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ABSTRACT Ethereum is a kind of blockchain platform where developers may develop and run programs
called smart contracts. It inherently relies on gas consumption within a specified allowance to constrain
code execution, making every instruction along an execution path to be a location for raising an exception.
In this paper, we present GasFuzzer, the first work in exploring the effects of gas allowance manipulation
to expose gas-oriented exception security vulnerabilities. GasFuzzer consists of two phases. The first
phase introduces a gas-greedy strategy to favor transactions having higher gas consumption for mutation
to obtain test transactions with different gas consumptions. The second phase introduces a novel notion
of fractional gas consumption coverage and a novel gas-leveling strategy. It applies them to mutate the
gas allowances of some of these transactions resulting in the highest gas consumptions produced in the
first phase followed by applying these allowance-mutated transactions together with those which remained
non-mutated to fuzz test the smart contract. We report an evaluation of GasFuzzer via an experiment on
3170 real-world smart contracts deployed on the public Ethereum Blockchain between October 2017 and
July 2019. The findings show that GasFuzzer with gas-greedy strategy can detect more Exceptions Disorder
kind of security vulnerabilities (7 more cases) than the previous state-of-the-art black-box fuzzer, and
GasFuzzer with gas-leveling strategy and gas coverage criterion can detect 6 additional cases of Exceptions
Disorder security vulnerabilities, which is significant.

INDEX TERMS Blockchain, Ethereum, smart contract, fuzzing, software testing, Fuzzer, security
vulnerability, gas consumption, atomicity violation, vulnerability triggering.

I. INTRODUCTION
Since the inception of Bitcoin, the first cryptocurrency that
took advantage of decentralization, both the industry and
academia are taking interest in the blockchain technology
as it was to reach a market capitalization of more than a
quarter trillionUSD [5] at the time of submission of this work.
Ethereum is another major decentralized platform, which not
only allows transactions with tokens but also offers storage
and execution of the code, known as smart contracts. Smart
contracts can be written in a high-level procedural language
named Solidity. In addition to Solidity, other languages such
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as Serpent and LLL are also available, however these have
not been as popular in comparison to solidity. In this work,
we will use the term smart contract exclusively for an
Ethereum smart contract (written in Solidity for illustration
purpose) and blockchain for an Ethereum blockchain.

A key feature of Ethereum is that it uses a mechanism of
gas allowance to constrain each external call to any smart
contract (i.e., a transaction in Ethereum terminology) to
execute within a given gas allowance, where each execution
of any instruction consumes a certain amount of gas.
This inherent reliance on gas consumption and allowance
to execute code makes the execution of smart contracts
different from the execution of traditional programs (e.g.,
Java programs) on traditional platforms in terms of control
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flow, where in executing a smart contract, any executing
instruction can be a code location to raise an exception.

In this paper, we investigate whether gas consumption
and allowance may play an effective role in exposing
exception-oriented security vulnerabilities in smart contracts.
Transactions encoded with different input parameters may
require different amounts of gas to be executed. Our insight
is that by controlling the amount of gas allowance of a
transaction and manipulating the parameter values of the
function associated with a transaction when the transaction
is issued, we can indirectly select not only a particular
function but also a particular statement in the function (inside
the function call sequence induced by the transaction) to
raise the first out-of-gas exception. This allows a new kind
of testing technique to be developed to (fuzz) test how
well those gas-oriented exceptions are handled in selected
statements and functions and to what extent the exceptions
are back-propagated to the corresponding callers along the
function call sequence.

In this paper, we present GasFuzzer, which is the first
work to our knowledge that manipulates gas allowance of
a transaction to exploit security vulnerabilities through the
dimension of gas consumption and allowance. We also note
that the idea of gas allowancemanipulation is general, and it is
orthogonal to techniques that impose no particular constraints
on gas allowance and gas consumption.

The basic idea of GasFuzzer is as follows: Like typical
fuzzers [1], [28], GasFuzzer starts with a pool of seed
transactions. It assigns the same amount of energy to
every such transaction. Given a transaction in a seed pool
of transactions, GasFuzzer mutates it with two original
strategies: gas-greedy and gas-leveling.
In the gas-greedy strategy, the input parameters of

the given transaction are mutated to produce a mutated
transaction. The gas consumption of the mutated transaction
is collected. If the mutated transaction consumes more gas
than the given transaction, it is placed into the seed pool
for potential further mutation and the energy of the given
transaction is reduced according to a power law.

In the gas-leveling strategy, the seed pool is firstly filled
with a small number of transactions consuming most gas
generated by the gas-greedy strategy. They form a sequence
of transactions. From the sequence, transactions are randomly
picked for mutation. For every picked transaction, GasFuzzer
divides the gas consumption of the picked transaction into a
number of intervals, mutates the gas allowance of the picked
transaction to fall within a randomly selected interval, and
substitutes the original picked transaction by the mutated
transaction. It applies the resultant sequence of transactions
to test the corresponding smart contract. GasFuzzer also
includes a novel coverage-based test data adequacy criterion
(referred to as the gas coverage criterion) to terminate
fuzz testing: It repeats the process until the overall coverage
on the set of the above-mentioned gas allowance intervals
of these picked transactions has reached a predefined
threshold.

In the experiment, we collected the a set of 3170
real-world smart contracts from Etherscan [9] deployed
between Oct 2017 and Jul 2019 as our smart contract
dataset. The empirical results show that, the gas-greedy
strategy detects 28% more Exceptions Disorder security
vulnerabilities than ContractFuzzer [17] (the current
state-of-the-art in black-box fuzzing). It was also found that
both techniques had similar security vulnerability detection
ability on other kinds of security vulnerabilities detectable by
the full set of ContractFuzzer’s test oracles in the experiment.
Furthermore, the gas-leveling strategy detected 6 additional
smart contracts incurring Exceptions Disorder vulnerability
(additional increase of 24% over ContractFuzzer), which
is significant because they are real bugs. We also observe
that some gas-related security vulnerabilities can only be
detected under certain pre-conditions, which we will report
in Section V.

This work makes the following contributions:
1. This paper is the first work that proposes gas allowance

and consumption as a guiding dimension to provide
feedback for smart contract fuzzing.

2. It presents a novel technique, called GasFuzzer,
to realize the above proposal and shows its feasibility
by implementing it as a tool. GasFuzzer also includes a
novel gas-leveling strategy and a novel coverage-based
test data adequacy criterion.

