the feature dimension, the greater the impact on the accuracy
of the model. Hence, the algorithm performs better on the
other two data sets that have a large sample size and high
feature dimensionality.

3) COMPARISONS
Experimental setting ε = 0.05, 0.1, 0.25, 0.5, 0.75, 1,
T = 10, compare the proposed algorithm with DP-Adaboost
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algorithm, the data under the same conditions of DP-
Adaboost algorithm is provided by literature [31].

Compared with the original AdaBoost, and DP-AdaBoost
algorithms, it can be seen that the proposed algorithm main-
tains a good classification accuracy under the differential
privacy protection strategy. In the construction of the decision
tree, part of the privacy budget is consumed in processing the
continuous attributes, but there is no need to discretize or pre-
process these attributes, which improves the efficiency of the
classification task. The accuracy of the algorithm fluctuates
within an acceptable range after the introduction of the dif-
ferential privacy policy. For the Adult Data Set, it can be
seen from Fig. 8 that when the privacy budget ε is between
0.05 and 0.25, the classification accuracy of the proposed
algorithm is lower than the DP-AdaBoost algorithm. This is
because the smaller the value of ε at this time, the larger the
amount of differential privacy noise that is added to the leaf
node instances and classes by the AdaBoost algorithm after
the weak classifier is generated. Also, during the iterative
process, the quality of the generated results is finally affected.

After ε = 0.25, with the increase of the privacy budget,
the introduction of two types of randomness schemes, and the
use of CART boosting allows the advantages of the algorithm
to become more apparent. When ε ≥ 0.5 the algorithm
maintains a better classification accuracy. And the algorithm
reduces the complexity of the model while avoiding the effect
of the depth of the tree and the privacy budget allocation
on the hierarchical equalization strategy. The reduction in
the number of nodes improves the allocation of the privacy
budget, the required noise is sharply reduced, and has little
impact on the accuracy of the final classification model.

VI. CONCLUSION
Based on existing decision tree algorithms, differential
privacy is applied to an ensemble learning process. The
AdaBoost classification algorithm under differential privacy
protection was studied with the aim of enabling the protection
of private information and improving the classification accu-
racy of the model. The algorithm used an improved CART
classification tree to introduce two types of random schemes:
sample perturbation and feature perturbation, in the process
of constructing the base learner. In addition, our experiments
showed that when using the exponential mechanism and the
Gini index to deal with continuous attributes, and using dis-
crete attributes to construct the CART decision tree, the clas-
sification accuracy rate is not significantly reduced. Also,
the utilization rate of the privacy protection budget and the
efficiency of algorithm execution are improved, so that it can
effectively deal with largescale and high-dimensional data
classification problems. In addition, the proposed approach
is well suited, due to its scalability, to being applied in a big
data environment.

The methods proposed in this paper achieved good results.
However, there are still some shortcomings: 1.) The privacy
protection level is based on a quantitative analysis of the
privacy budget ε, but there is no agreed standard for setting its

level in practical algorithms and applications. 2.) Differential
privacy usually assumes that the records in the data set are
independent of each other, but in practice, the records may be
related, which increases the risk of privacy leakage. In future
work, the algorithm will be further improved to optimize
generalization performance. At the same time, the AdaBoost
classification model will be generated by each sample set and
integrated under differential privacy constraints. The classifi-
cation accuracy and generalization performance are studied
in the final fusion mode. In addition, a single privacy policy
cannot meet the needs of personalized differential privacy.
How to evaluate the level of privacy protection for different
users is another task for future work.

Building upon the research described in this paper, we will
design a variety of machine learning algorithms based on
differential privacy, and then propose corresponding machine
learning privacy protection data release mutual feed- back
mechanisms to solve some important theoretical issues in this
area. Also, we plan to develop a set of analysis and research
methods for privacy protection data model publishing, appli-
cable to specific machine learning algorithms. We hope that
these results will provide important theoretical guidance and
technical support for the engineering and implementation of
privacy protection in data distribution systems.
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