3. It presents the first empirical study that compares
black-box fuzzing (ContractFuzzer) and gas
consumption driven fuzzing (GasFuzzer) for security
vulnerability detection on Ethereum smart contracts.
It shows the effectiveness of GasFuzzer.

The rest of this paper is organized as follows. Section II
introduces a running example while section III provides a
background on EVM, smart contracts, gas architecture and
fuzz testing. Section IV is an overview of ContractFuzzer.
Section V presents our proposed method, GasFuzzer which
is built on top of ContractFuzzer. We present our experiments
and results in Section VI. Related work is discussed in
Section VII and finally, Section VIII concludes this work.

II. RUNNING EXAMPLE
A simplified scenario of interactions between two smart
contracts tokenHolder and txManager has been presented
in Fig. 1. The function receiveToken() receives an unsigned
integer t as input and updates a storage variable token.
receiveToken() also uses the address m of contract
txManager to call the function manageTx() that increments
the storage variable tx by 1 to maintain its transaction
count. Unlike a variable labeled as ‘‘memory’’, a storage
variable in Ethereum will cause the storage area of the
blockchain to permanently keep the value assigned to
that variable, provided that the transaction is executed
successfully. In Ethereum, owing to the need for blockchain
space to keep a value for a storage variable in a smart
contract, the gas consumptions to keep different values
may not be identical. For instance, suppose that the smart
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TABLE 1. Gas consumption of tokenHolder.receiveToken(t).

FIGURE 1. An exemplified smart contract written in Solidity.

contracts shown in Fig. 1 are newly deployed on a blockchain.
Table 1 shows the gas consumption (i.e., transaction cost)
of each transaction (i.e., each call) in the calling sequence
to receiveToken(t) with t = 0, 7, 6, 0, 4, 7 and 3. The gas
allowance provided for each transaction is listed in the second
column of Table 1. Considering the first five transactions,
by calling receiveToken(0), token is set to 0 in the 1st
and 4th calls, and the gas consumptions of these function
calls are considerably less than invoking the same function
with a non-zero parameter. On the other hand, updating the
value of the storage variable from zero to non-zero consumes
more gas than all the other cases, e.g., receiveToken(7) and
receiveToken (4).
When a transaction is issued to a blockchain for execution,

the transaction must come with a gas allowance that
implicitly constrains the total number of execution steps
allowed to complete the function call. The transaction can
only be completed before exhausting this gas allowance.

The last two rows in Table 1 summarize transactions where
their gas allowances are less than those of the first five
transactions. receiveToken(7) and receiveToken(3) are
allowed with gas limits of 35,000 and 20,000 respectively.
Similar to the transaction receiveToken(6), the full
execution cost for receiveToken(7) should also be 35,256.
However, this transaction was only allowed to spend
35,000 units of gas to execute. As such, not every instruction
can be completed: the value of token variable in tokenHolder
is updated from 4 to 7, but the value of tx remains 5 without
any exception being reported. If the gas allowance is further
reduced to 20,000 units with transaction receiveToken(3),
no variable in these two contracts is updated.

The reason for the first case in the last paragraph is that the
statement tx= tx+ 1; has an insufficient gas allowance to be
executed, and thus, the function call on manageTx() aborts
the update of tx and results in an exception. Nonetheless,
its calling function (i.e., receiveToken()) neither catches
the exception nor determines whether the effect of calling
manageTx() has been properly in place. It goes on
completing its execution. Therefore, the state of the smart
contract becomes inconsistent and the transaction is marked
as successful. In the second case in the last paragraph, the
amount of gas allowance is small enough that it even cannot
complete the update of the variable token. This type of bug
can also be viewed as a breach of the atomicity region (i.e.,
an atomicity violation that raises through an exception which
corrupts the memory state). We will use this running example
in illustrating GasFuzzer.

III. BACKGROUND
In this section, we present an overview of Ethereum. After
that, the Ethereum Virtual Machine (EVM), smart contracts,
and gas architecture of Ethereum are described. In the last
subsection, an overview of typical fuzz testing is provided.

A. ETHEREUM VIRTUAL MACHINE
The Ethereum Virtual Machine (EVM) is the platform for
all smart contracts to be deployed, maintained and executed
in a decentralized architecture. It is the only execution
environment for Ethereum smart contracts to carry out their
operations.

EVM is a clean stack-based implementation and a
light-weight execution environment. Each element on the
stack consists of 256 bits and is also referred to as
a word. EVM is responsible to handle all the state
changes that happen to the blockchain in accordance with
the predetermined execution phases and environment, e.g.
exception handling, transaction reversion and verification of
jump target locations.

EVM performs operations on the bytecode of a smart
contract after compilation and deployment on a blockchain.
It handles tasks such as running the bytecode, computing and
keeping a record of the amount of gas consumed/remaining
and halting the execution once all the gas offered has
been consumed (including but not limited to throwing
an out-of-gas exception). In case of a successful state
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transaction, all the remaining gas is returned to the caller of
the transaction. Further details can be found in [8].

B. SMART CONTRACTS
Smart contracts are programs. A simplified source code
listing for a smart contract is shown in Fig. 1. Once compiled
successfully, a smart contract’s bytecode can be deployed on
a blockchain. After a successful deployment, the bytecode of
the smart contract is visible publicly and the functions can
be invoked. Similarly, every transaction calling the public
function of the smart contract is also publicly visible.

If somehow, amalicious usermanages to execute the public
functions of a deployed smart contract in such a manner that
renders the smart contract in a state that it is not designed
to handle, unintended consequences can arise. The malicious
user may exploit such loopholes in the code to carry out
attacks such as locking all the digital tokens (e.g., ether or
other user-defined cryptocurrency, or data) inside the contract
or getting the tokens from the smart contracts which should
not happen according to the intention of the smart contract
developer.

Any smart contract deployed on a Ethereum blockchain
is immutable and its address cannot be allocated to another
smart contract. Hence, if a smart contract has to upgrade its
version to handle some issues (such as logical bugs or security
vulnerabilities), additional deployments need to take place
which increase execution costs. Forwarding the transaction
from an older version to a newer version on each transaction
received by the old smart contract, or transferring the data
from the older version to the newer version are the remedies
that are often used in such scenarios. But even after the
application of such remedies, transferring of data from older
versions to newer version remains a problem.

Effective and efficient techniques to find security
vulnerabilities before the deployment of new smart contracts
is highly desirable. In this sense, even for fuzz testing, one
should not target at having a one-size-fit-all technique to
expose higher average security vulnerability instances (or
bug locations). In Section V, we will present GasFuzzer
which targets detecting gas-related exception security
vulnerabilities.

C. THE GAS ARCHITECTURE
When initiating a transaction, the initiator (i.e., the caller
of the transaction) has to define a gas allowance to pay
for running the transaction. The EVM will deduct a certain
amount of gas from this given amount of gas allowance
after every execution step. Any transaction that exceeds
the given gas allowance will be reverted, and all the gas
consumed is transferred to a miner (if using proof-of-work
consensus protocol). A miner may choose to include or
exclude a transaction in its computational task of the required
consensus protocol. In the current state of the practice, a
transaction with a higher unit gas price has an advantage
over a transaction with a lower unit gas price to be processed
earlier, and a transaction with a very low unit gas price may
never be processed.

D. FUZZ TESTING
There are many different kinds of fuzzing techniques used
in the past. For blackbox fuzzing, random inputs are
generated to test applications without any knowledge of
the implementation of the system. In general, fuzzing is
often started by providing a small set of seed inputs and
then incrementally and randomly mutating them to generate
new inputs without referring to the application details.
An example is ContractFuzzer [17], which we will review in
Section IV.

To make the fuzz testing process program-aware, grey-box
fuzzing such as AFL [28] and AFL Fast [1] have
been proposed. Grey-box fuzzers generally follow the
methodology depicted in Fig. 2. A program is provided to the
fuzzer along with some seed inputs. Such an input is executed
on an instrumented version of the program to mutate inputs
from feedback such as whether new code-based artifacts
(e.g., new branch or new branch subsequences) have been
discovered by the applied input. These mutations can be
random or guided by heuristics such as the frequency that an
input has previously been used for mutation. The program
under test is executed on a mutated input, and if there is an
increase in path coverage, the mutated input is added to the
original input queue making it eligible for further mutation.
Harvey [27] is an example of a grey-box smart contract fuzzer
that uses input prediction to improve coverage on program
paths.

FIGURE 2. Typical workflow of grey-box fuzzer.

IV. CONTRACTFUZZER
ContractFuzzer [17] is the state-of-the-art in blackbox
fuzzing for smart contracts. It generates test inputs based on
the Application Binary Interface (ABI) of a smart contract
under test and formulates a suite of seven test oracles to detect
Gasless send, Exceptions disorder, Re-entrancy, Timestamp
dependency, Block Number Dependency, Dangerous
Delegateccall and Freezing Ether security vulnerabilities.
An instrumented version of the EVM is used to keep track
of the behavior of smart contracts over randomly generated
transactions. To support some test oracles, ContractFuzzer
also generates additional contracts when fuzz testing smart
contracts.

GasFuzzer to be presented in Section V is built
on ContractFuzzer. Therefore, we review ContractFuzzer
in greater detail. ContractFuzzer consists of two
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Algorithm 1 ContractFuzzer Algorithm
Input:
list of smart contracts to test (ci ∈ C)
Output:
tuple M < ci, vulnerability vi >
1 M = ∅
2 for each ci in C
3 while ¬ (timeout)
4 Generate a Random transaction (tj)
5 ci.Execute(tj)
6 if(vulnerability)
7 add < ci, vi > to M
8 end if
9 end while
10 end for

sub-components. One is an offline instrumented EVM and
the other is an online fuzzer. The EVM instrumentation
component is responsible for instrumenting the EVM for
enabling the fuzzer to be able to examine the execution of
smart contracts and retrieve data for the discovery of bugs.
The fuzzing process begins with exploring the bytecode of
a smart contract using static analysis and an ABI analysis.
In this phase, the data types of ABI parameters, the addresses
of the smart contracts, and signatures of functions in these
smart contracts are obtained. ContractFuzzer analyzes the
ABI signatures of the deployed smart contracts from the
blockchain. After performing these two tasks, a phase of
random input data generation begins. These generated inputs
conform to the ABI specifications. The fuzzing process of
ContractFuzzer has been shown in Algorithm 1.

What ContractFuzzer does is: For each contract c in the
pool of contracts needed to test, ContractFuzzer extracts a set
Fc of all the public functions {f1, f2, f3 . . . fm} ∈ Fc along with
the data type of each input parameter that is required by each
function. To achieve this, ContractFuzzer utilizes the ABI of
each smart contract from where all the public functions and
their input types can be identified, i.e., {i1, i2, i3 . . . in} ∈ f
where f ∈ Fc. Once all the necessary information to generate
a transaction sequence is obtained, ContractFuzzer randomly
assigns a value to each input parameter i (for i = 1 . . .n) of
f and constructs a transaction to represent an invocation of
f with these parameter values. A chain of such transactions
is then applied to the blockchain to test the set of deployed
smart contracts in the blockchain.

The instrumented version of EVM analyzes the execution
traces of all the invoked smart contracts through its
implemented test oracles. For brevity, we do not review the set
of test oracles and how they are formulated in ContractFuzzer.
Interested readers may refer to the work of Jiang et al. [17].

V. OUR PROPOSAL: GAS-AWARE FUZZING
In this section, we present GasFuzzer. It includes
two strategies to increase the effectiveness of security
vulnerability detection. In the gas-greedy strategy, GasFuzzer

tends to prioritize transactions that consume more gas than
others for input parameter mutation. The insight behind
this strategy is that if a transaction consumes more gas,
it indicates that more opcodes are likely to have been
exercised or more important blockchain-related operations
have been performed. In the gas-leveling strategy, the gas
allowance for gas-expensive transaction is mutated with the
aim of assessing whether exceptions generated due to gas
unavailability have not been properly back-propagated to
preceding function calls in the call chain. To the best of
our knowledge, we are not aware of similar strategy as our
gas-leveling strategy in the literature. Moreover, the gas
coverage criterion is the first black-box coverage criterion
proposed to facilitate gas-leveling strategy in testing smart
contracts. The remainder of this section describes these
strategies in detail.

A. GAS-GREEDY STRATEGY
An overview of how GasFuzzer fuzz-tests smart contracts
with the gas-greedy strategy is depicted in Fig. 3. In this
strategy, GasFuzzer initially generates transactions randomly,
similar to ContractFuzzer, and executes the smart contracts
under test with these transactions. These transactions are then
mutated and sent to the blockchain for execution. If these
newly generated transactions consume more gas, they are
added to the inputs queue for further possible mutations. This
process is allowed to take place until all the testing time
has been used. Finally, the execution logs are analyzed for
security vulnerability detection.

FIGURE 3. An overview of GasFuzzer’s Gas-Greedy strategy.

Algorithm 2 presents the gas-greedy strategy of GasFuzzer.
A list of smart contracts ci ∈ C under test is provided
along with a set of seed transactions ti ∈ T for each
function with priority 1 in each smart contract ci in C .
Seed prioritization factor θ (which is in the range of 0 to
1) and a threshold ρ to choose between generating a new
transaction or selecting one from the queue are also provided.
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Algorithm 2 GasFuzzer Algorithm for Gas-Greedy Strategy
Input:
list of smart contracts to test (ci ∈ C)
list of seed transactions: 〈ci, tj, gasj, priority:1〉 ∈ Q
seed prioritization factor: θ
new transaction generation threshold: ρ
Output:
tuple M〈ci, vulnerability vi〉
list of transactions and gas: 〈ci, tj, gasj〉 ∈ Qout
1 M = ∅
2 Qout = ∅
3 for each contract c in C
4 Qc = {q ∈ Q|q.ci = c}
5 while ¬ (timeout)
6 fi = select a function from c
7 if random() < ρ

8 t = Generate a random transaction for fi
9 gas = c.Execute(t)
10 else t = choose a transaction for fi from Qc
11 end if
12 tm = mutate(t)
13 gasm = c.Execute(tm)
14 if (gasm >gas)
15 Qc = Qc

⋃
〈c, tm, gasm, 1〉

16 Qc(t).priority = Qc(t).priority∗θ
17 end if
18 end while
19 for each Security Vulnerability detected
20 M = M

⋃
〈c, vi〉

21 end for
22 Qout = Qout

⋃
Qc (c, tj, gasj)

23 end for

The output is a list of tuples 〈ci, vi〉 that contains a detected
security vulnerability vi for the vulnerable smart contract
ci. (We note that seed transactions can be obtained from
ContractFuzzer.) For each public or external (in the context
of smart contracts written in Solidity) function in ci, a list of
input parameters is obtained randomly and then represented
as a transaction. Two sets Qout and M are initialized as
empty sets (lines 1-2). In lines 3-4, a smart contract ci is
chosen from C and transactions relevant to ci are extracted
from Q into Qc. Then, a loop is initiated which selects a
function f of c (lines 5-6) and in each iteration, a transaction
tj is either obtained from Qc or generated randomly based
on the parameter ρ (lines 7-11). If a new transaction is
generated, its gas consumption (gasj) is recorded after
executing it through the blockchain (line 9). After that,
tj is mutated to obtain a mutated transaction tm (line 12),
which is then executed to get its gas consumption gasm
(line 13). In case that the gas consumption of tm is greater
than that of tj, the mutated transaction tm is added to Qc
along with its gas consumption gasm and priority of 1 (lines
14-15). The priority of the chosen transaction tj is reduced
for further selection by multiplying it with θ (line 16).

Any security vulnerabilities found by the test oracles are
recorded in set M (line 20). In the end, all the transactions
in Qc are added to Qout for usage in the next phase of
gas-leveling.

In comparison to ContractFuzzer, GasFuzzer, with this
strategy, keeps a record of gas consumption for each selected
transaction. It mutates transactions in the inputs queue to
change input parameters in a manner that tends to increase
gas consumption and employs mutation operators similar to
those used in [28]. However, unlike traditional gas-unaware
fuzzers, mutations in GasFuzzer are only applied to
transactions that call functions requiring input parameters to
be provided for successful execution. Moreover, as presented
in [20], seed prioritization is important in making fuzz-testing
increasingly cost-effective. A seed prioritization scheme to
improve the diversity of input transactions has also been
adopted in GasFuzzer. We further explain these strategies in
Section VI.

Consider the exemplified smart contract presented in Fig. 1
in the context of Algorithm 2. For the tokenHolder smart
contract, transaction at index t1 in Table 1 is considered
as the seed transaction with priority 1 in Qc (line 4). This
transaction is picked up as t for mutation (line 10) and
input 0 is mutated to 7 (i.e., t2 from Table 1) producing tm
(line 12). The transaction receiveToken(7) increases gas
consumption from 45,992 to 50,256 and thus according to
line 14, tm is added to Qc with priority 1 (line 15) while
reducing the priority of t by a factor of θ (line 16). In the next
iteration, a random transaction (t3) is generated (line 8) which
is receiveToken(6) and its gas consumption is recorded
to be 35,256 (line 9). This transaction is also mutated and
input 0 is generated which reduces the gas consumption and
does not get included in Qc. Security vulnerability analysis
is performed in the end using test oracles to analyse the
execution logs.

B. GAS-LEVELING STRATEGY
In the gas-leveling strategy, as depicted in Fig. 4, the gas
allowances of gas-expensive transactions are manipulated to
find out if an insufficient gas allowance leads to storage
changes in the blockchain that should not be taking place,
as described through our example in Fig. 1. It is also
important to point out here that only successful transactions,
the transactions that do not revert or discover a security
vulnerability, from gas-greedy strategy were considered
for the gas-leveling strategy to extract the gas-expensive
transactions in the experiment. If all transactions were to
be considered, then transactions that have already triggered
a security vulnerability in the first strategy could result in
producing duplicate results.

Algorithm 3 explains the gas-leveling strategy of
GasFuzzer. The set of transactions from the gas-greedy
fuzzing (Qout ) are provided for each contract along with
values γ , k , m and ε which are the number of expensive
transactions to extract, number of sections to divide gas
consumption, number of transaction for gas allowance
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FIGURE 4. An overview of GasFuzzer’s Gas-Leveling strategy.

manipulation and coverage threshold respectively. In the
beginning, an empty set M of security vulnerabilities is
initialized (line 1). Then a contract c is chosen for testing
and relevant transactions for c are extracted from Qout to Qc
(lines 2-3). After this, a queue of gas-expensive transactions
Qe is initialized and top γ gas-expensive transactions for
each function f are extracted into it (lines 4-9). For this
purpose, an empty queue is initialized (line 4), followed by
a function-wise iteration over the contract c (line 5). In each
iteration, transaction for a function f are extracted into Qf
(line 6) and a cutoff point for gas-consumption is decided
by first choosing the top γ gas-expensive transactions and
then taking the minimum gas allowance among them (line 7).
Each transaction in Qf that has a gas-consumption greater
than cutoff is extracted into Qe (line 8).
As stated in Section I, GasFuzzer includes a novel

coverage-based test data adequacy criterion (referred to as
the gas-coverage), which is as follows: A gas coverage
map G is created for each transaction in the sequence Qe
over k gas intervals (lines 10-11). Lines 13-20 iterate over
the transaction sequence Qe by mutating allowances for m
transactions in each iteration which transformsQe intoQm.G
is updated in each iteration for gas interval coverage (line 17)
and the mutated transaction sequence Qm is executed (lines
19-20). The loop executes until a coverage of ε is achieved
overG. At the end, the execution log is analyzed for detecting
security vulnerabilities which are added to M if detected.

Consider the same exemplified smart contract from Fig. 1
but this time in the context of Algorithm 3. Suppose that
Qout in Algorithm 3 contains all the transactions from
gas-greedy strategy. The transaction sequence Qc contains
transactions t1 to t5 from Table 1.. 2 transactions (value of γ ),
in the context of function receiveToken(t), that consume
the most gas are used to form a sequence Qe containing
transactions t2 and t5 from Table 1 (i.e., 〈. . . ,(t2, 50256),

Algorithm 3 GasFuzzer Algorithm for Gas-Leveling
Strategy

Input:
list of smart contracts to test (ci ∈ C)
list of transactions: 〈ci, tj, gasj〉 ∈ Qout
number of gas expensive transaction for each function: γ
number of section to divide gas consumption: k
number of transactions for gas manipulation: m
coverage threshold: ε
Output:
tuple M〈ci, vulnerability vi〉
1 M = ∅
2 for each contract c in C
3 Qc = {q ∈ Qout |q.ci = c}
4 Qe = ∅
5 for each function f in c
6 Qf = {x ∈ Qc|x.c.fi = f }
7 cutoff = minimum(top γ (Qf .gasj))
8 Qe = Qe

⋃
{x ∈ Qf |x.gasj ≥ cutoff}

9 end for
10 for i = 0: k-1
11 ∀q ∈ Qe, G[q.t , l = b(x.gasj)/kc ∗ i,

h = b(x.gasj)/kc ∗ (i+1)] = 〈cov: 6〉
12 while ¬(coverage over G > ε)
13 Qmut = Qe
14 µ = Choose m indices randomly from 1:|Qe|
15 for i =1:m
16 Qmut [µ[i]].gas= mutate(Qmut [µ[i]].gas)
17 G[Qmut [µ[i]].t , h ≥ Qmut [µ[i]].gas,

l < Qmut [µ[i]].gas] = 〈cov:4 〉
18 end for
19 for i = 1:|Qmut |
20 c.Execute(Qmut [i])
21 end while
22 for each Security Vulnerability detected
23 M = M

⋃
〈c, vi〉

24 end for
25 end for

(t5, 50256), . . . 〉). It needs to be pointed out that Qe will
contain transactions for various functions but we are focusing
only at one function for the sake of brevity here. Next,
a gas coverage map G is created. To fill G, each gi is
divided into 3 intervals (value of k). The gas map G is a
2-dimentioanl array with each entry consisting of the input
data and 2 gas values (corresponding to the interval with a
high and low value) as the key and a boolean (cov) to be
the value that keeps a record if this particular interval has
been covered or not. For instance, the entries corresponding
to (t2, 50256) in Qe will be of the form 〈(t2, 0, 16752)=6,
(t2, 16752, 33504)=6, (t2, 33504, 50256)=6〉. The 6
symbol signifies that a particular section has not been
covered and its value is false. Next, Qe is mutated into
Qm by modifying the gas allowance for some (value
of m) transactions. For each transaction in Qm that
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gets modified, for example (t2, 50256) to (t2, 35000),
the corresponding entry in G for ti, where gm falls within
the interval is updated and boolean cov is set to 4
(signifying that the value is true). This corresponds to the
last interval that we stated above which now will look like
(ti, 33504, 50256)= 4. Then Qm is executed by GasFuzzer
and execution logs are analyzed in the end where
the Exceptions Disorder security vulnerability in t6 is
successfully detected. This process is repeated until a
coverage of ε is achieved over G.

VI. EVALUATION
In this section, we present an evaluation of GasFuzzer.
We first describe our dataset, experimental setup and
procedure. Then in the experiment, we aim to answer the
following three research questions:

RQ1: Is the gas-greedy strategy of GasFuzzer more
effective than ContractFuzzer in exposing Exceptions
Disorder Security Vulnerability?

RQ2: Is the effectiveness of the gas-greedy strategy of
GasFuzzer at par with ContractFuzzer in exposing other types
of security vulnerabilities?

RQ3: Can Exceptions Disorder vulnerability detection
be further improved by GasFuzzer through its gas-leveling
strategy with the use of gas-coverage criterion?

In the end, we discuss the threats to validity and future
work.

A. DATASET
To set up our experiment, we obtained a dataset of 3170 smart
contracts from Etherscan.io [9] deployed on Ethereum
Main-Net between October 2017 and July 2019. The standard
of smart contracts has evolved quickly. The dataset of smart
contracts has been made available online.1

In recent two years, a limit had been imposed by
Etherscan.io2 on the number of smart contracts that can be
downloaded. To operate under this constraint, we searched for
verified contracts [10] with popular keywords in their names
and then extracted their Solidity source code, bytecode, ABI
and constructor arguments to be used in our experiments.

From Table 2, on average, each contract in our dataset
consists of around 158 lines of code with the median being
134. Lower and upper quartiles are at 53 and 196 with
the largest of contracts reaching almost 1500 lines of code.
Each contract on average has 23 functions where upper and
lower quartiles are 8 and 41 respectively. The number of
pure 3 functions is much lower as compared to total number
of functions which indicate that most functions in these
contracts affect the state of the blockchain. Each contract on
average makes about 4 calls to other contracts. Median, lower
and upper quartiles are 2, 0 and 6 respectively. Mean number

1 https://github.com/TechBeatle/EthereumSmartContractsDataset
2https://etherscan.io/
3A pure function is a function in a smart contract that does not alter the

state of any storage variable.

TABLE 2. Descriptive statistics of our dataset.

of payable 4 functions per contracts is 1.57 with median being
1. Lower and upper quartiles are 0 and 2 respectively.

B. SETUP OF GASFUZZER
We ran our experiment on a desktop computer that was
equipped with 64GB of RAM, an 8-core Intel Xeon 2.2 GHz
processor with Ubuntu 18.04 running. Our experimental
setup was inspired by ContractFuzzer so we also used the
same instrumented GETH client (version 1.7.0) to interact
with a private Ethereum Blockchain. We deployed all the
smart contracts in our dataset to this private chain (i.e.
our TestNet). The mining difficulty is set very low so that
our transactions could be mined easily and without any
unnecessary delay. We carried out our experiment with
only one miner since none of the smart contract security
vulnerabilities that we were considering should have any
impact due to different numbers of miners.

C. EXPERIMENTAL PROCEDURE
1) PRE-PROCESSING
GasFuzzer started with a phase of light-weight static analysis
of each smart contract in the dataset. This helped in
performing realistic message calls upon real contracts from
the Ethereum Main-Net. In contrast to ContractFuzzer,
which provided random inputs from a pre-written file
for address type inputs, our implementation of GasFuzzer
provided address inputs of actual smart contracts deployed
on the TestNet and these contracts were downloaded from
the actual Ethereum Main-Net in an automated manner.
To accomplish this task, a light-weight static analysis is
performed upon the binary files of smart contracts in the
dataset. During this process GasFuzzer looked for function
signatures that appeared right after an external message call
to other contracts. Once a set of these function signatures
was obtained, GasFuzzer searched on the Main-Net for
any contracts containing functions that matched with the
function signatures in these message calls. Fortunately,
a public dataset for Ethereum Blockchain was available
on Google BigQuery [13] for GasFuzzer to perform this
task automatically. For each function signature identified,
GasFuzzer downloaded the bytecodes of 20 latest contracts
containing matching functions and deployed them on the
TestNet. These smart contracts can be referred to as
the dependency contracts. The addresses on which these

4A payable function is a function in a smart contract that allows it to
receive funds in ether.
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downloaded contracts got deployed were then provided as
options of address type inputs to be chosen for fuzzing inputs
wherever an address type of value was required to produce
a valid message call. Following the deployment of all the
smart contracts in our data set and their dependency contracts,
the fuzz testing process was ready to be started.

2) EXPERIMENT DETAILS
We obtained ContractFuzzer from [18] and built on top of it to
implement GasFuzzer. Like ContractFuzzer, GasFuzzer also
calls each smart contract with the following three types of
accounts: One was the account that was used to deploy these
contracts, hence making it the owner account. The second
one was an Externally Owned Account (EOA) which has
never interacted with the contract before. The last one was
an Agent account which was an attacking contract to look
for any Re-entrancy bugs. The same Attack Agent contract,
employed by ContractFuzzer, is used by GasFuzzer as well.
However, different from ContractFuzzer, GasFuzzer tested
each contract in our dataset on an individual basis. After
deploying all the contracts at once, a separate fuzzing process
was started for each contract generating separate logs for each
smart contract and hence each smart contract’s analysis can
easily be done on an individual basis.

For each contract in our experiment regarding the
gas-greedy strategy, each function was called about 30 times
on average with a variety of inputs and a gas allowance
of 80,000. As all the smart contracts in our dataset are
deployed at the beginning of fuzzing process, the state of
each smart contract is set to default and no prior transactions
exist for that particular smart contract. Transactions are sent
to the blockchain in batches after generation and on average
a batch consists of about 30 transactions. These transactions
are picked up and mined. We would like to point out here that
some transactions never get picked up for mining and in our
opinion this problem is related to the Geth version being used.
Overall, this number was very small and had no significant
effect on the experiments. It is necessary to highlight at this
point that experiments conducted for gas-leveling strategy are
not yet fully automated. For gas-leveling strategy, a value
of 5 is chosen for γ , k and m, while ε is set to 70% (from
Algorithm 3).

The test oracles in the ContractFuzzer tool [18] were used
to detect security vulnerabilities. In particular, the oracle for
Exceptions Disorder checks a call chain for any cases where
the root call throws no exception while one of the nested
message calls throws one and it was never handled properly.

3) MUTATION STRATEGY
In the gas-greedy strategy, GasFuzzer should mutate
transactions. Two operators were implemented for this
purpose in the experiment to demonstrate the feasibility of
GasFuzzer. The first mutation operator is randomly flipping
the bits of an input parameter and the second one is the
addition of random bits to the input parameter. Furthermore,
these mutations were applied selectively on certain input

types. For an address type input no mutation operation was
applied and the parameter was provided as it was before. For
bools, uints, ints and other fixed length input parameters,
only the first mutation operator was applied and for other
input parameters such as bytes and strings any one or
both of the mutation operators was applied. Even though
two basic mutation operators were used in the experiment,
the experimental results have already shown that GasFuzzer
can be effective.

4) SEED PRIORITIZATION
In the gas-greedy strategy, GasFuzzer needs seed
prioritization. It started with assigning a uniform priority
to each seed input and every time a seed input was used
to generate a new gas expensive transaction, the priority of
the original seed was reduced with θ = 0.5 in Algorithm 2.
In addition, GasFuzzer kept introducing new randomly
generated transactions into the process. Whenever a
transaction was to be picked for fuzzing, GasFuzzer chose
between extracting a transaction from the seed input queue
or generating one from scratch. In the experiment, GasFuzzer
was configured to maintain a balance between these two
options by giving a 70% probability (ρ = 0.7 in Algorithm 2)
to generate a new random transaction and the remaining
probability (i.e. 30%) for reusing an existing transaction from
the seed queue.

D. DATA ANALYSIS
In this section, we report our findings and answer the
RQs. We use GF and CF to signify the GasFuzzer and
ContractFuzzer implementations, respectively.

1) ANSWERING RQ1
To answer RQ1, we compare the number of Exceptions
Disorder security vulnerabilities detected by CF and GF.
Table 3 summarizes the results. From the table, GasFuzzer
was more effective than ContractFuzzer in the detection of
Exceptions Disorder by 28%.

TABLE 3. Summary of exceptions disorder vulnerabilities detected.

The Exceptions Disorder security vulnerability surfaced
when two or more contracts interacted with each other via
lower-level message calls, e.g., address.call(). Suppose an
EOA initiates a transaction for contract C1 followed by C1
interacting with C2 via a later message call. If an exception
occurs at any step in the call chain, then that exception should
be passed back to its caller function. However, if a necessary
reversion in those contracts does not take place, unexpected
states may be resulted.
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GF produced transactions that tended to be more
gas-expensive than CF. In case a transaction produced an
Out-of-Gas Exception, which normally it would not, and that
exception had not been handled properly by the involved
smart contracts, unexpected states may be achieved as a
result. From the results reported in Table 3, GF was shown to
be more effective than CF in finding such unhandled cases.

Answer to RQ1: From the experimental results,
GasFuzzer is likely more effective in finding Exceptions
Disorder security vulnerabilities than ContractFuzzer.

2) ANSWERING RQ2
We compare the effectiveness of GF with CF to see whether
there is any significant decline in the effectiveness of GF on
other types of security vulnerabilities that CF can detect.

The results in Table 4 show that there are no significant
performance degradations of GF in finding other security
vulnerabilities detectable by CF. Both GF and CF do not
find any cases of Dangerous DelegateCalls or Freezing Ether
on our dataset. As for Gasless Send, Re-entrancy and Block
Number Dependency, both the tools found the same number
of security vulnerabilities. As for the Timestamp dependency,
which was very similar to Block number dependency,
we observed a slight drop in the number of cases identified by
GF. Upon closer inspection of these cases, it was found that
the use of block timestamp was done under certain assertion
conditions. For example, in a contract named lockEtherPay,
hardcoded timestamps were being used to control when Ether
transfer can take place. By the time the reported experiments
were conducted using GasFuzzer, the end time to allow Ether
transfer had passed. Since no Ether transfer could take place,
GasFuzzer did not identify this smart contract as vulnerable
to Timestamp Dependency.

TABLE 4. Effectiveness comparison of GF and CF on other five types of
security vulnerabilities.

Answer to RQ2: We find no significant performance
degradations in the ability of GasFuzzer to detect other
security vulnerabilities in comparison with ContractFuzzer.

3) ANSWERING RQ3
The Exceptions Disorders vulnerability has been discussed
in RQ1. Results from the RQ1 gave us an insight that a
fuzzer could further improve its detection ability on this type
of security vulnerability by not only manipulation of the
input value provided in a transaction but allocating a varying

TABLE 5. Detected smart contracts with security vulnerabilities in RQ3.

gas allowance may also help affect the security vulnerability
detection rate. Our experiments show that manipulating gas
allowances for expensive transactions has a positive effect on
security vulnerability detection.

As a result of this experiment, GasFuzzer found
6 additional Exceptions Disorder vulnerabilities and the
vulnerable contracts are listed in the Table 5. Most of the
smart contracts listed here were unable to ensure whether a
message call to an external smart contract had been executed
successfully. CoinContract is the exception among these
which received the returned value from a call but never
verified if the value is false to consequently revert the parent
calls as well. Among these contracts, only X2ETH has been
self-destructed while others are still live on the Ethereum
network which is why the addresses of these smart contracts
are not being disclosed in this paper. These results show that
certain security vulnerabilities can only be detected under
certain pre-conditions which did not necessarily have to be
triggered at specific states of the blockchain. It was also
found that even initiating transactions with a wrong gas
allowance can lead to unexpected results. These security
vulnerabilities are very hard to be identified by current
fuzzing tools since a high gas allowance is usually reserved
in a testing environment.

We also analyzed the execution of the transactions by both
GF and CF to look for cases where Out-of-Gas exceptions
were thrown due to increased gas requirements. For RQ3,
0.27 million transaction sequences were executed and almost
all of the transactions with revised gas allowances threw
exceptions except for the cases we reported or maximum gas
allowance was provided.

Answer to RQ3: The results show that six new
Exceptions Disorder security vulnerability can be identified
by GasFuzzer, and all of them are previously unknown real
bugs.

E. FURTHER DISCUSSION
From the data analysis reported in the previous sub-section,
we believe that gas-related security vulnerabilities were
mostly hiding in plain sight, but they can only be exercised
under special conditions. The gas allowance assigned to a
transaction was critical to detect those security vulnerabilities
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FIGURE 5. A simplified version of AirDrop smart contract.

as revealed through answering RQ3 (gas-leveling strategy).
A simplified version of the AirDrop smart contract has
been provided in Fig. 5 where the function transfer expects
two addresses and an unsigned integer. After performing
some internal state changes, this function makes an external
call to a smart contract deployed at the first input address
with a function that matches the signature calculated in id.
As explained earlier in Section VI that GasFuzzer initially
performs a light-weight static analysis looking for such calls
to download and deploy matching realistic smart contracts,
a realistic message call can be made. The gas-leveling
strategy makes sure that such calls are made with varied
gas-allowances so that security vulnerabilities can be
identified even if the underlying logic in the target smart
contract is error free. In this case, AirDrop smart contract
updates its internal storage for some transfer and then an
external call is made to transfer some assets to an address.
If due to insufficient gas allowance, the message call throws
an error-out-of-gas exception which is not checked (such as
in this case), an inconsistency will arise.

Without these pre-conditions achieved, it will be quite
difficult to hunt out these gas-related security vulnerabilities.
Moreover, from our experiments, we observed that both
manipulating transactions with higher gas consumption or
with a wrongful gas allowance can lead smart contracts to
run into dangerous state transitions.

In future, we will further generalize GasFuzzer for it to be
able to perform gas-aware fuzzing better by manipulating gas
allowance for gas-expensive transactions. We will work on
making this process more generic and automated to be able
to perform it in an effective manner.

F. THREATS TO VALIDITY
In this section, we present the threats to validity of the
experiment.

The evaluation is based on a set of smart contracts
deployed in the public blockchain within a particular period.
Using other periods will produce a different dataset, and
we will see a different number of vulnerabilities detected in
the corresponding experiment. However, since we did not
know which contracts containing the detected vulnerability,
the experiment is still fair in comparing CF and GF. We tend
to believe that GF will still detect more Exceptions Disorder
cases than CF on other datasets due to its intrinsic ability

to distinguish transactions with insufficient gas and/or drive
the mutations toward the high end of the gas consumption
spectrum.

Algorithms 2 and 3 require some configuration parameters
to be initialized. We only evaluated CF and GF on one set
of parameters, which already took weeks to complete due to
the large amount of transactions produced, and at par with
the scale of the experiment reported in the original paper of
ContractFuzzer. Having said that, further generalization is
necessary.

The experiment used the test oracle of CF. There may
be bugs in the implementation and the set of test oracles
of CF was limited. The use of other test oracles and their
implementations may produce different results.

There may be implementation errors in GF. To alleviate
this issue, we have tested GF on a small dataset of self-crafted
smart contracts.

The experiment only implemented two mutation operators
for GF. We tend to believe that the use of more mutation
operations will produce the diversity of mutated transactions.
In the literature on traditional mutation testing, the general
trend is that a more diverse test suite tends to detect more
failures. Apparently, the effectiveness of GF could be further
improved if more mutation operators can be used, which
requires further experimentation to confirm.

We measured the effectiveness of GF and CF by the
number of instances detected by each kind of test oracle.
The use of other criterion may produce different results.
Moreover, due to the need to mutate transaction and maintain
the data structure, GF is less efficient than CF in generating
transactions for fuzz testing. One may consider that by
allowing the same amount of time budget for either tool to test
the same smart contracts, CF will generate more transactions
than GF. In the current experiments, we set the same timeout
limit to run both tools.

VII. RELATED WORK
Oyente was one of the first tools aimed at smart contract
verification proposed by Luu et al. in [21]. Oyente is a
symbolic execution based smart contract verification tool that
uses control flow graphs (CFGs) of smart contracts under test
to perform symbolic execution on them. Oyente looks for any
vulnerable patterns that may lead to the discovery of some
types of security vulnerabilities that include transaction order
dependency, re-entrancy and timestamp dependence. Using
similar techniques based on Symbolic Execution, another
tool called MAIAN was introduced in [23]. MAIAN looks
to find out whether a contract can be classified as greedy
(contracts that can be made to transfer ether to an address
it never transacted with), prodigal (contracts that tend to
lock Ether under certain state conditions), suicidal (contract
whose code can be removed from the blockchain by address
that do not own it) or a combination of these. A major
drawback of both these approaches is a high number of false
positives. In [16], Jiang et al. present Artemis, which is
an improved smart contract security vulnerability detection
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tool that is based on Oyente. Artemis can effectively find
out four types of security vulnerabilities such as Freezing
Ether, Block number dependency, Expensive Fallback and
Dangerous Delegatecall.

Securify [26] and Vandal [2] are both static analysis
based smart contract verification tools. Securify establishes
security patterns in a domain-specific language that are then
verified for accordance or defiance. For contract analysis,
a stackless static-single assignment form of the bytecode is
used to deduce predefined semantic facts (data-flow/control-
flow dependencies). Vandal, on the other hand, decompiles
the bytecode and collects features of the smart contract under
test as a datalog. These tools perform well on re-entrancy
vulnerability.

ZUES [19] and SmartCheck [25] also try to verify
smart contracts for security vulnerabilities but require the
provision of source code. ZEUS uses a Solidity based
Abstract Syntax Tree (AST) to gather policies which can
be edited by smart contract developers. Different from
ZEUS, SmartCheck converts Solidity code into Intermediate
Representation (IR) which is XML based. This IR is
checked for patterns, violation of which leads to detection of
security vulnerabilities. Both these approaches operate on a
wide range of security vulnerabilities but loose accuracy if
properties are not well defined.

Echidna [7] and Harvey [27] use Fuzzing to concretely
verify smart contracts. Echidna needs oracles to be written
by developers inside unit tests which again puts the strain
on contract developers. Harvey on the other hand uses
classic Greybox Fuzzing techniques like AFL [28] and
AFL-Fast [1] to generate inputs but with a modification
of input prediction. ContractFuzzer [17] is a black-box
fuzzer that generates random transactions to find security
vulnerabilities in Ethereum smart contracts. It uses the
Application Binary Interfaces (ABIs) of the smart contracts
to generate transactions without any feedback from the
execution and employs an instrumented EVM to execute
these transactions. Execution logs are then analyzed for
security vulnerability detection. In [15], He et al. propose
a fuzz testing tool which tries to behave like a symbolic
execution engine for smart contracts. Imitation learning is
used to train a fuzzer on large number of inputs generated
through a symbolic execution engine proposed in [24]. The
fuzzer is basically a set of neural networks which had been
trained on the dataset of generated transactions. A recent
work by Nguyen et al. [22] presents an adaptive fuzzer
which applies a light-weight multi-objective strategy to target
difficult to reach branches in Ethereum smart contracts.
EvmFuzzer [12] is also a tool that uses fuzz testing, not
to verify smart contracts for security vulnerabilities, but to
identify discrepancies among various implementations of
EVM in different programming languages.

The only previous works that discuss gas consumption
as an important entity are Gasper [3] and GasReducer [4]
but these tools only aim at finding out patterns in smart
contracts that lead to gas wastage. The focus here is not

to consider gas consumption for security verification but to
reduce the amount of gas consumed to make the process
more cost-efficient. These techniques construct CFGs form
bytecode to perform symbolic execution employing an SMT
solver to discover possible execution paths.

VIII. CONCLUSION
In this paper, we have presented a novel technique GasFuzzer.
It consists of two strategies. The gas-greedy strategy has
been formulated based on the insight that gas consumption
of executed transactions provides lightweight information
about the executed program code to deal with blockchain
states of the involved smart contracts. GasFuzzer used this
aspect of information to iron out transactions subject to
further generation of mutated transactions. The experiment
has shown that GasFuzzer can detect more Exceptions
Disorder security vulnerabilities than the previous black-box
state-of-the-art technique ContractFuzzer by 28% while it
does not compromise the ability to detect other kinds of
security vulnerabilities. The gas-leveling strategy is novel
in that it formulates a novel test data adequacy criterion
and uses it to guide the generation of mutated transactions
with lower gas allowances. The experiment has shown that
this strategy is effective in detecting Exceptions Disorder
security vulnerabilities that have been missed to expose in
the experiment above. Through this work, we believe that by
focusing on gas-expensive transactions and manipulation of
gas allowance, one can significantly improve the fuzz testing
process for some of the most serious security vulnerabilities
that can be induced in smart contracts. We plan to further
explore along this research direction in the future. A version
of GasFuzzer has been deployed in FUSE, an online fuzz
testing service for Ethereum smart contracts under the
HKSAR ITF (project no. ITS/378/18).
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